summaryrefslogtreecommitdiff
path: root/gcc/tree-flow-inline.h
blob: d8a0b4b727ce3105b2fae6669cfe1b751c6c44ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
/* Inline functions for tree-flow.h
   Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#ifndef _TREE_FLOW_INLINE_H
#define _TREE_FLOW_INLINE_H 1

/* Inline functions for manipulating various data structures defined in
   tree-flow.h.  See tree-flow.h for documentation.  */

/* Return the variable annotation for T, which must be a _DECL node.
   Return NULL if the variable annotation doesn't already exist.  */
static inline var_ann_t
var_ann (tree t)
{
  gcc_assert (t);
  gcc_assert (DECL_P (t));
  gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);

  return (var_ann_t) t->common.ann;
}

/* Return the variable annotation for T, which must be a _DECL node.
   Create the variable annotation if it doesn't exist.  */
static inline var_ann_t
get_var_ann (tree var)
{
  var_ann_t ann = var_ann (var);
  return (ann) ? ann : create_var_ann (var);
}

/* Return the statement annotation for T, which must be a statement
   node.  Return NULL if the statement annotation doesn't exist.  */
static inline stmt_ann_t
stmt_ann (tree t)
{
#ifdef ENABLE_CHECKING
  gcc_assert (is_gimple_stmt (t));
#endif
  return (stmt_ann_t) t->common.ann;
}

/* Return the statement annotation for T, which must be a statement
   node.  Create the statement annotation if it doesn't exist.  */
static inline stmt_ann_t
get_stmt_ann (tree stmt)
{
  stmt_ann_t ann = stmt_ann (stmt);
  return (ann) ? ann : create_stmt_ann (stmt);
}


/* Return the annotation type for annotation ANN.  */
static inline enum tree_ann_type
ann_type (tree_ann_t ann)
{
  return ann->common.type;
}

/* Return the basic block for statement T.  */
static inline basic_block
bb_for_stmt (tree t)
{
  stmt_ann_t ann;

  if (TREE_CODE (t) == PHI_NODE)
    return PHI_BB (t);

  ann = stmt_ann (t);
  return ann ? ann->bb : NULL;
}

/* Return the may_aliases varray for variable VAR, or NULL if it has
   no may aliases.  */
static inline varray_type
may_aliases (tree var)
{
  var_ann_t ann = var_ann (var);
  return ann ? ann->may_aliases : NULL;
}

/* Return the line number for EXPR, or return -1 if we have no line
   number information for it.  */
static inline int
get_lineno (tree expr)
{
  if (expr == NULL_TREE)
    return -1;

  if (TREE_CODE (expr) == COMPOUND_EXPR)
    expr = TREE_OPERAND (expr, 0);

  if (! EXPR_HAS_LOCATION (expr))
    return -1;

  return EXPR_LINENO (expr);
}

/* Return the file name for EXPR, or return "???" if we have no
   filename information.  */
static inline const char *
get_filename (tree expr)
{
  const char *filename;
  if (expr == NULL_TREE)
    return "???";

  if (TREE_CODE (expr) == COMPOUND_EXPR)
    expr = TREE_OPERAND (expr, 0);

  if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
    return filename;
  else
    return "???";
}

/* Return true if T is a noreturn call.  */
static inline bool
noreturn_call_p (tree t)
{
  tree call = get_call_expr_in (t);
  return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
}

/* Mark statement T as modified.  */
static inline void
mark_stmt_modified (tree t)
{
  stmt_ann_t ann;
  if (TREE_CODE (t) == PHI_NODE)
    return;

  ann = stmt_ann (t);
  if (ann == NULL)
    ann = create_stmt_ann (t);
  else if (noreturn_call_p (t))
    VEC_safe_push (tree, gc, modified_noreturn_calls, t);
  ann->modified = 1;
}

/* Mark statement T as modified, and update it.  */
static inline void
update_stmt (tree t)
{
  if (TREE_CODE (t) == PHI_NODE)
    return;
  mark_stmt_modified (t);
  update_stmt_operands (t);
}

static inline void
update_stmt_if_modified (tree t)
{
  if (stmt_modified_p (t))
    update_stmt_operands (t);
}

/* Return true if T is marked as modified, false otherwise.  */
static inline bool
stmt_modified_p (tree t)
{
  stmt_ann_t ann = stmt_ann (t);

  /* Note that if the statement doesn't yet have an annotation, we consider it
     modified.  This will force the next call to update_stmt_operands to scan 
     the statement.  */
  return ann ? ann->modified : true;
}

/* Delink an immediate_uses node from its chain.  */
static inline void
delink_imm_use (ssa_imm_use_t *linknode)
{
  /* Return if this node is not in a list.  */
  if (linknode->prev == NULL)
    return;

  linknode->prev->next = linknode->next;
  linknode->next->prev = linknode->prev;
  linknode->prev = NULL;
  linknode->next = NULL;
}

/* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
static inline void
link_imm_use_to_list (ssa_imm_use_t *linknode, ssa_imm_use_t *list)
{
  /* Link the new node at the head of the list.  If we are in the process of 
     traversing the list, we won't visit any new nodes added to it.  */
  linknode->prev = list;
  linknode->next = list->next;
  list->next->prev = linknode;
  list->next = linknode;
}

/* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
static inline void
link_imm_use (ssa_imm_use_t *linknode, tree def)
{
  ssa_imm_use_t *root;

  if (!def || TREE_CODE (def) != SSA_NAME)
    linknode->prev = NULL;
  else
    {
      root = &(SSA_NAME_IMM_USE_NODE (def));
#ifdef ENABLE_CHECKING
      if (linknode->use)
        gcc_assert (*(linknode->use) == def);
#endif
      link_imm_use_to_list (linknode, root);
    }
}

/* Set the value of a use pointed by USE to VAL.  */
static inline void
set_ssa_use_from_ptr (use_operand_p use, tree val)
{
  delink_imm_use (use);
  *(use->use) = val;
  link_imm_use (use, val);
}

/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occuring 
   in STMT.  */
static inline void
link_imm_use_stmt (ssa_imm_use_t *linknode, tree def, tree stmt)
{
  if (stmt)
    link_imm_use (linknode, def);
  else
    link_imm_use (linknode, NULL);
  linknode->stmt = stmt;
}

/* Relink a new node in place of an old node in the list.  */
static inline void
relink_imm_use (ssa_imm_use_t *node, ssa_imm_use_t *old)
{
  /* The node one had better be in the same list.  */
  gcc_assert (*(old->use) == *(node->use));
  node->prev = old->prev;
  node->next = old->next;
  if (old->prev)
    {
      old->prev->next = node;
      old->next->prev = node;
      /* Remove the old node from the list.  */
      old->prev = NULL;
    }
}

/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occuring 
   in STMT.  */
static inline void
relink_imm_use_stmt (ssa_imm_use_t *linknode, ssa_imm_use_t *old, tree stmt)
{
  if (stmt)
    relink_imm_use (linknode, old);
  else
    link_imm_use (linknode, NULL);
  linknode->stmt = stmt;
}

/* Finished the traverse of an immediate use list IMM by removing it from 
   the list.  */
static inline void
end_safe_imm_use_traverse (imm_use_iterator *imm)
{
 delink_imm_use (&(imm->iter_node));
}

/* Return true if IMM is at the end of the list.  */
static inline bool
end_safe_imm_use_p (imm_use_iterator *imm)
{
  return (imm->imm_use == imm->end_p);
}

/* Initialize iterator IMM to process the list for VAR.  */
static inline use_operand_p
first_safe_imm_use (imm_use_iterator *imm, tree var)
{
  /* Set up and link the iterator node into the linked list for VAR.  */
  imm->iter_node.use = NULL;
  imm->iter_node.stmt = NULL_TREE;
  imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
  /* Check if there are 0 elements.  */
  if (imm->end_p->next == imm->end_p)
    {
      imm->imm_use = imm->end_p;
      return NULL_USE_OPERAND_P;
    }

  link_imm_use (&(imm->iter_node), var);
  imm->imm_use = imm->iter_node.next;
  return imm->imm_use;
}

/* Bump IMM to then next use in the list.  */
static inline use_operand_p
next_safe_imm_use (imm_use_iterator *imm)
{
  ssa_imm_use_t *ptr;
  use_operand_p old;

  old = imm->imm_use;
  /* If the next node following the iter_node is still the one referred to by
     imm_use, then the list hasn't changed, go to the next node.  */
  if (imm->iter_node.next == imm->imm_use)
    {
      ptr = &(imm->iter_node);
      /* Remove iternode from the list.  */
      delink_imm_use (ptr);
      imm->imm_use = imm->imm_use->next;
      if (! end_safe_imm_use_p (imm))
	{
	  /* This isnt the end, link iternode before the next use.  */
	  ptr->prev = imm->imm_use->prev;
	  ptr->next = imm->imm_use;
	  imm->imm_use->prev->next = ptr;
	  imm->imm_use->prev = ptr;
	}
      else
	return old;
    }
  else
    {
      /* If the 'next' value after the iterator isn't the same as it was, then
	 a node has been deleted, so we simply proceed to the node following 
	 where the iterator is in the list.  */
      imm->imm_use = imm->iter_node.next;
      if (end_safe_imm_use_p (imm))
        {
	  end_safe_imm_use_traverse (imm);
	  return old;
	}
    }

  return imm->imm_use;
}

/* Return true is IMM has reached the end of the immediate use list.  */
static inline bool
end_readonly_imm_use_p (imm_use_iterator *imm)
{
  return (imm->imm_use == imm->end_p);
}

/* Initialize iterator IMM to process the list for VAR.  */
static inline use_operand_p
first_readonly_imm_use (imm_use_iterator *imm, tree var)
{
  gcc_assert (TREE_CODE (var) == SSA_NAME);

  imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
  imm->imm_use = imm->end_p->next;
#ifdef ENABLE_CHECKING
  imm->iter_node.next = imm->imm_use->next;
#endif
  if (end_readonly_imm_use_p (imm))
    return NULL_USE_OPERAND_P;
  return imm->imm_use;
}

/* Bump IMM to then next use in the list.  */
static inline use_operand_p
next_readonly_imm_use (imm_use_iterator *imm)
{
  use_operand_p old = imm->imm_use;

#ifdef ENABLE_CHECKING
  /* If this assertion fails, it indicates the 'next' pointer has changed 
     since we the last bump.  This indicates that the list is being modified
     via stmt changes, or SET_USE, or somesuch thing, and you need to be
     using the SAFE version of the iterator.  */
  gcc_assert (imm->iter_node.next == old->next);
  imm->iter_node.next = old->next->next;
#endif

  imm->imm_use = old->next;
  if (end_readonly_imm_use_p (imm))
    return old;
  return imm->imm_use;
}

/* Return true if VAR has no uses.  */
static inline bool
has_zero_uses (tree var)
{
  ssa_imm_use_t *ptr;
  ptr = &(SSA_NAME_IMM_USE_NODE (var));
  /* A single use means there is no items in the list.  */
  return (ptr == ptr->next);
}

/* Return true if VAR has a single use.  */
static inline bool
has_single_use (tree var)
{
  ssa_imm_use_t *ptr;
  ptr = &(SSA_NAME_IMM_USE_NODE (var));
  /* A single use means there is one item in the list.  */
  return (ptr != ptr->next && ptr == ptr->next->next);
}

/* If VAR has only a single immediate use, return true, and set USE_P and STMT
   to the use pointer and stmt of occurrence.  */
static inline bool
single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
{
  ssa_imm_use_t *ptr;

  ptr = &(SSA_NAME_IMM_USE_NODE (var));
  if (ptr != ptr->next && ptr == ptr->next->next)
    {
      *use_p = ptr->next;
      *stmt = ptr->next->stmt;
      return true;
    }
  *use_p = NULL_USE_OPERAND_P;
  *stmt = NULL_TREE;
  return false;
}

/* Return the number of immediate uses of VAR.  */
static inline unsigned int
num_imm_uses (tree var)
{
  ssa_imm_use_t *ptr, *start;
  unsigned int num;

  start = &(SSA_NAME_IMM_USE_NODE (var));
  num = 0;
  for (ptr = start->next; ptr != start; ptr = ptr->next)
     num++;

  return num;
}

/* Return the definitions present in ANN, a statement annotation.
   Return NULL if this annotation contains no definitions.  */
static inline def_optype
get_def_ops (stmt_ann_t ann)
{
  return ann ? ann->operands.def_ops : NULL;
}

/* Return the uses present in ANN, a statement annotation.
   Return NULL if this annotation contains no uses.  */
static inline use_optype
get_use_ops (stmt_ann_t ann)
{
  return ann ? ann->operands.use_ops : NULL;
}

/* Return the virtual may-defs present in ANN, a statement
   annotation.
   Return NULL if this annotation contains no virtual may-defs.  */
static inline v_may_def_optype
get_v_may_def_ops (stmt_ann_t ann)
{
  return ann ? ann->operands.v_may_def_ops : NULL;
}

/* Return the virtual uses present in ANN, a statement annotation.
   Return NULL if this annotation contains no virtual uses.  */
static inline vuse_optype
get_vuse_ops (stmt_ann_t ann)
{
  return ann ? ann->operands.vuse_ops : NULL;
}

/* Return the virtual must-defs present in ANN, a statement
   annotation.  Return NULL if this annotation contains no must-defs.*/
static inline v_must_def_optype
get_v_must_def_ops (stmt_ann_t ann)
{
  return ann ? ann->operands.v_must_def_ops : NULL;
}

/* Return the tree pointer to by USE.  */ 
static inline tree
get_use_from_ptr (use_operand_p use)
{ 
  return *(use->use);
} 

/* Return the tree pointer to by DEF.  */
static inline tree
get_def_from_ptr (def_operand_p def)
{
  return *(def.def);
}

/* Return a pointer to the tree that is at INDEX in the USES array.  */
static inline use_operand_p
get_use_op_ptr (use_optype uses, unsigned int index)
{
  gcc_assert (index < uses->num_uses);
  return &(uses->uses[index]);
}

/* Return a def_operand_p pointer for element INDEX of DEFS.  */
static inline def_operand_p
get_def_op_ptr (def_optype defs, unsigned int index)
{
  gcc_assert (index < defs->num_defs);
  return defs->defs[index];
}

/* Return the def_operand_p that is the V_MAY_DEF_RESULT for the V_MAY_DEF
   at INDEX in the V_MAY_DEFS array.  */
static inline def_operand_p
get_v_may_def_result_ptr(v_may_def_optype v_may_defs, unsigned int index)
{
  def_operand_p op;
  gcc_assert (index < v_may_defs->num_v_may_defs);
  op.def = &(v_may_defs->v_may_defs[index].def);
  return op;
}

/* Return a use_operand_p that is the V_MAY_DEF_OP for the V_MAY_DEF at
   INDEX in the V_MAY_DEFS array.  */
static inline use_operand_p
get_v_may_def_op_ptr(v_may_def_optype v_may_defs, unsigned int index)
{
  gcc_assert (index < v_may_defs->num_v_may_defs);
  return &(v_may_defs->v_may_defs[index].imm_use);
}

/* Return a use_operand_p that is at INDEX in the VUSES array.  */
static inline use_operand_p
get_vuse_op_ptr(vuse_optype vuses, unsigned int index)
{
  gcc_assert (index < vuses->num_vuses);
  return &(vuses->vuses[index].imm_use);
}

/* Return a def_operand_p that is the V_MUST_DEF_RESULT for the
   V_MUST_DEF at INDEX in the V_MUST_DEFS array.  */
static inline def_operand_p
get_v_must_def_result_ptr (v_must_def_optype v_must_defs, unsigned int index)
{
  def_operand_p op;
  gcc_assert (index < v_must_defs->num_v_must_defs);
  op.def = &(v_must_defs->v_must_defs[index].def);
  return op;
}

/* Return a use_operand_p that is the V_MUST_DEF_KILL for the 
   V_MUST_DEF at INDEX in the V_MUST_DEFS array.  */
static inline use_operand_p
get_v_must_def_kill_ptr (v_must_def_optype v_must_defs, unsigned int index)
{
  gcc_assert (index < v_must_defs->num_v_must_defs);
  return &(v_must_defs->v_must_defs[index].imm_use);
}

/* Return a def_operand_p pointer for the result of PHI.  */
static inline def_operand_p
get_phi_result_ptr (tree phi)
{
  def_operand_p op;
  op.def = &(PHI_RESULT_TREE (phi));
  return op;
}

/* Return a use_operand_p pointer for argument I of phinode PHI.  */
static inline use_operand_p
get_phi_arg_def_ptr (tree phi, int i)
{
  return &(PHI_ARG_IMM_USE_NODE (phi,i));
}

/* Delink all immediate_use information for STMT.  */
static inline void
delink_stmt_imm_use (tree stmt)
{
   unsigned int x;
   use_optype uses = STMT_USE_OPS (stmt);
   vuse_optype vuses = STMT_VUSE_OPS (stmt);
   v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
   v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);

   for (x = 0; x < NUM_USES (uses); x++)
     delink_imm_use (&(uses->uses[x]));

   for (x = 0; x < NUM_VUSES (vuses); x++)
     delink_imm_use (&(vuses->vuses[x].imm_use));

   for (x = 0; x < NUM_V_MAY_DEFS (v_may_defs); x++)
     delink_imm_use (&(v_may_defs->v_may_defs[x].imm_use));

   for (x = 0; x < NUM_V_MUST_DEFS (v_must_defs); x++)
     delink_imm_use (&(v_must_defs->v_must_defs[x].imm_use));
}


/* Return the bitmap of addresses taken by STMT, or NULL if it takes
   no addresses.  */
static inline bitmap
addresses_taken (tree stmt)
{
  stmt_ann_t ann = stmt_ann (stmt);
  return ann ? ann->addresses_taken : NULL;
}

/* Return the basic_block annotation for BB.  */
static inline bb_ann_t
bb_ann (basic_block bb)
{
  return (bb_ann_t)bb->tree_annotations;
}

/* Return the PHI nodes for basic block BB, or NULL if there are no
   PHI nodes.  */
static inline tree
phi_nodes (basic_block bb)
{
  return bb_ann (bb)->phi_nodes;
}

/* Set list of phi nodes of a basic block BB to L.  */

static inline void
set_phi_nodes (basic_block bb, tree l)
{
  tree phi;

  bb_ann (bb)->phi_nodes = l;
  for (phi = l; phi; phi = PHI_CHAIN (phi))
    set_bb_for_stmt (phi, bb);
}

/* Return the phi argument which contains the specified use.  */

static inline int
phi_arg_index_from_use (use_operand_p use)
{
  struct phi_arg_d *element, *root;
  int index;
  tree phi;

  /* Since the use is the first thing in a PHI argument element, we can
     calculate its index based on casting it to an argument, and performing
     pointer arithmetic.  */

  phi = USE_STMT (use);
  gcc_assert (TREE_CODE (phi) == PHI_NODE);

  element = (struct phi_arg_d *)use;
  root = &(PHI_ARG_ELT (phi, 0));
  index = element - root;

#ifdef ENABLE_CHECKING
  /* Make sure the calculation doesn't have any leftover bytes.  If it does, 
     then imm_use is likely not the first element in phi_arg_d.  */
  gcc_assert (
	  (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
  gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
#endif
 
 return index;
}

/* Mark VAR as used, so that it'll be preserved during rtl expansion.  */

static inline void
set_is_used (tree var)
{
  var_ann_t ann = get_var_ann (var);
  ann->used = 1;
}


/*  -----------------------------------------------------------------------  */

/* Return true if T is an executable statement.  */
static inline bool
is_exec_stmt (tree t)
{
  return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
}


/* Return true if this stmt can be the target of a control transfer stmt such
   as a goto.  */
static inline bool
is_label_stmt (tree t)
{
  if (t)
    switch (TREE_CODE (t))
      {
	case LABEL_DECL:
	case LABEL_EXPR:
	case CASE_LABEL_EXPR:
	  return true;
	default:
	  return false;
      }
  return false;
}

/* Set the default definition for VAR to DEF.  */
static inline void
set_default_def (tree var, tree def)
{
  var_ann_t ann = get_var_ann (var);
  ann->default_def = def;
}

/* Return the default definition for variable VAR, or NULL if none
   exists.  */
static inline tree
default_def (tree var)
{
  var_ann_t ann = var_ann (var);
  return ann ? ann->default_def : NULL_TREE;
}

/* PHI nodes should contain only ssa_names and invariants.  A test
   for ssa_name is definitely simpler; don't let invalid contents
   slip in in the meantime.  */

static inline bool
phi_ssa_name_p (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    return true;
#ifdef ENABLE_CHECKING
  gcc_assert (is_gimple_min_invariant (t));
#endif
  return false;
}

/*  -----------------------------------------------------------------------  */

/* Return a block_stmt_iterator that points to beginning of basic
   block BB.  */
static inline block_stmt_iterator
bsi_start (basic_block bb)
{
  block_stmt_iterator bsi;
  if (bb->stmt_list)
    bsi.tsi = tsi_start (bb->stmt_list);
  else
    {
      gcc_assert (bb->index < 0);
      bsi.tsi.ptr = NULL;
      bsi.tsi.container = NULL;
    }
  bsi.bb = bb;
  return bsi;
}

/* Return a block statement iterator that points to the last label in
   block BB.  */

static inline block_stmt_iterator
bsi_after_labels (basic_block bb)
{
  block_stmt_iterator bsi;
  tree_stmt_iterator next;

  bsi.bb = bb;

  if (!bb->stmt_list)
    {
      gcc_assert (bb->index < 0);
      bsi.tsi.ptr = NULL;
      bsi.tsi.container = NULL;
      return bsi;
    }

  bsi.tsi = tsi_start (bb->stmt_list);
  if (tsi_end_p (bsi.tsi))
    return bsi;

  /* Ensure that there are some labels.  The rationale is that we want
     to insert after the bsi that is returned, and these insertions should
     be placed at the start of the basic block.  This would not work if the
     first statement was not label; rather fail here than enable the user
     proceed in wrong way.  */
  gcc_assert (TREE_CODE (tsi_stmt (bsi.tsi)) == LABEL_EXPR);

  next = bsi.tsi;
  tsi_next (&next);

  while (!tsi_end_p (next)
	 && TREE_CODE (tsi_stmt (next)) == LABEL_EXPR)
    {
      bsi.tsi = next;
      tsi_next (&next);
    }

  return bsi;
}

/* Return a block statement iterator that points to the end of basic
   block BB.  */
static inline block_stmt_iterator
bsi_last (basic_block bb)
{
  block_stmt_iterator bsi;
  if (bb->stmt_list)
    bsi.tsi = tsi_last (bb->stmt_list);
  else
    {
      gcc_assert (bb->index < 0);
      bsi.tsi.ptr = NULL;
      bsi.tsi.container = NULL;
    }
  bsi.bb = bb;
  return bsi;
}

/* Return true if block statement iterator I has reached the end of
   the basic block.  */
static inline bool
bsi_end_p (block_stmt_iterator i)
{
  return tsi_end_p (i.tsi);
}

/* Modify block statement iterator I so that it is at the next
   statement in the basic block.  */
static inline void
bsi_next (block_stmt_iterator *i)
{
  tsi_next (&i->tsi);
}

/* Modify block statement iterator I so that it is at the previous
   statement in the basic block.  */
static inline void
bsi_prev (block_stmt_iterator *i)
{
  tsi_prev (&i->tsi);
}

/* Return the statement that block statement iterator I is currently
   at.  */
static inline tree
bsi_stmt (block_stmt_iterator i)
{
  return tsi_stmt (i.tsi);
}

/* Return a pointer to the statement that block statement iterator I
   is currently at.  */
static inline tree *
bsi_stmt_ptr (block_stmt_iterator i)
{
  return tsi_stmt_ptr (i.tsi);
}

/* Returns the loop of the statement STMT.  */

static inline struct loop *
loop_containing_stmt (tree stmt)
{
  basic_block bb = bb_for_stmt (stmt);
  if (!bb)
    return NULL;

  return bb->loop_father;
}

/* Return true if VAR is a clobbered by function calls.  */
static inline bool
is_call_clobbered (tree var)
{
  return is_global_var (var)
	 || bitmap_bit_p (call_clobbered_vars, var_ann (var)->uid);
}

/* Mark variable VAR as being clobbered by function calls.  */
static inline void
mark_call_clobbered (tree var)
{
  var_ann_t ann = var_ann (var);
  /* If VAR is a memory tag, then we need to consider it a global
     variable.  This is because the pointer that VAR represents has
     been found to point to either an arbitrary location or to a known
     location in global memory.  */
  if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
    DECL_EXTERNAL (var) = 1;
  bitmap_set_bit (call_clobbered_vars, ann->uid);
  ssa_call_clobbered_cache_valid = false;
  ssa_ro_call_cache_valid = false;
}

/* Clear the call-clobbered attribute from variable VAR.  */
static inline void
clear_call_clobbered (tree var)
{
  var_ann_t ann = var_ann (var);
  if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
    DECL_EXTERNAL (var) = 0;
  bitmap_clear_bit (call_clobbered_vars, ann->uid);
  ssa_call_clobbered_cache_valid = false;
  ssa_ro_call_cache_valid = false;
}

/* Mark variable VAR as being non-addressable.  */
static inline void
mark_non_addressable (tree var)
{
  bitmap_clear_bit (call_clobbered_vars, var_ann (var)->uid);
  TREE_ADDRESSABLE (var) = 0;
  ssa_call_clobbered_cache_valid = false;
  ssa_ro_call_cache_valid = false;
}

/* Return the common annotation for T.  Return NULL if the annotation
   doesn't already exist.  */
static inline tree_ann_t
tree_ann (tree t)
{
  return t->common.ann;
}

/* Return a common annotation for T.  Create the constant annotation if it
   doesn't exist.  */
static inline tree_ann_t
get_tree_ann (tree t)
{
  tree_ann_t ann = tree_ann (t);
  return (ann) ? ann : create_tree_ann (t);
}

/*  -----------------------------------------------------------------------  */

/* The following set of routines are used to iterator over various type of
   SSA operands.  */

/* Return true if PTR is finished iterating.  */
static inline bool
op_iter_done (ssa_op_iter *ptr)
{
  return ptr->done;
}

/* Get the next iterator use value for PTR.  */
static inline use_operand_p
op_iter_next_use (ssa_op_iter *ptr)
{
  if (ptr->use_i < ptr->num_use)
    {
      return USE_OP_PTR (ptr->ops->use_ops, (ptr->use_i)++);
    }
  if (ptr->vuse_i < ptr->num_vuse)
    {
      return VUSE_OP_PTR (ptr->ops->vuse_ops, (ptr->vuse_i)++);
    }
  if (ptr->v_mayu_i < ptr->num_v_mayu)
    {
      return V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops,
			       (ptr->v_mayu_i)++);
    }
  if (ptr->v_mustu_i < ptr->num_v_mustu)
    {
      return V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops,
				  (ptr->v_mustu_i)++);
    }
  ptr->done = true;
  return NULL_USE_OPERAND_P;
}

/* Get the next iterator def value for PTR.  */
static inline def_operand_p
op_iter_next_def (ssa_op_iter *ptr)
{
  if (ptr->def_i < ptr->num_def)
    {
      return DEF_OP_PTR (ptr->ops->def_ops, (ptr->def_i)++);
    }
  if (ptr->v_mustd_i < ptr->num_v_mustd)
    {
      return V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, 
					(ptr->v_mustd_i)++);
    }
  if (ptr->v_mayd_i < ptr->num_v_mayd)
    {
      return V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops,
					   (ptr->v_mayd_i)++);
    }
  ptr->done = true;
  return NULL_DEF_OPERAND_P;
}

/* Get the next iterator tree value for PTR.  */
static inline tree
op_iter_next_tree (ssa_op_iter *ptr)
{
  if (ptr->use_i < ptr->num_use)
    {
      return USE_OP (ptr->ops->use_ops, (ptr->use_i)++);
    }
  if (ptr->vuse_i < ptr->num_vuse)
    {
      return VUSE_OP (ptr->ops->vuse_ops, (ptr->vuse_i)++);
    }
  if (ptr->v_mayu_i < ptr->num_v_mayu)
    {
      return V_MAY_DEF_OP (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
    }
  if (ptr->v_mustu_i < ptr->num_v_mustu)
    {
      return V_MUST_DEF_KILL (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
    }
  if (ptr->def_i < ptr->num_def)
    {
      return DEF_OP (ptr->ops->def_ops, (ptr->def_i)++);
    }
  if (ptr->v_mustd_i < ptr->num_v_mustd)
    {
      return V_MUST_DEF_RESULT (ptr->ops->v_must_def_ops, 
					(ptr->v_mustd_i)++);
    }
  if (ptr->v_mayd_i < ptr->num_v_mayd)
    {
      return V_MAY_DEF_RESULT (ptr->ops->v_may_def_ops,
					   (ptr->v_mayd_i)++);
    }
  ptr->done = true;
  return NULL;
}

/* Initialize the iterator PTR to the virtual defs in STMT.  */
static inline void
op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
{
  stmt_operands_p ops;
  stmt_ann_t ann = get_stmt_ann (stmt);

  ops = &(ann->operands);
  ptr->done = false;
  ptr->ops = ops;
  ptr->num_def = (flags & SSA_OP_DEF) ? NUM_DEFS (ops->def_ops) : 0;
  ptr->num_use = (flags & SSA_OP_USE) ? NUM_USES (ops->use_ops) : 0;
  ptr->num_vuse = (flags & SSA_OP_VUSE) ? NUM_VUSES (ops->vuse_ops) : 0;
  ptr->num_v_mayu = (flags & SSA_OP_VMAYUSE)
		     ?  NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0;
  ptr->num_v_mayd = (flags & SSA_OP_VMAYDEF) 
		     ?  NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0;
  ptr->num_v_mustu = (flags & SSA_OP_VMUSTDEFKILL)
                     ? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0;
  ptr->num_v_mustd = (flags & SSA_OP_VMUSTDEF) 
		     ? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0;
  ptr->def_i = 0;
  ptr->use_i = 0;
  ptr->vuse_i = 0;
  ptr->v_mayu_i = 0;
  ptr->v_mayd_i = 0;
  ptr->v_mustu_i = 0;
  ptr->v_mustd_i = 0;
}

/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
   the first use.  */
static inline use_operand_p
op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
{
  op_iter_init (ptr, stmt, flags);
  return op_iter_next_use (ptr);
}

/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
   the first def.  */
static inline def_operand_p
op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
{
  op_iter_init (ptr, stmt, flags);
  return op_iter_next_def (ptr);
}

/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
   the first operand as a tree.  */
static inline tree
op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
{
  op_iter_init (ptr, stmt, flags);
  return op_iter_next_tree (ptr);
}

/* Get the next iterator mustdef value for PTR, returning the mustdef values in
   KILL and DEF.  */
static inline void
op_iter_next_mustdef (use_operand_p *kill, def_operand_p *def, ssa_op_iter *ptr)
{
  if (ptr->v_mustu_i < ptr->num_v_mustu)
    {
      *def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i);
      *kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
      return;
    }
  else
    {
      *def = NULL_DEF_OPERAND_P;
      *kill = NULL_USE_OPERAND_P;
    }
  ptr->done = true;
  return;
}

/* Get the next iterator maydef value for PTR, returning the maydef values in
   USE and DEF.  */
static inline void
op_iter_next_maydef (use_operand_p *use, def_operand_p *def, ssa_op_iter *ptr)
{
  if (ptr->v_mayu_i < ptr->num_v_mayu)
    {
      *def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i);
      *use = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
      return;
    }
  else
    {
      *def = NULL_DEF_OPERAND_P;
      *use = NULL_USE_OPERAND_P;
    }
  ptr->done = true;
  return;
}

/* Get the next iterator mustdef or maydef value for PTR, returning the
   mustdef or maydef values in KILL and DEF.  */
static inline void
op_iter_next_must_and_may_def (use_operand_p *kill,
			       def_operand_p *def,
			       ssa_op_iter *ptr)
{
  if (ptr->v_mustu_i < ptr->num_v_mustu)
    {
      *def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i);
      *kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
      return;
    }
  else if (ptr->v_mayu_i < ptr->num_v_mayu)
    {
      *def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i);
      *kill = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
      return;
    }
  else
    {
      *def = NULL_DEF_OPERAND_P;
      *kill = NULL_USE_OPERAND_P;
    }
  ptr->done = true;
  return;
}

/* Initialize iterator PTR to the operands in STMT.  Return the first operands
   in USE and DEF.  */
static inline void
op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, 
		     def_operand_p *def)
{
  op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
  op_iter_next_maydef (use, def, ptr);
}


/* Initialize iterator PTR to the operands in STMT.  Return the first operands
   in KILL and DEF.  */
static inline void
op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, 
		     def_operand_p *def)
{
  op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL);
  op_iter_next_mustdef (kill, def, ptr);
}

/* Initialize iterator PTR to the operands in STMT.  Return the first operands
   in KILL and DEF.  */
static inline void
op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
			       use_operand_p *kill, def_operand_p *def)
{
  op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL | SSA_OP_VMAYUSE);
  op_iter_next_must_and_may_def (kill, def, ptr);
}

/* Return true if VAR cannot be modified by the program.  */

static inline bool
unmodifiable_var_p (tree var)
{
  if (TREE_CODE (var) == SSA_NAME)
    var = SSA_NAME_VAR (var);
  return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
}

/* Return true if REF, a COMPONENT_REF, has an ARRAY_REF somewhere in it.  */

static inline bool
ref_contains_array_ref (tree ref)
{
  while (handled_component_p (ref))
    {
      if (TREE_CODE (ref) == ARRAY_REF)
	return true;
      ref = TREE_OPERAND (ref, 0);
    }
  return false;
}

/* Given a variable VAR, lookup and return a pointer to the list of
   subvariables for it.  */

static inline subvar_t *
lookup_subvars_for_var (tree var)
{
  var_ann_t ann = var_ann (var);
  gcc_assert (ann);
  return &ann->subvars;
}

/* Given a variable VAR, return a linked list of subvariables for VAR, or
   NULL, if there are no subvariables.  */

static inline subvar_t
get_subvars_for_var (tree var)
{
  subvar_t subvars;

  gcc_assert (SSA_VAR_P (var));  
  
  if (TREE_CODE (var) == SSA_NAME)
    subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
  else
    subvars = *(lookup_subvars_for_var (var));
  return subvars;
}

/* Return true if V is a tree that we can have subvars for.
   Normally, this is any aggregate type, however, due to implementation
   limitations ATM, we exclude array types as well.  */

static inline bool
var_can_have_subvars (tree v)
{
  return (AGGREGATE_TYPE_P (TREE_TYPE (v)) &&
	  TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE);
}

  
/* Return true if OFFSET and SIZE define a range that overlaps with some
   portion of the range of SV, a subvar.  If there was an exact overlap,
   *EXACT will be set to true upon return. */

static inline bool
overlap_subvar (HOST_WIDE_INT offset, HOST_WIDE_INT size,
		subvar_t sv,  bool *exact)
{
  /* There are three possible cases of overlap.
     1. We can have an exact overlap, like so:   
     |offset, offset + size             |
     |sv->offset, sv->offset + sv->size |
     
     2. We can have offset starting after sv->offset, like so:
     
           |offset, offset + size              |
     |sv->offset, sv->offset + sv->size  |

     3. We can have offset starting before sv->offset, like so:
     
     |offset, offset + size    |
       |sv->offset, sv->offset + sv->size|
  */

  if (exact)
    *exact = false;
  if (offset == sv->offset && size == sv->size)
    {
      if (exact)
	*exact = true;
      return true;
    }
  else if (offset >= sv->offset && offset < (sv->offset + sv->size))
    {
      return true;
    }
  else if (offset < sv->offset && (offset + size > sv->offset))
    {
      return true;
    }
  return false;

}

#endif /* _TREE_FLOW_INLINE_H  */