summaryrefslogtreecommitdiff
path: root/gcc/tree-complex.c
blob: 66fa6129c6da5fbb4c10a72e82546b6748371d54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/* Lower complex operations to scalar operations.
   Copyright (C) 2004 Free Software Foundation, Inc.

This file is part of GCC.
   
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
   
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
   
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tm.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "flags.h"


/* Force EXP to be a gimple_val.  */

static tree
gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
{
  tree t, new_stmt, orig_stmt;

  if (is_gimple_val (exp))
    return exp;

  t = make_rename_temp (type, NULL);
  new_stmt = build (MODIFY_EXPR, type, t, exp);

  orig_stmt = bsi_stmt (*bsi);
  SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
  TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);

  bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);

  return t;
}

/* Extract the real or imaginary part of a complex variable or constant.
   Make sure that it's a proper gimple_val and gimplify it if not.
   Emit any new code before BSI.  */

static tree
extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p)
{
  tree ret, inner_type;

  inner_type = TREE_TYPE (TREE_TYPE (t));
  switch (TREE_CODE (t))
    {
    case COMPLEX_CST:
      ret = (imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t));
      break;

    case COMPLEX_EXPR:
      ret = TREE_OPERAND (t, imagpart_p);
      break;

    case VAR_DECL:
    case PARM_DECL:
      ret = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
		    inner_type, t);
      break;

    default:
      abort ();
    }

  return gimplify_val (bsi, inner_type, ret);
}

/* Build a binary operation and gimplify it.  Emit code before BSI.
   Return the gimple_val holding the result.  */

static tree
do_binop (block_stmt_iterator *bsi, enum tree_code code,
	  tree type, tree a, tree b)
{
  tree ret;

  ret = fold (build (code, type, a, b));
  STRIP_NOPS (ret);

  return gimplify_val (bsi, type, ret);
}

/* Build a unary operation and gimplify it.  Emit code before BSI.
   Return the gimple_val holding the result.  */

static tree
do_unop (block_stmt_iterator *bsi, enum tree_code code, tree type, tree a)
{
  tree ret;

  ret = fold (build1 (code, type, a));
  STRIP_NOPS (ret);

  return gimplify_val (bsi, type, ret);
}

/* Update an assignment to a complex variable in place.  */

static void
update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i)
{
  tree stmt = bsi_stmt (*bsi);
  tree type;

  modify_stmt (stmt);
  if (TREE_CODE (stmt) == RETURN_EXPR)
    stmt = TREE_OPERAND (stmt, 0);
  
  type = TREE_TYPE (TREE_OPERAND (stmt, 1));
  TREE_OPERAND (stmt, 1) = build (COMPLEX_EXPR, type, r, i);
}

/* Expand complex addition to scalars:
	a + b = (ar + br) + i(ai + bi)
	a - b = (ar - br) + i(ai + bi)
*/

static void
expand_complex_addition (block_stmt_iterator *bsi, tree inner_type,
			 tree ar, tree ai, tree br, tree bi,
			 enum tree_code code)
{
  tree rr, ri;

  rr = do_binop (bsi, code, inner_type, ar, br);
  ri = do_binop (bsi, code, inner_type, ai, bi);

  update_complex_assignment (bsi, rr, ri);
}

/* Expand complex multiplication to scalars:
	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
*/

static void
expand_complex_multiplication (block_stmt_iterator *bsi, tree inner_type,
			       tree ar, tree ai, tree br, tree bi)
{
  tree t1, t2, t3, t4, rr, ri;

  t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, br);
  t2 = do_binop (bsi, MULT_EXPR, inner_type, ai, bi);
  t3 = do_binop (bsi, MULT_EXPR, inner_type, ar, bi);

  /* Avoid expanding redundant multiplication for the common
     case of squaring a complex number.  */
  if (ar == br && ai == bi)
    t4 = t3;
  else
    t4 = do_binop (bsi, MULT_EXPR, inner_type, ai, br);

  rr = do_binop (bsi, MINUS_EXPR, inner_type, t1, t2);
  ri = do_binop (bsi, PLUS_EXPR, inner_type, t3, t4);

  update_complex_assignment (bsi, rr, ri);
}

/* Expand complex division to scalars, straightforward algorithm.
	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
	    t = br*br + bi*bi
*/

static void
expand_complex_div_straight (block_stmt_iterator *bsi, tree inner_type,
			     tree ar, tree ai, tree br, tree bi,
			     enum tree_code code)
{
  tree rr, ri, div, t1, t2, t3;

  t1 = do_binop (bsi, MULT_EXPR, inner_type, br, br);
  t2 = do_binop (bsi, MULT_EXPR, inner_type, bi, bi);
  div = do_binop (bsi, PLUS_EXPR, inner_type, t1, t2);

  t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, br);
  t2 = do_binop (bsi, MULT_EXPR, inner_type, ai, bi);
  t3 = do_binop (bsi, PLUS_EXPR, inner_type, t1, t2);
  rr = do_binop (bsi, code, inner_type, t3, div);

  t1 = do_binop (bsi, MULT_EXPR, inner_type, ai, br);
  t2 = do_binop (bsi, MULT_EXPR, inner_type, ar, bi);
  t3 = do_binop (bsi, MINUS_EXPR, inner_type, t1, t2);
  ri = do_binop (bsi, code, inner_type, t3, div);

  update_complex_assignment (bsi, rr, ri);
}

/* Expand complex division to scalars, modified algorithm to minimize
   overflow with wide input ranges.  */

static void
expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type,
			 tree ar, tree ai, tree br, tree bi,
			 enum tree_code code)
{
  tree rr, ri, ratio, div, t1, t2, min, max, cond;

  /* Examine |br| < |bi|, and branch.  */
  t1 = do_unop (bsi, ABS_EXPR, inner_type, br);
  t2 = do_unop (bsi, ABS_EXPR, inner_type, bi);
  cond = fold (build (LT_EXPR, boolean_type_node, t1, t2));
  STRIP_NOPS (cond);

  if (TREE_CONSTANT (cond))
    {
      if (integer_zerop (cond))
	min = bi, max = br;
      else
	min = br, max = bi;
    }
  else
    {
      basic_block bb_cond, bb_true, bb_false, bb_join;
      tree l1, l2, l3;
      edge e;

      l1 = create_artificial_label ();
      t1 = build (GOTO_EXPR, void_type_node, l1);
      l2 = create_artificial_label ();
      t2 = build (GOTO_EXPR, void_type_node, l2);
      cond = build (COND_EXPR, void_type_node, cond, t1, t2);
      bsi_insert_before (bsi, cond, BSI_SAME_STMT);

      min = make_rename_temp (inner_type, NULL);
      max = make_rename_temp (inner_type, NULL);
      l3 = create_artificial_label ();

      /* Split the original block, and create the TRUE and FALSE blocks.  */
      e = split_block (bsi->bb, cond);
      bb_cond = e->src;
      bb_join = e->dest;
      bb_true = create_empty_bb (bb_cond);
      bb_false = create_empty_bb (bb_true);

      /* Wire the blocks together.  */
      e->flags = EDGE_TRUE_VALUE;
      redirect_edge_succ (e, bb_true);
      make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
      make_edge (bb_true, bb_join, 0);
      make_edge (bb_false, bb_join, 0);

      /* Update dominance info.  Note that bb_join's data was
         updated by split_block.  */
      if (dom_computed[CDI_DOMINATORS] >= DOM_CONS_OK)
        {
          set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
          set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
        }

      /* Compute min and max for TRUE block.  */
      *bsi = bsi_start (bb_true);
      t1 = build (LABEL_EXPR, void_type_node, l1);
      bsi_insert_after (bsi, t1, BSI_NEW_STMT);
      t1 = build (MODIFY_EXPR, inner_type, min, br);
      bsi_insert_after (bsi, t1, BSI_NEW_STMT);
      t1 = build (MODIFY_EXPR, inner_type, max, bi);
      bsi_insert_after (bsi, t1, BSI_NEW_STMT);

      /* Compute min and max for FALSE block.  */
      *bsi = bsi_start (bb_false);
      t1 = build (LABEL_EXPR, void_type_node, l2);
      bsi_insert_after (bsi, t1, BSI_NEW_STMT);
      t1 = build (MODIFY_EXPR, inner_type, min, bi);
      bsi_insert_after (bsi, t1, BSI_NEW_STMT);
      t1 = build (MODIFY_EXPR, inner_type, max, br);
      bsi_insert_after (bsi, t1, BSI_NEW_STMT);

      /* Insert the join label into the tail of the original block.  */
      *bsi = bsi_start (bb_join);
      t1 = build (LABEL_EXPR, void_type_node, l3);
      bsi_insert_before (bsi, t1, BSI_SAME_STMT);
    }
  
  /* Now we have MIN(|br|, |bi|) and MAX(|br|, |bi|).  We now use the
     ratio min/max to scale both the dividend and divisor.  */
  ratio = do_binop (bsi, code, inner_type, min, max);

  /* Calculate the divisor: min*ratio + max.  */
  t1 = do_binop (bsi, MULT_EXPR, inner_type, min, ratio);
  div = do_binop (bsi, PLUS_EXPR, inner_type, t1, max);

  /* Result is now ((ar + ai*ratio)/div) + i((ai - ar*ratio)/div). */
  t1 = do_binop (bsi, MULT_EXPR, inner_type, ai, ratio);
  t2 = do_binop (bsi, PLUS_EXPR, inner_type, ar, t1);
  rr = do_binop (bsi, code, inner_type, t2, div);

  t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, ratio);
  t2 = do_binop (bsi, MINUS_EXPR, inner_type, ai, t1);
  ri = do_binop (bsi, code, inner_type, t2, div);

  update_complex_assignment (bsi, rr, ri);
}

/* Expand complex division to scalars.  */

static void
expand_complex_division (block_stmt_iterator *bsi, tree inner_type,
			 tree ar, tree ai, tree br, tree bi,
			 enum tree_code code)
{
  switch (flag_complex_divide_method)
    {
    case 0:
      /* straightforward implementation of complex divide acceptable.  */
      expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code);
      break;
    case 1:
      /* wide ranges of inputs must work for complex divide.  */
      expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code);
      break;
    default:
      /* C99-like requirements for complex divide (not yet implemented).  */
      abort ();
    }
}

/* Expand complex negation to scalars:
	-a = (-ar) + i(-ai)
*/

static void
expand_complex_negation (block_stmt_iterator *bsi, tree inner_type,
			 tree ar, tree ai)
{
  tree rr, ri;

  rr = do_unop (bsi, NEGATE_EXPR, inner_type, ar);
  ri = do_unop (bsi, NEGATE_EXPR, inner_type, ai);

  update_complex_assignment (bsi, rr, ri);
}

/* Expand complex conjugate to scalars:
	~a = (ar) + i(-ai)
*/

static void
expand_complex_conjugate (block_stmt_iterator *bsi, tree inner_type,
			  tree ar, tree ai)
{
  tree ri;

  ri = do_unop (bsi, NEGATE_EXPR, inner_type, ai);

  update_complex_assignment (bsi, ar, ri);
}

/* Expand complex comparison (EQ or NE only).  */

static void
expand_complex_comparison (block_stmt_iterator *bsi, tree ar, tree ai,
			   tree br, tree bi, enum tree_code code)
{
  tree cr, ci, cc, stmt, type;

  cr = do_binop (bsi, code, boolean_type_node, ar, br);
  ci = do_binop (bsi, code, boolean_type_node, ai, bi);
  cc = do_binop (bsi, (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
		 boolean_type_node, cr, ci);

  stmt = bsi_stmt (*bsi);
  modify_stmt (stmt);

  switch (TREE_CODE (stmt))
    {
    case RETURN_EXPR:
      stmt = TREE_OPERAND (stmt, 0);
      /* FALLTHRU */
    case MODIFY_EXPR:
      type = TREE_TYPE (TREE_OPERAND (stmt, 1));
      TREE_OPERAND (stmt, 1) = convert (type, cc);
      break;
    case COND_EXPR:
      TREE_OPERAND (stmt, 0) = cc;
      break;
    default:
      abort ();
    }
}

/* Process one statement.  If we identify a complex operation, expand it.  */

static void
expand_complex_operations_1 (block_stmt_iterator *bsi)
{
  tree stmt = bsi_stmt (*bsi);
  tree rhs, type, inner_type;
  tree ac, ar, ai, bc, br, bi;
  enum tree_code code;

  switch (TREE_CODE (stmt))
    {
    case RETURN_EXPR:
      stmt = TREE_OPERAND (stmt, 0);
      if (!stmt)
	return;
      if (TREE_CODE (stmt) != MODIFY_EXPR)
	return;
      /* FALLTHRU */

    case MODIFY_EXPR:
      rhs = TREE_OPERAND (stmt, 1);
      break;

    case COND_EXPR:
      rhs = TREE_OPERAND (stmt, 0);
      break;

    default:
      return;
    }

  type = TREE_TYPE (rhs);
  code = TREE_CODE (rhs);

  /* Initial filter for operations we handle.  */
  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case RDIV_EXPR:
    case NEGATE_EXPR:
    case CONJ_EXPR:
      if (TREE_CODE (type) != COMPLEX_TYPE)
	return;
      inner_type = TREE_TYPE (type);
      break;

    case EQ_EXPR:
    case NE_EXPR:
      inner_type = TREE_TYPE (TREE_OPERAND (rhs, 1));
      if (TREE_CODE (inner_type) != COMPLEX_TYPE)
	return;
      break;

    default:
      return;
    }

  /* Extract the components of the two complex values.  Make sure and
     handle the common case of the same value used twice specially.  */
  ac = TREE_OPERAND (rhs, 0);
  ar = extract_component (bsi, ac, 0);
  ai = extract_component (bsi, ac, 1);

  if (TREE_CODE_CLASS (code) == '1')
    bc = br = bi = NULL;
  else
    {
      bc = TREE_OPERAND (rhs, 1);
      if (ac == bc)
	br = ar, bi = ai;
      else
	{
	  br = extract_component (bsi, bc, 0);
	  bi = extract_component (bsi, bc, 1);
	}
    }

  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
      expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code);
      break;

    case MULT_EXPR:
      expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi);
      break;

    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case RDIV_EXPR:
      expand_complex_division (bsi, inner_type, ar, ai, br, bi, code);
      break;
      
    case NEGATE_EXPR:
      expand_complex_negation (bsi, inner_type, ar, ai);
      break;

    case CONJ_EXPR:
      expand_complex_conjugate (bsi, inner_type, ar, ai);
      break;

    case EQ_EXPR:
    case NE_EXPR:
      expand_complex_comparison (bsi, ar, ai, br, bi, code);
      break;

    default:
      abort ();
    }
}

/* Main loop to process each statement.  */
/* ??? Could use dominator bits to propagate from complex_expr at the
   same time.  This might reveal more constants, particularly in cases
   such as (complex = complex op scalar).  This may not be relevant
   after SRA and subsequent cleanups.  Proof of this would be if we
   verify that the code generated by expand_complex_div_wide is
   simplified properly to straight-line code.  */

static void
expand_complex_operations (void)
{
  int old_last_basic_block = last_basic_block;
  block_stmt_iterator bsi;
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      if (bb->index >= old_last_basic_block)
	continue;
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	expand_complex_operations_1 (&bsi);
    }
}

struct tree_opt_pass pass_lower_complex = 
{
  "complex",				/* name */
  NULL,					/* gate */
  expand_complex_operations,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_rename_vars
    | TODO_ggc_collect | TODO_verify_ssa
    | TODO_verify_stmts | TODO_verify_flow /* todo_flags_finish */
};