summaryrefslogtreecommitdiff
path: root/gcc/tree-loop-distribution.cc
blob: e1948fb452a72c3a8bb842cd70ebddc8f487a9cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
/* Loop distribution.
   Copyright (C) 2006-2022 Free Software Foundation, Inc.
   Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
   and Sebastian Pop <sebastian.pop@amd.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This pass performs loop distribution: for example, the loop

   |DO I = 2, N
   |    A(I) = B(I) + C
   |    D(I) = A(I-1)*E
   |ENDDO

   is transformed to

   |DOALL I = 2, N
   |   A(I) = B(I) + C
   |ENDDO
   |
   |DOALL I = 2, N
   |   D(I) = A(I-1)*E
   |ENDDO

   Loop distribution is the dual of loop fusion.  It separates statements
   of a loop (or loop nest) into multiple loops (or loop nests) with the
   same loop header.  The major goal is to separate statements which may
   be vectorized from those that can't.  This pass implements distribution
   in the following steps:

     1) Seed partitions with specific type statements.  For now we support
	two types seed statements: statement defining variable used outside
	of loop; statement storing to memory.
     2) Build reduced dependence graph (RDG) for loop to be distributed.
	The vertices (RDG:V) model all statements in the loop and the edges
	(RDG:E) model flow and control dependencies between statements.
     3) Apart from RDG, compute data dependencies between memory references.
     4) Starting from seed statement, build up partition by adding depended
	statements according to RDG's dependence information.  Partition is
	classified as parallel type if it can be executed paralleled; or as
	sequential type if it can't.  Parallel type partition is further
	classified as different builtin kinds if it can be implemented as
	builtin function calls.
     5) Build partition dependence graph (PG) based on data dependencies.
	The vertices (PG:V) model all partitions and the edges (PG:E) model
	all data dependencies between every partitions pair.  In general,
	data dependence is either compilation time known or unknown.  In C
	family languages, there exists quite amount compilation time unknown
	dependencies because of possible alias relation of data references.
	We categorize PG's edge to two types: "true" edge that represents
	compilation time known data dependencies; "alias" edge for all other
	data dependencies.
     6) Traverse subgraph of PG as if all "alias" edges don't exist.  Merge
	partitions in each strong connected component (SCC) correspondingly.
	Build new PG for merged partitions.
     7) Traverse PG again and this time with both "true" and "alias" edges
	included.  We try to break SCCs by removing some edges.  Because
	SCCs by "true" edges are all fused in step 6), we can break SCCs
	by removing some "alias" edges.  It's NP-hard to choose optimal
	edge set, fortunately simple approximation is good enough for us
	given the small problem scale.
     8) Collect all data dependencies of the removed "alias" edges.  Create
	runtime alias checks for collected data dependencies.
     9) Version loop under the condition of runtime alias checks.  Given
	loop distribution generally introduces additional overhead, it is
	only useful if vectorization is achieved in distributed loop.  We
	version loop with internal function call IFN_LOOP_DIST_ALIAS.  If
	no distributed loop can be vectorized, we simply remove distributed
	loops and recover to the original one.

   TODO:
     1) We only distribute innermost two-level loop nest now.  We should
	extend it for arbitrary loop nests in the future.
     2) We only fuse partitions in SCC now.  A better fusion algorithm is
	desired to minimize loop overhead, maximize parallelism and maximize
	data reuse.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "stor-layout.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-eh.h"
#include "gimple-fold.h"
#include "tree-affine.h"
#include "intl.h"
#include "rtl.h"
#include "memmodel.h"
#include "optabs.h"


#define MAX_DATAREFS_NUM \
	((unsigned) param_loop_max_datarefs_for_datadeps)

/* Threshold controlling number of distributed partitions.  Given it may
   be unnecessary if a memory stream cost model is invented in the future,
   we define it as a temporary macro, rather than a parameter.  */
#define NUM_PARTITION_THRESHOLD (4)

/* Hashtable helpers.  */

struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
{
  static inline hashval_t hash (const data_dependence_relation *);
  static inline bool equal (const data_dependence_relation *,
			    const data_dependence_relation *);
};

/* Hash function for data dependence.  */

inline hashval_t
ddr_hasher::hash (const data_dependence_relation *ddr)
{
  inchash::hash h;
  h.add_ptr (DDR_A (ddr));
  h.add_ptr (DDR_B (ddr));
  return h.end ();
}

/* Hash table equality function for data dependence.  */

inline bool
ddr_hasher::equal (const data_dependence_relation *ddr1,
		   const data_dependence_relation *ddr2)
{
  return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
}



#define DR_INDEX(dr)      ((uintptr_t) (dr)->aux)

/* A Reduced Dependence Graph (RDG) vertex representing a statement.  */
struct rdg_vertex
{
  /* The statement represented by this vertex.  */
  gimple *stmt;

  /* Vector of data-references in this statement.  */
  vec<data_reference_p> datarefs;

  /* True when the statement contains a write to memory.  */
  bool has_mem_write;

  /* True when the statement contains a read from memory.  */
  bool has_mem_reads;
};

#define RDGV_STMT(V)     ((struct rdg_vertex *) ((V)->data))->stmt
#define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
#define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))

/* Data dependence type.  */

enum rdg_dep_type
{
  /* Read After Write (RAW).  */
  flow_dd = 'f',

  /* Control dependence (execute conditional on).  */
  control_dd = 'c'
};

/* Dependence information attached to an edge of the RDG.  */

struct rdg_edge
{
  /* Type of the dependence.  */
  enum rdg_dep_type type;
};

#define RDGE_TYPE(E)        ((struct rdg_edge *) ((E)->data))->type

/* Kind of distributed loop.  */
enum partition_kind {
    PKIND_NORMAL,
    /* Partial memset stands for a paritition can be distributed into a loop
       of memset calls, rather than a single memset call.  It's handled just
       like a normal parition, i.e, distributed as separate loop, no memset
       call is generated.

       Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
       loop nest as deep as possible.  As a result, parloop achieves better
       parallelization by parallelizing deeper loop nest.  This hack should
       be unnecessary and removed once distributed memset can be understood
       and analyzed in data reference analysis.  See PR82604 for more.  */
    PKIND_PARTIAL_MEMSET,
    PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
};

/* Type of distributed loop.  */
enum partition_type {
    /* The distributed loop can be executed parallelly.  */
    PTYPE_PARALLEL = 0,
    /* The distributed loop has to be executed sequentially.  */
    PTYPE_SEQUENTIAL
};

/* Builtin info for loop distribution.  */
struct builtin_info
{
  /* data-references a kind != PKIND_NORMAL partition is about.  */
  data_reference_p dst_dr;
  data_reference_p src_dr;
  /* Base address and size of memory objects operated by the builtin.  Note
     both dest and source memory objects must have the same size.  */
  tree dst_base;
  tree src_base;
  tree size;
  /* Base and offset part of dst_base after stripping constant offset.  This
     is only used in memset builtin distribution for now.  */
  tree dst_base_base;
  unsigned HOST_WIDE_INT dst_base_offset;
};

/* Partition for loop distribution.  */
struct partition
{
  /* Statements of the partition.  */
  bitmap stmts;
  /* True if the partition defines variable which is used outside of loop.  */
  bool reduction_p;
  location_t loc;
  enum partition_kind kind;
  enum partition_type type;
  /* Data references in the partition.  */
  bitmap datarefs;
  /* Information of builtin parition.  */
  struct builtin_info *builtin;
};

/* Partitions are fused because of different reasons.  */
enum fuse_type
{
  FUSE_NON_BUILTIN = 0,
  FUSE_REDUCTION = 1,
  FUSE_SHARE_REF = 2,
  FUSE_SAME_SCC = 3,
  FUSE_FINALIZE = 4
};

/* Description on different fusing reason.  */
static const char *fuse_message[] = {
  "they are non-builtins",
  "they have reductions",
  "they have shared memory refs",
  "they are in the same dependence scc",
  "there is no point to distribute loop"};


/* Dump vertex I in RDG to FILE.  */

static void
dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
{
  struct vertex *v = &(rdg->vertices[i]);
  struct graph_edge *e;

  fprintf (file, "(vertex %d: (%s%s) (in:", i,
	   RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
	   RDG_MEM_READS_STMT (rdg, i) ? "r" : "");

  if (v->pred)
    for (e = v->pred; e; e = e->pred_next)
      fprintf (file, " %d", e->src);

  fprintf (file, ") (out:");

  if (v->succ)
    for (e = v->succ; e; e = e->succ_next)
      fprintf (file, " %d", e->dest);

  fprintf (file, ")\n");
  print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
  fprintf (file, ")\n");
}

/* Call dump_rdg_vertex on stderr.  */

DEBUG_FUNCTION void
debug_rdg_vertex (struct graph *rdg, int i)
{
  dump_rdg_vertex (stderr, rdg, i);
}

/* Dump the reduced dependence graph RDG to FILE.  */

static void
dump_rdg (FILE *file, struct graph *rdg)
{
  fprintf (file, "(rdg\n");
  for (int i = 0; i < rdg->n_vertices; i++)
    dump_rdg_vertex (file, rdg, i);
  fprintf (file, ")\n");
}

/* Call dump_rdg on stderr.  */

DEBUG_FUNCTION void
debug_rdg (struct graph *rdg)
{
  dump_rdg (stderr, rdg);
}

static void
dot_rdg_1 (FILE *file, struct graph *rdg)
{
  int i;
  pretty_printer buffer;
  pp_needs_newline (&buffer) = false;
  buffer.buffer->stream = file;

  fprintf (file, "digraph RDG {\n");

  for (i = 0; i < rdg->n_vertices; i++)
    {
      struct vertex *v = &(rdg->vertices[i]);
      struct graph_edge *e;

      fprintf (file, "%d [label=\"[%d] ", i, i);
      pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
      pp_flush (&buffer);
      fprintf (file, "\"]\n");

      /* Highlight reads from memory.  */
      if (RDG_MEM_READS_STMT (rdg, i))
       fprintf (file, "%d [style=filled, fillcolor=green]\n", i);

      /* Highlight stores to memory.  */
      if (RDG_MEM_WRITE_STMT (rdg, i))
       fprintf (file, "%d [style=filled, fillcolor=red]\n", i);

      if (v->succ)
       for (e = v->succ; e; e = e->succ_next)
         switch (RDGE_TYPE (e))
           {
           case flow_dd:
             /* These are the most common dependences: don't print these. */
             fprintf (file, "%d -> %d \n", i, e->dest);
             break;

	   case control_dd:
             fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
             break;

           default:
             gcc_unreachable ();
           }
    }

  fprintf (file, "}\n\n");
}

/* Display the Reduced Dependence Graph using dotty.  */

DEBUG_FUNCTION void
dot_rdg (struct graph *rdg)
{
  /* When debugging, you may want to enable the following code.  */
#ifdef HAVE_POPEN
  FILE *file = popen ("dot -Tx11", "w");
  if (!file)
    return;
  dot_rdg_1 (file, rdg);
  fflush (file);
  close (fileno (file));
  pclose (file);
#else
  dot_rdg_1 (stderr, rdg);
#endif
}

/* Returns the index of STMT in RDG.  */

static int
rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
{
  int index = gimple_uid (stmt);
  gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
  return index;
}

/* Creates dependence edges in RDG for all the uses of DEF.  IDEF is
   the index of DEF in RDG.  */

static void
create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
{
  use_operand_p imm_use_p;
  imm_use_iterator iterator;

  FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
    {
      struct graph_edge *e;
      int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));

      if (use < 0)
	continue;

      e = add_edge (rdg, idef, use);
      e->data = XNEW (struct rdg_edge);
      RDGE_TYPE (e) = flow_dd;
    }
}

/* Creates an edge for the control dependences of BB to the vertex V.  */

static void
create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
				    int v, control_dependences *cd)
{
  bitmap_iterator bi;
  unsigned edge_n;
  EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
			    0, edge_n, bi)
    {
      basic_block cond_bb = cd->get_edge_src (edge_n);
      gimple *stmt = last_stmt (cond_bb);
      if (stmt && is_ctrl_stmt (stmt))
	{
	  struct graph_edge *e;
	  int c = rdg_vertex_for_stmt (rdg, stmt);
	  if (c < 0)
	    continue;

	  e = add_edge (rdg, c, v);
	  e->data = XNEW (struct rdg_edge);
	  RDGE_TYPE (e) = control_dd;
	}
    }
}

/* Creates the edges of the reduced dependence graph RDG.  */

static void
create_rdg_flow_edges (struct graph *rdg)
{
  int i;
  def_operand_p def_p;
  ssa_op_iter iter;

  for (i = 0; i < rdg->n_vertices; i++)
    FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
			      iter, SSA_OP_DEF)
      create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
}

/* Creates the edges of the reduced dependence graph RDG.  */

static void
create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
{
  int i;

  for (i = 0; i < rdg->n_vertices; i++)
    {
      gimple *stmt = RDG_STMT (rdg, i);
      if (gimple_code (stmt) == GIMPLE_PHI)
	{
	  edge_iterator ei;
	  edge e;
	  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
	    if (flow_bb_inside_loop_p (loop, e->src))
	      create_edge_for_control_dependence (rdg, e->src, i, cd);
	}
      else
	create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
    }
}


class loop_distribution
{
  private:
  /* The loop (nest) to be distributed.  */
  vec<loop_p> loop_nest;

  /* Vector of data references in the loop to be distributed.  */
  vec<data_reference_p> datarefs_vec;

  /* If there is nonaddressable data reference in above vector.  */
  bool has_nonaddressable_dataref_p;

  /* Store index of data reference in aux field.  */

  /* Hash table for data dependence relation in the loop to be distributed.  */
  hash_table<ddr_hasher> *ddrs_table;

  /* Array mapping basic block's index to its topological order.  */
  int *bb_top_order_index;
  /* And size of the array.  */
  int bb_top_order_index_size;

  /* Build the vertices of the reduced dependence graph RDG.  Return false
     if that failed.  */
  bool create_rdg_vertices (struct graph *rdg, const vec<gimple *> &stmts,
			    loop_p loop);

  /* Initialize STMTS with all the statements of LOOP.  We use topological
     order to discover all statements.  The order is important because
     generate_loops_for_partition is using the same traversal for identifying
     statements in loop copies.  */
  void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);


  /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
     LOOP, and one edge per flow dependence or control dependence from control
     dependence CD.  During visiting each statement, data references are also
     collected and recorded in global data DATAREFS_VEC.  */
  struct graph * build_rdg (class loop *loop, control_dependences *cd);

/* Merge PARTITION into the partition DEST.  RDG is the reduced dependence
   graph and we update type for result partition if it is non-NULL.  */
  void partition_merge_into (struct graph *rdg,
			     partition *dest, partition *partition,
			     enum fuse_type ft);


  /* Return data dependence relation for data references A and B.  The two
     data references must be in lexicographic order wrto reduced dependence
     graph RDG.  We firstly try to find ddr from global ddr hash table.  If
     it doesn't exist, compute the ddr and cache it.  */
  data_dependence_relation * get_data_dependence (struct graph *rdg,
						  data_reference_p a,
						  data_reference_p b);


  /* In reduced dependence graph RDG for loop distribution, return true if
     dependence between references DR1 and DR2 leads to a dependence cycle
     and such dependence cycle can't be resolved by runtime alias check.  */
  bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
			    data_reference_p dr2);


  /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
     PARTITION1's type after merging PARTITION2 into PARTITION1.  */
  void update_type_for_merge (struct graph *rdg,
			      partition *partition1, partition *partition2);


  /* Returns a partition with all the statements needed for computing
     the vertex V of the RDG, also including the loop exit conditions.  */
  partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);

  /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
     if it forms builtin memcpy or memmove call.  */
  void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
			      data_reference_p dst_dr, data_reference_p src_dr);

  /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
     For the moment we detect memset, memcpy and memmove patterns.  Bitmap
     STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
     Returns true if there is a reduction in all partitions and we
     possibly did not mark PARTITION as having one for this reason.  */

  bool
  classify_partition (loop_p loop,
		      struct graph *rdg, partition *partition,
		      bitmap stmt_in_all_partitions);


  /* Returns true when PARTITION1 and PARTITION2 access the same memory
     object in RDG.  */
  bool share_memory_accesses (struct graph *rdg,
			      partition *partition1, partition *partition2);

  /* For each seed statement in STARTING_STMTS, this function builds
     partition for it by adding depended statements according to RDG.
     All partitions are recorded in PARTITIONS.  */
  void rdg_build_partitions (struct graph *rdg,
			     vec<gimple *> starting_stmts,
			     vec<partition *> *partitions);

  /* Compute partition dependence created by the data references in DRS1
     and DRS2, modify and return DIR according to that.  IF ALIAS_DDR is
     not NULL, we record dependence introduced by possible alias between
     two data references in ALIAS_DDRS; otherwise, we simply ignore such
     dependence as if it doesn't exist at all.  */
  int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
			       bitmap drs2, vec<ddr_p> *alias_ddrs);


  /* Build and return partition dependence graph for PARTITIONS.  RDG is
     reduced dependence graph for the loop to be distributed.  If IGNORE_ALIAS_P
     is true, data dependence caused by possible alias between references
     is ignored, as if it doesn't exist at all; otherwise all depdendences
     are considered.  */
  struct graph *build_partition_graph (struct graph *rdg,
				       vec<struct partition *> *partitions,
				       bool ignore_alias_p);

  /* Given reduced dependence graph RDG merge strong connected components
     of PARTITIONS.  If IGNORE_ALIAS_P is true, data dependence caused by
     possible alias between references is ignored, as if it doesn't exist
     at all; otherwise all depdendences are considered.  */
  void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
				 *partitions, bool ignore_alias_p);

/* This is the main function breaking strong conected components in
   PARTITIONS giving reduced depdendence graph RDG.  Store data dependence
   relations for runtime alias check in ALIAS_DDRS.  */
  void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
				   *partitions, vec<ddr_p> *alias_ddrs);


  /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
     ALIAS_DDRS contains ddrs which need runtime alias check.  */
  void finalize_partitions (class loop *loop, vec<struct partition *>
			    *partitions, vec<ddr_p> *alias_ddrs);

  /* Distributes the code from LOOP in such a way that producer statements
     are placed before consumer statements.  Tries to separate only the
     statements from STMTS into separate loops.  Returns the number of
     distributed loops.  Set NB_CALLS to number of generated builtin calls.
     Set *DESTROY_P to whether LOOP needs to be destroyed.  */
  int distribute_loop (class loop *loop, const vec<gimple *> &stmts,
		       control_dependences *cd, int *nb_calls, bool *destroy_p,
		       bool only_patterns_p);

  /* Transform loops which mimic the effects of builtins rawmemchr or strlen and
     replace them accordingly.  */
  bool transform_reduction_loop (loop_p loop);

  /* Compute topological order for basic blocks.  Topological order is
     needed because data dependence is computed for data references in
     lexicographical order.  */
  void bb_top_order_init (void);

  void bb_top_order_destroy (void);

  public:

  /* Getter for bb_top_order.  */

  inline int get_bb_top_order_index_size (void)
    {
      return bb_top_order_index_size;
    }

  inline int get_bb_top_order_index (int i)
    {
      return bb_top_order_index[i];
    }

  unsigned int execute (function *fun);
};


/* If X has a smaller topological sort number than Y, returns -1;
   if greater, returns 1.  */
static int
bb_top_order_cmp_r (const void *x, const void *y, void *loop)
{
  loop_distribution *_loop =
    (loop_distribution *) loop;

  basic_block bb1 = *(const basic_block *) x;
  basic_block bb2 = *(const basic_block *) y;

  int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();

  gcc_assert (bb1->index < bb_top_order_index_size
	      && bb2->index < bb_top_order_index_size);
  gcc_assert (bb1 == bb2
	      || _loop->get_bb_top_order_index(bb1->index)
		 != _loop->get_bb_top_order_index(bb2->index));

  return (_loop->get_bb_top_order_index(bb1->index) - 
	  _loop->get_bb_top_order_index(bb2->index));
}

bool
loop_distribution::create_rdg_vertices (struct graph *rdg,
					const vec<gimple *> &stmts,
					loop_p loop)
{
  int i;
  gimple *stmt;

  FOR_EACH_VEC_ELT (stmts, i, stmt)
    {
      struct vertex *v = &(rdg->vertices[i]);

      /* Record statement to vertex mapping.  */
      gimple_set_uid (stmt, i);

      v->data = XNEW (struct rdg_vertex);
      RDGV_STMT (v) = stmt;
      RDGV_DATAREFS (v).create (0);
      RDGV_HAS_MEM_WRITE (v) = false;
      RDGV_HAS_MEM_READS (v) = false;
      if (gimple_code (stmt) == GIMPLE_PHI)
	continue;

      unsigned drp = datarefs_vec.length ();
      if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
	return false;
      for (unsigned j = drp; j < datarefs_vec.length (); ++j)
	{
	  data_reference_p dr = datarefs_vec[j];
	  if (DR_IS_READ (dr))
	    RDGV_HAS_MEM_READS (v) = true;
	  else
	    RDGV_HAS_MEM_WRITE (v) = true;
	  RDGV_DATAREFS (v).safe_push (dr);
	  has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
	}
    }
  return true;
}

void
loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
{
  unsigned int i;
  basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];

      for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
	   gsi_next (&bsi))
	if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
	  stmts->safe_push (bsi.phi ());

      for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
	   gsi_next (&bsi))
	{
	  gimple *stmt = gsi_stmt (bsi);
	  if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
	    stmts->safe_push (stmt);
	}
    }

  free (bbs);
}

/* Free the reduced dependence graph RDG.  */

static void
free_rdg (struct graph *rdg)
{
  int i;

  for (i = 0; i < rdg->n_vertices; i++)
    {
      struct vertex *v = &(rdg->vertices[i]);
      struct graph_edge *e;

      for (e = v->succ; e; e = e->succ_next)
	free (e->data);

      if (v->data)
	{
	  gimple_set_uid (RDGV_STMT (v), -1);
	  (RDGV_DATAREFS (v)).release ();
	  free (v->data);
	}
    }

  free_graph (rdg);
}

struct graph *
loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
{
  struct graph *rdg;

  /* Create the RDG vertices from the stmts of the loop nest.  */
  auto_vec<gimple *, 10> stmts;
  stmts_from_loop (loop, &stmts);
  rdg = new_graph (stmts.length ());
  if (!create_rdg_vertices (rdg, stmts, loop))
    {
      free_rdg (rdg);
      return NULL;
    }
  stmts.release ();

  create_rdg_flow_edges (rdg);
  if (cd)
    create_rdg_cd_edges (rdg, cd, loop);

  return rdg;
}


/* Allocate and initialize a partition from BITMAP.  */

static partition *
partition_alloc (void)
{
  partition *partition = XCNEW (struct partition);
  partition->stmts = BITMAP_ALLOC (NULL);
  partition->reduction_p = false;
  partition->loc = UNKNOWN_LOCATION;
  partition->kind = PKIND_NORMAL;
  partition->type = PTYPE_PARALLEL;
  partition->datarefs = BITMAP_ALLOC (NULL);
  return partition;
}

/* Free PARTITION.  */

static void
partition_free (partition *partition)
{
  BITMAP_FREE (partition->stmts);
  BITMAP_FREE (partition->datarefs);
  if (partition->builtin)
    free (partition->builtin);

  free (partition);
}

/* Returns true if the partition can be generated as a builtin.  */

static bool
partition_builtin_p (partition *partition)
{
  return partition->kind > PKIND_PARTIAL_MEMSET;
}

/* Returns true if the partition contains a reduction.  */

static bool
partition_reduction_p (partition *partition)
{
  return partition->reduction_p;
}

void
loop_distribution::partition_merge_into (struct graph *rdg,
		      partition *dest, partition *partition, enum fuse_type ft)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
      fprintf (dump_file, "  Part 1: ");
      dump_bitmap (dump_file, dest->stmts);
      fprintf (dump_file, "  Part 2: ");
      dump_bitmap (dump_file, partition->stmts);
    }

  dest->kind = PKIND_NORMAL;
  if (dest->type == PTYPE_PARALLEL)
    dest->type = partition->type;

  bitmap_ior_into (dest->stmts, partition->stmts);
  if (partition_reduction_p (partition))
    dest->reduction_p = true;

  /* Further check if any data dependence prevents us from executing the
     new partition parallelly.  */
  if (dest->type == PTYPE_PARALLEL && rdg != NULL)
    update_type_for_merge (rdg, dest, partition);

  bitmap_ior_into (dest->datarefs, partition->datarefs);
}


/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
   the LOOP.  */

static bool
ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
{
  imm_use_iterator imm_iter;
  use_operand_p use_p;

  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
    {
      if (is_gimple_debug (USE_STMT (use_p)))
	continue;

      basic_block use_bb = gimple_bb (USE_STMT (use_p));
      if (!flow_bb_inside_loop_p (loop, use_bb))
	return true;
    }

  return false;
}

/* Returns true when STMT defines a scalar variable used after the
   loop LOOP.  */

static bool
stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
{
  def_operand_p def_p;
  ssa_op_iter op_iter;

  if (gimple_code (stmt) == GIMPLE_PHI)
    return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);

  FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
    if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
      return true;

  return false;
}

/* Return a copy of LOOP placed before LOOP.  */

static class loop *
copy_loop_before (class loop *loop, bool redirect_lc_phi_defs)
{
  class loop *res;
  edge preheader = loop_preheader_edge (loop);

  initialize_original_copy_tables ();
  res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
  gcc_assert (res != NULL);

  /* When a not last partition is supposed to keep the LC PHIs computed
     adjust their definitions.  */
  if (redirect_lc_phi_defs)
    {
      edge exit = single_exit (loop);
      for (gphi_iterator si = gsi_start_phis (exit->dest); !gsi_end_p (si);
	   gsi_next (&si))
	{
	  gphi *phi = si.phi ();
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    continue;
	  use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, exit);
	  tree new_def = get_current_def (USE_FROM_PTR (use_p));
	  SET_USE (use_p, new_def);
	}
    }

  free_original_copy_tables ();
  delete_update_ssa ();

  return res;
}

/* Creates an empty basic block after LOOP.  */

static void
create_bb_after_loop (class loop *loop)
{
  edge exit = single_exit (loop);

  if (!exit)
    return;

  split_edge (exit);
}

/* Generate code for PARTITION from the code in LOOP.  The loop is
   copied when COPY_P is true.  All the statements not flagged in the
   PARTITION bitmap are removed from the loop or from its copy.  The
   statements are indexed in sequence inside a basic block, and the
   basic blocks of a loop are taken in dom order.  */

static void
generate_loops_for_partition (class loop *loop, partition *partition,
			      bool copy_p, bool keep_lc_phis_p)
{
  unsigned i;
  basic_block *bbs;

  if (copy_p)
    {
      int orig_loop_num = loop->orig_loop_num;
      loop = copy_loop_before (loop, keep_lc_phis_p);
      gcc_assert (loop != NULL);
      loop->orig_loop_num = orig_loop_num;
      create_preheader (loop, CP_SIMPLE_PREHEADERS);
      create_bb_after_loop (loop);
    }
  else
    {
      /* Origin number is set to the new versioned loop's num.  */
      gcc_assert (loop->orig_loop_num != loop->num);
    }

  /* Remove stmts not in the PARTITION bitmap.  */
  bbs = get_loop_body_in_dom_order (loop);

  if (MAY_HAVE_DEBUG_BIND_STMTS)
    for (i = 0; i < loop->num_nodes; i++)
      {
	basic_block bb = bbs[i];

	for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
	     gsi_next (&bsi))
	  {
	    gphi *phi = bsi.phi ();
	    if (!virtual_operand_p (gimple_phi_result (phi))
		&& !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
	      reset_debug_uses (phi);
	  }

	for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	  {
	    gimple *stmt = gsi_stmt (bsi);
	    if (gimple_code (stmt) != GIMPLE_LABEL
		&& !is_gimple_debug (stmt)
		&& !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
	      reset_debug_uses (stmt);
	  }
      }

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];
      edge inner_exit = NULL;

      if (loop != bb->loop_father)
	inner_exit = single_exit (bb->loop_father);

      for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
	{
	  gphi *phi = bsi.phi ();
	  if (!virtual_operand_p (gimple_phi_result (phi))
	      && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
	    remove_phi_node (&bsi, true);
	  else
	    gsi_next (&bsi);
	}

      for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
	{
	  gimple *stmt = gsi_stmt (bsi);
	  if (gimple_code (stmt) != GIMPLE_LABEL
	      && !is_gimple_debug (stmt)
	      && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
	    {
	      /* In distribution of loop nest, if bb is inner loop's exit_bb,
		 we choose its exit edge/path in order to avoid generating
		 infinite loop.  For all other cases, we choose an arbitrary
		 path through the empty CFG part that this unnecessary
		 control stmt controls.  */
	      if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
		{
		  if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
		    gimple_cond_make_true (cond_stmt);
		  else
		    gimple_cond_make_false (cond_stmt);
		  update_stmt (stmt);
		}
	      else if (gimple_code (stmt) == GIMPLE_SWITCH)
		{
		  gswitch *switch_stmt = as_a <gswitch *> (stmt);
		  gimple_switch_set_index
		      (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
		  update_stmt (stmt);
		}
	      else
		{
		  unlink_stmt_vdef (stmt);
		  gsi_remove (&bsi, true);
		  release_defs (stmt);
		  continue;
		}
	    }
	  gsi_next (&bsi);
	}
    }

  free (bbs);
}

/* If VAL memory representation contains the same value in all bytes,
   return that value, otherwise return -1.
   E.g. for 0x24242424 return 0x24, for IEEE double
   747708026454360457216.0 return 0x44, etc.  */

static int
const_with_all_bytes_same (tree val)
{
  unsigned char buf[64];
  int i, len;

  if (integer_zerop (val)
      || (TREE_CODE (val) == CONSTRUCTOR
          && !TREE_CLOBBER_P (val)
          && CONSTRUCTOR_NELTS (val) == 0))
    return 0;

  if (real_zerop (val))
    {
      /* Only return 0 for +0.0, not for -0.0, which doesn't have
	 an all bytes same memory representation.  Don't transform
	 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS.  */
      switch (TREE_CODE (val))
	{
	case REAL_CST:
	  if (!real_isneg (TREE_REAL_CST_PTR (val)))
	    return 0;
	  break;
	case COMPLEX_CST:
	  if (!const_with_all_bytes_same (TREE_REALPART (val))
	      && !const_with_all_bytes_same (TREE_IMAGPART (val)))
	    return 0;
	  break;
	case VECTOR_CST:
	  {
	    unsigned int count = vector_cst_encoded_nelts (val);
	    unsigned int j;
	    for (j = 0; j < count; ++j)
	      if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
		break;
	    if (j == count)
	      return 0;
	    break;
	  }
	default:
	  break;
	}
    }

  if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
    return -1;

  len = native_encode_expr (val, buf, sizeof (buf));
  if (len == 0)
    return -1;
  for (i = 1; i < len; i++)
    if (buf[i] != buf[0])
      return -1;
  return buf[0];
}

/* Generate a call to memset for PARTITION in LOOP.  */

static void
generate_memset_builtin (class loop *loop, partition *partition)
{
  gimple_stmt_iterator gsi;
  tree mem, fn, nb_bytes;
  tree val;
  struct builtin_info *builtin = partition->builtin;
  gimple *fn_call;

  /* The new statements will be placed before LOOP.  */
  gsi = gsi_last_bb (loop_preheader_edge (loop)->src);

  nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
  nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
				       false, GSI_CONTINUE_LINKING);
  mem = rewrite_to_non_trapping_overflow (builtin->dst_base);
  mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
				  false, GSI_CONTINUE_LINKING);

  /* This exactly matches the pattern recognition in classify_partition.  */
  val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
  /* Handle constants like 0x15151515 and similarly
     floating point constants etc. where all bytes are the same.  */
  int bytev = const_with_all_bytes_same (val);
  if (bytev != -1)
    val = build_int_cst (integer_type_node, bytev);
  else if (TREE_CODE (val) == INTEGER_CST)
    val = fold_convert (integer_type_node, val);
  else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
    {
      tree tem = make_ssa_name (integer_type_node);
      gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
      gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
      val = tem;
    }

  fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
  fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
  gimple_set_location (fn_call, partition->loc);
  gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
  fold_stmt (&gsi);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "generated memset");
      if (bytev == 0)
	fprintf (dump_file, " zero\n");
      else
	fprintf (dump_file, "\n");
    }
}

/* Generate a call to memcpy for PARTITION in LOOP.  */

static void
generate_memcpy_builtin (class loop *loop, partition *partition)
{
  gimple_stmt_iterator gsi;
  gimple *fn_call;
  tree dest, src, fn, nb_bytes;
  enum built_in_function kind;
  struct builtin_info *builtin = partition->builtin;

  /* The new statements will be placed before LOOP.  */
  gsi = gsi_last_bb (loop_preheader_edge (loop)->src);

  nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
  nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
				       false, GSI_CONTINUE_LINKING);
  dest = rewrite_to_non_trapping_overflow (builtin->dst_base);
  src = rewrite_to_non_trapping_overflow (builtin->src_base);
  if (partition->kind == PKIND_MEMCPY
      || ! ptr_derefs_may_alias_p (dest, src))
    kind = BUILT_IN_MEMCPY;
  else
    kind = BUILT_IN_MEMMOVE;
  /* Try harder if we're copying a constant size.  */
  if (kind == BUILT_IN_MEMMOVE && poly_int_tree_p (nb_bytes))
    {
      aff_tree asrc, adest;
      tree_to_aff_combination (src, ptr_type_node, &asrc);
      tree_to_aff_combination (dest, ptr_type_node, &adest);
      aff_combination_scale (&adest, -1);
      aff_combination_add (&asrc, &adest);
      if (aff_comb_cannot_overlap_p (&asrc, wi::to_poly_widest (nb_bytes),
				     wi::to_poly_widest (nb_bytes)))
	kind = BUILT_IN_MEMCPY;
    }

  dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
				   false, GSI_CONTINUE_LINKING);
  src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
				  false, GSI_CONTINUE_LINKING);
  fn = build_fold_addr_expr (builtin_decl_implicit (kind));
  fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
  gimple_set_location (fn_call, partition->loc);
  gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
  fold_stmt (&gsi);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (kind == BUILT_IN_MEMCPY)
	fprintf (dump_file, "generated memcpy\n");
      else
	fprintf (dump_file, "generated memmove\n");
    }
}

/* Remove and destroy the loop LOOP.  */

static void
destroy_loop (class loop *loop)
{
  unsigned nbbs = loop->num_nodes;
  edge exit = single_exit (loop);
  basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
  basic_block *bbs;
  unsigned i;

  bbs = get_loop_body_in_dom_order (loop);

  gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
  bool safe_p = single_pred_p (exit->dest);
  for (unsigned i = 0; i < nbbs; ++i)
    {
      /* We have made sure to not leave any dangling uses of SSA
         names defined in the loop.  With the exception of virtuals.
	 Make sure we replace all uses of virtual defs that will remain
	 outside of the loop with the bare symbol as delete_basic_block
	 will release them.  */
      for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    mark_virtual_phi_result_for_renaming (phi);
	}
      for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
	{
	  gimple *stmt = gsi_stmt (gsi);
	  tree vdef = gimple_vdef (stmt);
	  if (vdef && TREE_CODE (vdef) == SSA_NAME)
	    mark_virtual_operand_for_renaming (vdef);
	  /* Also move and eventually reset debug stmts.  We can leave
	     constant values in place in case the stmt dominates the exit.
	     ???  Non-constant values from the last iteration can be
	     replaced with final values if we can compute them.  */
	  if (gimple_debug_bind_p (stmt))
	    {
	      tree val = gimple_debug_bind_get_value (stmt);
	      gsi_move_before (&gsi, &dst_gsi);
	      if (val
		  && (!safe_p
		      || !is_gimple_min_invariant (val)
		      || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
		{
		  gimple_debug_bind_reset_value (stmt);
		  update_stmt (stmt);
		}
	    }
	  else
	    gsi_next (&gsi);
	}
    }

  redirect_edge_pred (exit, src);
  exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
  exit->flags |= EDGE_FALLTHRU;
  cancel_loop_tree (loop);
  rescan_loop_exit (exit, false, true);

  i = nbbs;
  do
    {
      --i;
      delete_basic_block (bbs[i]);
    }
  while (i != 0);

  free (bbs);

  set_immediate_dominator (CDI_DOMINATORS, dest,
			   recompute_dominator (CDI_DOMINATORS, dest));
}

/* Generates code for PARTITION.  Return whether LOOP needs to be destroyed.  */

static bool 
generate_code_for_partition (class loop *loop,
			     partition *partition, bool copy_p,
			     bool keep_lc_phis_p)
{
  switch (partition->kind)
    {
    case PKIND_NORMAL:
    case PKIND_PARTIAL_MEMSET:
      /* Reductions all have to be in the last partition.  */
      gcc_assert (!partition_reduction_p (partition)
		  || !copy_p);
      generate_loops_for_partition (loop, partition, copy_p,
				    keep_lc_phis_p);
      return false;

    case PKIND_MEMSET:
      generate_memset_builtin (loop, partition);
      break;

    case PKIND_MEMCPY:
    case PKIND_MEMMOVE:
      generate_memcpy_builtin (loop, partition);
      break;

    default:
      gcc_unreachable ();
    }

  /* Common tail for partitions we turn into a call.  If this was the last
     partition for which we generate code, we have to destroy the loop.  */
  if (!copy_p)
    return true;
  return false;
}

data_dependence_relation *
loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
					data_reference_p b)
{
  struct data_dependence_relation ent, **slot;
  struct data_dependence_relation *ddr;

  gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
  gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
	      <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
  ent.a = a;
  ent.b = b;
  slot = ddrs_table->find_slot (&ent, INSERT);
  if (*slot == NULL)
    {
      ddr = initialize_data_dependence_relation (a, b, loop_nest);
      compute_affine_dependence (ddr, loop_nest[0]);
      *slot = ddr;
    }

  return *slot;
}

bool
loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
					data_reference_p dr1,
					data_reference_p dr2)
{
  struct data_dependence_relation *ddr;

  /* Re-shuffle data-refs to be in topological order.  */
  if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
      > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
    std::swap (dr1, dr2);

  ddr = get_data_dependence (rdg, dr1, dr2);

  /* In case of no data dependence.  */
  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
    return false;
  /* For unknown data dependence or known data dependence which can't be
     expressed in classic distance vector, we check if it can be resolved
     by runtime alias check.  If yes, we still consider data dependence
     as won't introduce data dependence cycle.  */
  else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
	   || DDR_NUM_DIST_VECTS (ddr) == 0)
    return !runtime_alias_check_p (ddr, NULL, true);
  else if (DDR_NUM_DIST_VECTS (ddr) > 1)
    return true;
  else if (DDR_REVERSED_P (ddr)
	   || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
    return false;

  return true;
}

void
loop_distribution::update_type_for_merge (struct graph *rdg,
					   partition *partition1,
					   partition *partition2)
{
  unsigned i, j;
  bitmap_iterator bi, bj;
  data_reference_p dr1, dr2;

  EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
    {
      unsigned start = (partition1 == partition2) ? i + 1 : 0;

      dr1 = datarefs_vec[i];
      EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
	{
	  dr2 = datarefs_vec[j];
	  if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
	    continue;

	  /* Partition can only be executed sequentially if there is any
	     data dependence cycle.  */
	  if (data_dep_in_cycle_p (rdg, dr1, dr2))
	    {
	      partition1->type = PTYPE_SEQUENTIAL;
	      return;
	    }
	}
    }
}

partition *
loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
{
  partition *partition = partition_alloc ();
  auto_vec<int, 3> nodes;
  unsigned i, j;
  int x;
  data_reference_p dr;

  graphds_dfs (rdg, &v, 1, &nodes, false, NULL);

  FOR_EACH_VEC_ELT (nodes, i, x)
    {
      bitmap_set_bit (partition->stmts, x);

      for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
	{
	  unsigned idx = (unsigned) DR_INDEX (dr);
	  gcc_assert (idx < datarefs_vec.length ());

	  /* Partition can only be executed sequentially if there is any
	     unknown data reference.  */
	  if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
	      || !DR_INIT (dr) || !DR_STEP (dr))
	    partition->type = PTYPE_SEQUENTIAL;

	  bitmap_set_bit (partition->datarefs, idx);
	}
    }

  if (partition->type == PTYPE_SEQUENTIAL)
    return partition;

  /* Further check if any data dependence prevents us from executing the
     partition parallelly.  */
  update_type_for_merge (rdg, partition, partition);

  return partition;
}

/* Given PARTITION of LOOP and RDG, record single load/store data references
   for builtin partition in SRC_DR/DST_DR, return false if there is no such
   data references.  */

static bool
find_single_drs (class loop *loop, struct graph *rdg, const bitmap &partition_stmts,
		 data_reference_p *dst_dr, data_reference_p *src_dr)
{
  unsigned i;
  data_reference_p single_ld = NULL, single_st = NULL;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (partition_stmts, 0, i, bi)
    {
      gimple *stmt = RDG_STMT (rdg, i);
      data_reference_p dr;

      if (gimple_code (stmt) == GIMPLE_PHI)
	continue;

      /* Any scalar stmts are ok.  */
      if (!gimple_vuse (stmt))
	continue;

      /* Otherwise just regular loads/stores.  */
      if (!gimple_assign_single_p (stmt))
	return false;

      /* But exactly one store and/or load.  */
      for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
	{
	  tree type = TREE_TYPE (DR_REF (dr));

	  /* The memset, memcpy and memmove library calls are only
	     able to deal with generic address space.  */
	  if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
	    return false;

	  if (DR_IS_READ (dr))
	    {
	      if (single_ld != NULL)
		return false;
	      single_ld = dr;
	    }
	  else
	    {
	      if (single_st != NULL)
		return false;
	      single_st = dr;
	    }
	}
    }

  if (!single_ld && !single_st)
    return false;

  basic_block bb_ld = NULL;
  basic_block bb_st = NULL;

  if (single_ld)
    {
      /* Bail out if this is a bitfield memory reference.  */
      if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
	  && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
	return false;

      /* Data reference must be executed exactly once per iteration of each
	 loop in the loop nest.  We only need to check dominance information
	 against the outermost one in a perfect loop nest because a bb can't
	 dominate outermost loop's latch without dominating inner loop's.  */
      bb_ld = gimple_bb (DR_STMT (single_ld));
      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
	return false;
    }

  if (single_st)
    {
      /* Bail out if this is a bitfield memory reference.  */
      if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
	  && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
	return false;

      /* Data reference must be executed exactly once per iteration.
	 Same as single_ld, we only need to check against the outermost
	 loop.  */
      bb_st = gimple_bb (DR_STMT (single_st));
      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
	return false;
    }

  if (single_ld && single_st)
    {
      /* Load and store must be in the same loop nest.  */
      if (bb_st->loop_father != bb_ld->loop_father)
	return false;

      edge e = single_exit (bb_st->loop_father);
      bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
      bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
      if (dom_ld != dom_st)
	return false;
    }

  *src_dr = single_ld;
  *dst_dr = single_st;
  return true;
}

/* Given data reference DR in LOOP_NEST, this function checks the enclosing
   loops from inner to outer to see if loop's step equals to access size at
   each level of loop.  Return 2 if we can prove this at all level loops;
   record access base and size in BASE and SIZE; save loop's step at each
   level of loop in STEPS if it is not null.  For example:

     int arr[100][100][100];
     for (i = 0; i < 100; i++)       ;steps[2] = 40000
       for (j = 100; j > 0; j--)     ;steps[1] = -400
	 for (k = 0; k < 100; k++)   ;steps[0] = 4
	   arr[i][j - 1][k] = 0;     ;base = &arr, size = 4000000

   Return 1 if we can prove the equality at the innermost loop, but not all
   level loops.  In this case, no information is recorded.

   Return 0 if no equality can be proven at any level loops.  */

static int
compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
		      tree *size, vec<tree> *steps = NULL)
{
  location_t loc = gimple_location (DR_STMT (dr));
  basic_block bb = gimple_bb (DR_STMT (dr));
  class loop *loop = bb->loop_father;
  tree ref = DR_REF (dr);
  tree access_base = build_fold_addr_expr (ref);
  tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
  int res = 0;

  do {
      tree scev_fn = analyze_scalar_evolution (loop, access_base);
      if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
	return res;

      access_base = CHREC_LEFT (scev_fn);
      if (tree_contains_chrecs (access_base, NULL))
	return res;

      tree scev_step = CHREC_RIGHT (scev_fn);
      /* Only support constant steps.  */
      if (TREE_CODE (scev_step) != INTEGER_CST)
	return res;

      enum ev_direction access_dir = scev_direction (scev_fn);
      if (access_dir == EV_DIR_UNKNOWN)
	return res;

      if (steps != NULL)
	steps->safe_push (scev_step);

      scev_step = fold_convert_loc (loc, sizetype, scev_step);
      /* Compute absolute value of scev step.  */
      if (access_dir == EV_DIR_DECREASES)
	scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);

      /* At each level of loop, scev step must equal to access size.  In other
	 words, DR must access consecutive memory between loop iterations.  */
      if (!operand_equal_p (scev_step, access_size, 0))
	return res;

      /* Access stride can be computed for data reference at least for the
	 innermost loop.  */
      res = 1;

      /* Compute DR's execution times in loop.  */
      tree niters = number_of_latch_executions (loop);
      niters = fold_convert_loc (loc, sizetype, niters);
      if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
	niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);

      /* Compute DR's overall access size in loop.  */
      access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
				     niters, scev_step);
      /* Adjust base address in case of negative step.  */
      if (access_dir == EV_DIR_DECREASES)
	{
	  tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
				      scev_step, access_size);
	  access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
	}
  } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);

  *base = access_base;
  *size = access_size;
  /* Access stride can be computed for data reference at each level loop.  */
  return 2;
}

/* Allocate and return builtin struct.  Record information like DST_DR,
   SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct.  */

static struct builtin_info *
alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
	       tree dst_base, tree src_base, tree size)
{
  struct builtin_info *builtin = XNEW (struct builtin_info);
  builtin->dst_dr = dst_dr;
  builtin->src_dr = src_dr;
  builtin->dst_base = dst_base;
  builtin->src_base = src_base;
  builtin->size = size;
  return builtin;
}

/* Given data reference DR in loop nest LOOP, classify if it forms builtin
   memset call.  */

static void
classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
{
  gimple *stmt = DR_STMT (dr);
  tree base, size, rhs = gimple_assign_rhs1 (stmt);

  if (const_with_all_bytes_same (rhs) == -1
      && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
	  || (TYPE_MODE (TREE_TYPE (rhs))
	      != TYPE_MODE (unsigned_char_type_node))))
    return;

  if (TREE_CODE (rhs) == SSA_NAME
      && !SSA_NAME_IS_DEFAULT_DEF (rhs)
      && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
    return;

  int res = compute_access_range (loop, dr, &base, &size);
  if (res == 0)
    return;
  if (res == 1)
    {
      partition->kind = PKIND_PARTIAL_MEMSET;
      return;
    }

  poly_uint64 base_offset;
  unsigned HOST_WIDE_INT const_base_offset;
  tree base_base = strip_offset (base, &base_offset);
  if (!base_offset.is_constant (&const_base_offset))
    return;

  struct builtin_info *builtin;
  builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
  builtin->dst_base_base = base_base;
  builtin->dst_base_offset = const_base_offset;
  partition->builtin = builtin;
  partition->kind = PKIND_MEMSET;
}

/* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
   if it forms builtin memcpy or memmove call.  */

void
loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
					  partition *partition,
					  data_reference_p dst_dr,
					  data_reference_p src_dr)
{
  tree base, size, src_base, src_size;
  auto_vec<tree> dst_steps, src_steps;

  /* Compute access range of both load and store.  */
  int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
  if (res != 2)
    return;
  res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
  if (res != 2)
    return;

  /* They much have the same access size.  */
  if (!operand_equal_p (size, src_size, 0))
    return;

  /* Load and store in loop nest must access memory in the same way, i.e,
     their must have the same steps in each loop of the nest.  */
  if (dst_steps.length () != src_steps.length ())
    return;
  for (unsigned i = 0; i < dst_steps.length (); ++i)
    if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
      return;

  /* Now check that if there is a dependence.  */
  ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);

  /* Classify as memmove if no dependence between load and store.  */
  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
    {
      partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
      partition->kind = PKIND_MEMMOVE;
      return;
    }

  /* Can't do memmove in case of unknown dependence or dependence without
     classical distance vector.  */
  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
      || DDR_NUM_DIST_VECTS (ddr) == 0)
    return;

  unsigned i;
  lambda_vector dist_v;
  int num_lev = (DDR_LOOP_NEST (ddr)).length ();
  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
    {
      unsigned dep_lev = dependence_level (dist_v, num_lev);
      /* Can't do memmove if load depends on store.  */
      if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
	return;
    }

  partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
  partition->kind = PKIND_MEMMOVE;
  return;
}

bool
loop_distribution::classify_partition (loop_p loop,
				       struct graph *rdg, partition *partition,
				       bitmap stmt_in_all_partitions)
{
  bitmap_iterator bi;
  unsigned i;
  data_reference_p single_ld = NULL, single_st = NULL;
  bool volatiles_p = false, has_reduction = false;

  EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
    {
      gimple *stmt = RDG_STMT (rdg, i);

      if (gimple_has_volatile_ops (stmt))
	volatiles_p = true;

      /* If the stmt is not included by all partitions and there is uses
	 outside of the loop, then mark the partition as reduction.  */
      if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
	{
	  /* Due to limitation in the transform phase we have to fuse all
	     reduction partitions.  As a result, this could cancel valid
	     loop distribution especially for loop that induction variable
	     is used outside of loop.  To workaround this issue, we skip
	     marking partition as reudction if the reduction stmt belongs
	     to all partitions.  In such case, reduction will be computed
	     correctly no matter how partitions are fused/distributed.  */
	  if (!bitmap_bit_p (stmt_in_all_partitions, i))
	    partition->reduction_p = true;
	  else
	    has_reduction = true;
	}
    }

  /* Simple workaround to prevent classifying the partition as builtin
     if it contains any use outside of loop.  For the case where all
     partitions have the reduction this simple workaround is delayed
     to only affect the last partition.  */
  if (partition->reduction_p)
     return has_reduction;

  /* Perform general partition disqualification for builtins.  */
  if (volatiles_p
      || !flag_tree_loop_distribute_patterns)
    return has_reduction;

  /* Find single load/store data references for builtin partition.  */
  if (!find_single_drs (loop, rdg, partition->stmts, &single_st, &single_ld)
      || !single_st)
    return has_reduction;

  if (single_ld && single_st)
    {
      gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
      /* Direct aggregate copy or via an SSA name temporary.  */
      if (load != store
	  && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
	return has_reduction;
    }

  partition->loc = gimple_location (DR_STMT (single_st));

  /* Classify the builtin kind.  */
  if (single_ld == NULL)
    classify_builtin_st (loop, partition, single_st);
  else
    classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
  return has_reduction;
}

bool
loop_distribution::share_memory_accesses (struct graph *rdg,
		       partition *partition1, partition *partition2)
{
  unsigned i, j;
  bitmap_iterator bi, bj;
  data_reference_p dr1, dr2;

  /* First check whether in the intersection of the two partitions are
     any loads or stores.  Common loads are the situation that happens
     most often.  */
  EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
    if (RDG_MEM_WRITE_STMT (rdg, i)
	|| RDG_MEM_READS_STMT (rdg, i))
      return true;

  /* Then check whether the two partitions access the same memory object.  */
  EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
    {
      dr1 = datarefs_vec[i];

      if (!DR_BASE_ADDRESS (dr1)
	  || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
	continue;

      EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
	{
	  dr2 = datarefs_vec[j];

	  if (!DR_BASE_ADDRESS (dr2)
	      || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
	    continue;

	  if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
	      && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
	      && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
	      && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
	    return true;
	}
    }

  return false;
}

/* For each seed statement in STARTING_STMTS, this function builds
   partition for it by adding depended statements according to RDG.
   All partitions are recorded in PARTITIONS.  */

void
loop_distribution::rdg_build_partitions (struct graph *rdg,
					 vec<gimple *> starting_stmts,
					 vec<partition *> *partitions)
{
  auto_bitmap processed;
  int i;
  gimple *stmt;

  FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
    {
      int v = rdg_vertex_for_stmt (rdg, stmt);

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "ldist asked to generate code for vertex %d\n", v);

      /* If the vertex is already contained in another partition so
         is the partition rooted at it.  */
      if (bitmap_bit_p (processed, v))
	continue;

      partition *partition = build_rdg_partition_for_vertex (rdg, v);
      bitmap_ior_into (processed, partition->stmts);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "ldist creates useful %s partition:\n",
		   partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
	  bitmap_print (dump_file, partition->stmts, "  ", "\n");
	}

      partitions->safe_push (partition);
    }

  /* All vertices should have been assigned to at least one partition now,
     other than vertices belonging to dead code.  */
}

/* Dump to FILE the PARTITIONS.  */

static void
dump_rdg_partitions (FILE *file, const vec<partition *> &partitions)
{
  int i;
  partition *partition;

  FOR_EACH_VEC_ELT (partitions, i, partition)
    debug_bitmap_file (file, partition->stmts);
}

/* Debug PARTITIONS.  */
extern void debug_rdg_partitions (const vec<partition *> &);

DEBUG_FUNCTION void
debug_rdg_partitions (const vec<partition *> &partitions)
{
  dump_rdg_partitions (stderr, partitions);
}

/* Returns the number of read and write operations in the RDG.  */

static int
number_of_rw_in_rdg (struct graph *rdg)
{
  int i, res = 0;

  for (i = 0; i < rdg->n_vertices; i++)
    {
      if (RDG_MEM_WRITE_STMT (rdg, i))
	++res;

      if (RDG_MEM_READS_STMT (rdg, i))
	++res;
    }

  return res;
}

/* Returns the number of read and write operations in a PARTITION of
   the RDG.  */

static int
number_of_rw_in_partition (struct graph *rdg, partition *partition)
{
  int res = 0;
  unsigned i;
  bitmap_iterator ii;

  EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
    {
      if (RDG_MEM_WRITE_STMT (rdg, i))
	++res;

      if (RDG_MEM_READS_STMT (rdg, i))
	++res;
    }

  return res;
}

/* Returns true when one of the PARTITIONS contains all the read or
   write operations of RDG.  */

static bool
partition_contains_all_rw (struct graph *rdg,
			   const vec<partition *> &partitions)
{
  int i;
  partition *partition;
  int nrw = number_of_rw_in_rdg (rdg);

  FOR_EACH_VEC_ELT (partitions, i, partition)
    if (nrw == number_of_rw_in_partition (rdg, partition))
      return true;

  return false;
}

int
loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
			 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
{
  unsigned i, j;
  bitmap_iterator bi, bj;
  data_reference_p dr1, dr2, saved_dr1;

  /* dependence direction - 0 is no dependence, -1 is back,
     1 is forth, 2 is both (we can stop then, merging will occur).  */
  EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
    {
      dr1 = datarefs_vec[i];

      EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
	{
	  int res, this_dir = 1;
	  ddr_p ddr;

	  dr2 = datarefs_vec[j];

	  /* Skip all <read, read> data dependence.  */
	  if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
	    continue;

	  saved_dr1 = dr1;
	  /* Re-shuffle data-refs to be in topological order.  */
	  if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
	      > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
	    {
	      std::swap (dr1, dr2);
	      this_dir = -this_dir;
	    }
	  ddr = get_data_dependence (rdg, dr1, dr2);
	  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
	    {
	      this_dir = 0;
	      res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
					   DR_BASE_ADDRESS (dr2));
	      /* Be conservative.  If data references are not well analyzed,
		 or the two data references have the same base address and
		 offset, add dependence and consider it alias to each other.
		 In other words, the dependence cannot be resolved by
		 runtime alias check.  */
	      if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
		  || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
		  || !DR_INIT (dr1) || !DR_INIT (dr2)
		  || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
		  || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
		  || res == 0)
		this_dir = 2;
	      /* Data dependence could be resolved by runtime alias check,
		 record it in ALIAS_DDRS.  */
	      else if (alias_ddrs != NULL)
		alias_ddrs->safe_push (ddr);
	      /* Or simply ignore it.  */
	    }
	  else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
	    {
	      if (DDR_REVERSED_P (ddr))
		this_dir = -this_dir;

	      /* Known dependences can still be unordered througout the
		 iteration space, see gcc.dg/tree-ssa/ldist-16.c and
		 gcc.dg/tree-ssa/pr94969.c.  */
	      if (DDR_NUM_DIST_VECTS (ddr) != 1)
		this_dir = 2;
	      /* If the overlap is exact preserve stmt order.  */
	      else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
					    DDR_NB_LOOPS (ddr)))
		;
	      /* Else as the distance vector is lexicographic positive swap
		 the dependence direction.  */
	      else
		this_dir = -this_dir;
	    }
	  else
	    this_dir = 0;
	  if (this_dir == 2)
	    return 2;
	  else if (dir == 0)
	    dir = this_dir;
	  else if (this_dir != 0 && dir != this_dir)
	    return 2;
	  /* Shuffle "back" dr1.  */
	  dr1 = saved_dr1;
	}
    }
  return dir;
}

/* Compare postorder number of the partition graph vertices V1 and V2.  */

static int
pgcmp (const void *v1_, const void *v2_)
{
  const vertex *v1 = (const vertex *)v1_;
  const vertex *v2 = (const vertex *)v2_;
  return v2->post - v1->post;
}

/* Data attached to vertices of partition dependence graph.  */
struct pg_vdata
{
  /* ID of the corresponding partition.  */
  int id;
  /* The partition.  */
  struct partition *partition;
};

/* Data attached to edges of partition dependence graph.  */
struct pg_edata
{
  /* If the dependence edge can be resolved by runtime alias check,
     this vector contains data dependence relations for runtime alias
     check.  On the other hand, if the dependence edge is introduced
     because of compilation time known data dependence, this vector
     contains nothing.  */
  vec<ddr_p> alias_ddrs;
};

/* Callback data for traversing edges in graph.  */
struct pg_edge_callback_data
{
  /* Bitmap contains strong connected components should be merged.  */
  bitmap sccs_to_merge;
  /* Array constains component information for all vertices.  */
  int *vertices_component;
  /* Array constains postorder information for all vertices.  */
  int *vertices_post;
  /* Vector to record all data dependence relations which are needed
     to break strong connected components by runtime alias checks.  */
  vec<ddr_p> *alias_ddrs;
};

/* Initialize vertice's data for partition dependence graph PG with
   PARTITIONS.  */

static void
init_partition_graph_vertices (struct graph *pg,
			       vec<struct partition *> *partitions)
{
  int i;
  partition *partition;
  struct pg_vdata *data;

  for (i = 0; partitions->iterate (i, &partition); ++i)
    {
      data = new pg_vdata;
      pg->vertices[i].data = data;
      data->id = i;
      data->partition = partition;
    }
}

/* Add edge <I, J> to partition dependence graph PG.  Attach vector of data
   dependence relations to the EDGE if DDRS isn't NULL.  */

static void
add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
{
  struct graph_edge *e = add_edge (pg, i, j);

  /* If the edge is attached with data dependence relations, it means this
     dependence edge can be resolved by runtime alias checks.  */
  if (ddrs != NULL)
    {
      struct pg_edata *data = new pg_edata;

      gcc_assert (ddrs->length () > 0);
      e->data = data;
      data->alias_ddrs = vNULL;
      data->alias_ddrs.safe_splice (*ddrs);
    }
}

/* Callback function for graph travesal algorithm.  It returns true
   if edge E should skipped when traversing the graph.  */

static bool
pg_skip_alias_edge (struct graph_edge *e)
{
  struct pg_edata *data = (struct pg_edata *)e->data;
  return (data != NULL && data->alias_ddrs.length () > 0);
}

/* Callback function freeing data attached to edge E of graph.  */

static void
free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
{
  if (e->data != NULL)
    {
      struct pg_edata *data = (struct pg_edata *)e->data;
      data->alias_ddrs.release ();
      delete data;
    }
}

/* Free data attached to vertice of partition dependence graph PG.  */

static void
free_partition_graph_vdata (struct graph *pg)
{
  int i;
  struct pg_vdata *data;

  for (i = 0; i < pg->n_vertices; ++i)
    {
      data = (struct pg_vdata *)pg->vertices[i].data;
      delete data;
    }
}

/* Build and return partition dependence graph for PARTITIONS.  RDG is
   reduced dependence graph for the loop to be distributed.  If IGNORE_ALIAS_P
   is true, data dependence caused by possible alias between references
   is ignored, as if it doesn't exist at all; otherwise all depdendences
   are considered.  */

struct graph *
loop_distribution::build_partition_graph (struct graph *rdg,
					  vec<struct partition *> *partitions,
					  bool ignore_alias_p)
{
  int i, j;
  struct partition *partition1, *partition2;
  graph *pg = new_graph (partitions->length ());
  auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;

  alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;

  init_partition_graph_vertices (pg, partitions);

  for (i = 0; partitions->iterate (i, &partition1); ++i)
    {
      for (j = i + 1; partitions->iterate (j, &partition2); ++j)
	{
	  /* dependence direction - 0 is no dependence, -1 is back,
	     1 is forth, 2 is both (we can stop then, merging will occur).  */
	  int dir = 0;

	  /* If the first partition has reduction, add back edge; if the
	     second partition has reduction, add forth edge.  This makes
	     sure that reduction partition will be sorted as the last one.  */
	  if (partition_reduction_p (partition1))
	    dir = -1;
	  else if (partition_reduction_p (partition2))
	    dir = 1;

	  /* Cleanup the temporary vector.  */
	  alias_ddrs.truncate (0);

	  dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
					 partition2->datarefs, alias_ddrs_p);

	  /* Add edge to partition graph if there exists dependence.  There
	     are two types of edges.  One type edge is caused by compilation
	     time known dependence, this type cannot be resolved by runtime
	     alias check.  The other type can be resolved by runtime alias
	     check.  */
	  if (dir == 1 || dir == 2
	      || alias_ddrs.length () > 0)
	    {
	      /* Attach data dependence relations to edge that can be resolved
		 by runtime alias check.  */
	      bool alias_edge_p = (dir != 1 && dir != 2);
	      add_partition_graph_edge (pg, i, j,
					(alias_edge_p) ? &alias_ddrs : NULL);
	    }
	  if (dir == -1 || dir == 2
	      || alias_ddrs.length () > 0)
	    {
	      /* Attach data dependence relations to edge that can be resolved
		 by runtime alias check.  */
	      bool alias_edge_p = (dir != -1 && dir != 2);
	      add_partition_graph_edge (pg, j, i,
					(alias_edge_p) ? &alias_ddrs : NULL);
	    }
	}
    }
  return pg;
}

/* Sort partitions in PG in descending post order and store them in
   PARTITIONS.  */

static void
sort_partitions_by_post_order (struct graph *pg,
			       vec<struct partition *> *partitions)
{
  int i;
  struct pg_vdata *data;

  /* Now order the remaining nodes in descending postorder.  */
  qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
  partitions->truncate (0);
  for (i = 0; i < pg->n_vertices; ++i)
    {
      data = (struct pg_vdata *)pg->vertices[i].data;
      if (data->partition)
	partitions->safe_push (data->partition);
    }
}

void
loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
					     vec<struct partition *> *partitions,
					     bool ignore_alias_p)
{
  struct partition *partition1, *partition2;
  struct pg_vdata *data;
  graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
  int i, j, num_sccs = graphds_scc (pg, NULL);

  /* Strong connected compoenent means dependence cycle, we cannot distribute
     them.  So fuse them together.  */
  if ((unsigned) num_sccs < partitions->length ())
    {
      for (i = 0; i < num_sccs; ++i)
	{
	  for (j = 0; partitions->iterate (j, &partition1); ++j)
	    if (pg->vertices[j].component == i)
	      break;
	  for (j = j + 1; partitions->iterate (j, &partition2); ++j)
	    if (pg->vertices[j].component == i)
	      {
		partition_merge_into (NULL, partition1,
				      partition2, FUSE_SAME_SCC);
		partition1->type = PTYPE_SEQUENTIAL;
		(*partitions)[j] = NULL;
		partition_free (partition2);
		data = (struct pg_vdata *)pg->vertices[j].data;
		data->partition = NULL;
	      }
	}
    }

  sort_partitions_by_post_order (pg, partitions);
  gcc_assert (partitions->length () == (unsigned)num_sccs);
  free_partition_graph_vdata (pg);
  for_each_edge (pg, free_partition_graph_edata_cb, NULL);
  free_graph (pg);
}

/* Callback function for traversing edge E in graph G.  DATA is private
   callback data.  */

static void
pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
{
  int i, j, component;
  struct pg_edge_callback_data *cbdata;
  struct pg_edata *edata = (struct pg_edata *) e->data;

  /* If the edge doesn't have attached data dependence, it represents
     compilation time known dependences.  This type dependence cannot
     be resolved by runtime alias check.  */
  if (edata == NULL || edata->alias_ddrs.length () == 0)
    return;

  cbdata = (struct pg_edge_callback_data *) data;
  i = e->src;
  j = e->dest;
  component = cbdata->vertices_component[i];
  /* Vertices are topologically sorted according to compilation time
     known dependences, so we can break strong connected components
     by removing edges of the opposite direction, i.e, edges pointing
     from vertice with smaller post number to vertice with bigger post
     number.  */
  if (g->vertices[i].post < g->vertices[j].post
      /* We only need to remove edges connecting vertices in the same
	 strong connected component to break it.  */
      && component == cbdata->vertices_component[j]
      /* Check if we want to break the strong connected component or not.  */
      && !bitmap_bit_p (cbdata->sccs_to_merge, component))
    cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
}

/* This is the main function breaking strong conected components in
   PARTITIONS giving reduced depdendence graph RDG.  Store data dependence
   relations for runtime alias check in ALIAS_DDRS.  */
void
loop_distribution::break_alias_scc_partitions (struct graph *rdg,
					       vec<struct partition *> *partitions,
					       vec<ddr_p> *alias_ddrs)
{
  int i, j, k, num_sccs, num_sccs_no_alias = 0;
  /* Build partition dependence graph.  */
  graph *pg = build_partition_graph (rdg, partitions, false);

  alias_ddrs->truncate (0);
  /* Find strong connected components in the graph, with all dependence edges
     considered.  */
  num_sccs = graphds_scc (pg, NULL);
  /* All SCCs now can be broken by runtime alias checks because SCCs caused by
     compilation time known dependences are merged before this function.  */
  if ((unsigned) num_sccs < partitions->length ())
    {
      struct pg_edge_callback_data cbdata;
      auto_bitmap sccs_to_merge;
      auto_vec<enum partition_type> scc_types;
      struct partition *partition, *first;

      /* If all partitions in a SCC have the same type, we can simply merge the
	 SCC.  This loop finds out such SCCS and record them in bitmap.  */
      bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
      for (i = 0; i < num_sccs; ++i)
	{
	  for (j = 0; partitions->iterate (j, &first); ++j)
	    if (pg->vertices[j].component == i)
	      break;

	  bool same_type = true, all_builtins = partition_builtin_p (first);
	  for (++j; partitions->iterate (j, &partition); ++j)
	    {
	      if (pg->vertices[j].component != i)
		continue;

	      if (first->type != partition->type)
		{
		  same_type = false;
		  break;
		}
	      all_builtins &= partition_builtin_p (partition);
	    }
	  /* Merge SCC if all partitions in SCC have the same type, though the
	     result partition is sequential, because vectorizer can do better
	     runtime alias check.  One expecption is all partitions in SCC are
	     builtins.  */
	  if (!same_type || all_builtins)
	    bitmap_clear_bit (sccs_to_merge, i);
	}

      /* Initialize callback data for traversing.  */
      cbdata.sccs_to_merge = sccs_to_merge;
      cbdata.alias_ddrs = alias_ddrs;
      cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
      cbdata.vertices_post = XNEWVEC (int, pg->n_vertices);
      /* Record the component information which will be corrupted by next
	 graph scc finding call.  */
      for (i = 0; i < pg->n_vertices; ++i)
	cbdata.vertices_component[i] = pg->vertices[i].component;

      /* Collect data dependences for runtime alias checks to break SCCs.  */
      if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
	{
	  /* Record the postorder information which will be corrupted by next
	     graph SCC finding call.  */
	  for (i = 0; i < pg->n_vertices; ++i)
	    cbdata.vertices_post[i] = pg->vertices[i].post;

	  /* Run SCC finding algorithm again, with alias dependence edges
	     skipped.  This is to topologically sort partitions according to
	     compilation time known dependence.  Note the topological order
	     is stored in the form of pg's post order number.  */
	  num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
	  gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
	  /* With topological order, we can construct two subgraphs L and R.
	     L contains edge <x, y> where x < y in terms of post order, while
	     R contains edge <x, y> where x > y.  Edges for compilation time
	     known dependence all fall in R, so we break SCCs by removing all
	     (alias) edges of in subgraph L.  */
	  for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
	}

      /* For SCC that doesn't need to be broken, merge it.  */
      for (i = 0; i < num_sccs; ++i)
	{
	  if (!bitmap_bit_p (sccs_to_merge, i))
	    continue;

	  for (j = 0; partitions->iterate (j, &first); ++j)
	    if (cbdata.vertices_component[j] == i)
	      break;
	  for (k = j + 1; partitions->iterate (k, &partition); ++k)
	    {
	      struct pg_vdata *data;

	      if (cbdata.vertices_component[k] != i)
		continue;

	      partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
	      (*partitions)[k] = NULL;
	      partition_free (partition);
	      data = (struct pg_vdata *)pg->vertices[k].data;
	      gcc_assert (data->id == k);
	      data->partition = NULL;
	      /* The result partition of merged SCC must be sequential.  */
	      first->type = PTYPE_SEQUENTIAL;
	    }
	}
      /* Restore the postorder information if it's corrupted in finding SCC
	 with alias dependence edges skipped.  If reduction partition's SCC is
	 broken by runtime alias checks, we force a negative post order to it
	 making sure it will be scheduled in the last.  */
      if (num_sccs_no_alias > 0)
	{
	  j = -1;
	  for (i = 0; i < pg->n_vertices; ++i)
	    {
	      pg->vertices[i].post = cbdata.vertices_post[i];
	      struct pg_vdata *data = (struct pg_vdata *)pg->vertices[i].data;
	      if (data->partition && partition_reduction_p (data->partition))
		{
		  gcc_assert (j == -1);
		  j = i;
		}
	    }
	  if (j >= 0)
	    pg->vertices[j].post = -1;
	}

      free (cbdata.vertices_component);
      free (cbdata.vertices_post);
    }

  sort_partitions_by_post_order (pg, partitions);
  free_partition_graph_vdata (pg);
  for_each_edge (pg, free_partition_graph_edata_cb, NULL);
  free_graph (pg);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Possible alias data dependence to break:\n");
      dump_data_dependence_relations (dump_file, *alias_ddrs);
    }
}

/* Compute and return an expression whose value is the segment length which
   will be accessed by DR in NITERS iterations.  */

static tree
data_ref_segment_size (struct data_reference *dr, tree niters)
{
  niters = size_binop (MINUS_EXPR,
		       fold_convert (sizetype, niters),
		       size_one_node);
  return size_binop (MULT_EXPR,
		     fold_convert (sizetype, DR_STEP (dr)),
		     fold_convert (sizetype, niters));
}

/* Return true if LOOP's latch is dominated by statement for data reference
   DR.  */

static inline bool
latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
{
  return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
			 gimple_bb (DR_STMT (dr)));
}

/* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
   data dependence relations ALIAS_DDRS.  */

static void
compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
			   vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
{
  unsigned int i;
  unsigned HOST_WIDE_INT factor = 1;
  tree niters_plus_one, niters = number_of_latch_executions (loop);

  gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
  niters = fold_convert (sizetype, niters);
  niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Creating alias check pairs:\n");

  /* Iterate all data dependence relations and compute alias check pairs.  */
  for (i = 0; i < alias_ddrs->length (); i++)
    {
      ddr_p ddr = (*alias_ddrs)[i];
      struct data_reference *dr_a = DDR_A (ddr);
      struct data_reference *dr_b = DDR_B (ddr);
      tree seg_length_a, seg_length_b;

      if (latch_dominated_by_data_ref (loop, dr_a))
	seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
      else
	seg_length_a = data_ref_segment_size (dr_a, niters);

      if (latch_dominated_by_data_ref (loop, dr_b))
	seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
      else
	seg_length_b = data_ref_segment_size (dr_b, niters);

      unsigned HOST_WIDE_INT access_size_a
	= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
      unsigned HOST_WIDE_INT access_size_b
	= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
      unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
      unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));

      dr_with_seg_len_pair_t dr_with_seg_len_pair
	(dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
	 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
	 /* ??? Would WELL_ORDERED be safe?  */
	 dr_with_seg_len_pair_t::REORDERED);

      comp_alias_pairs->safe_push (dr_with_seg_len_pair);
    }

  if (tree_fits_uhwi_p (niters))
    factor = tree_to_uhwi (niters);

  /* Prune alias check pairs.  */
  prune_runtime_alias_test_list (comp_alias_pairs, factor);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	     "Improved number of alias checks from %d to %d\n",
	     alias_ddrs->length (), comp_alias_pairs->length ());
}

/* Given data dependence relations in ALIAS_DDRS, generate runtime alias
   checks and version LOOP under condition of these runtime alias checks.  */

static void
version_loop_by_alias_check (vec<struct partition *> *partitions,
			     class loop *loop, vec<ddr_p> *alias_ddrs)
{
  profile_probability prob;
  basic_block cond_bb;
  class loop *nloop;
  tree lhs, arg0, cond_expr = NULL_TREE;
  gimple_seq cond_stmts = NULL;
  gimple *call_stmt = NULL;
  auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;

  /* Generate code for runtime alias checks if necessary.  */
  gcc_assert (alias_ddrs->length () > 0);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	     "Version loop <%d> with runtime alias check\n", loop->num);

  compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
  create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
  cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
				      is_gimple_val, NULL_TREE);

  /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS.  */
  bool cancelable_p = flag_tree_loop_vectorize;
  if (cancelable_p)
    {
      unsigned i = 0;
      struct partition *partition;
      for (; partitions->iterate (i, &partition); ++i)
	if (!partition_builtin_p (partition))
	  break;

     /* If all partitions are builtins, distributing it would be profitable and
	we don't want to cancel the runtime alias checks.  */
      if (i == partitions->length ())
	cancelable_p = false;
    }

  /* Generate internal function call for loop distribution alias check if the
     runtime alias check should be cancelable.  */
  if (cancelable_p)
    {
      call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
					      2, NULL_TREE, cond_expr);
      lhs = make_ssa_name (boolean_type_node);
      gimple_call_set_lhs (call_stmt, lhs);
    }
  else
    lhs = cond_expr;

  prob = profile_probability::guessed_always ().apply_scale (9, 10);
  initialize_original_copy_tables ();
  nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
			prob, prob.invert (), true);
  free_original_copy_tables ();
  /* Record the original loop number in newly generated loops.  In case of
     distribution, the original loop will be distributed and the new loop
     is kept.  */
  loop->orig_loop_num = nloop->num;
  nloop->orig_loop_num = nloop->num;
  nloop->dont_vectorize = true;
  nloop->force_vectorize = false;

  if (call_stmt)
    {
      /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
	 loop could be destroyed.  */
      arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
      gimple_call_set_arg (call_stmt, 0, arg0);
      gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
    }

  if (cond_stmts)
    {
      gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
      gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
    }
  update_ssa (TODO_update_ssa_no_phi);
}

/* Return true if loop versioning is needed to distrubute PARTITIONS.
   ALIAS_DDRS are data dependence relations for runtime alias check.  */

static inline bool
version_for_distribution_p (vec<struct partition *> *partitions,
			    vec<ddr_p> *alias_ddrs)
{
  /* No need to version loop if we have only one partition.  */
  if (partitions->length () == 1)
    return false;

  /* Need to version loop if runtime alias check is necessary.  */
  return (alias_ddrs->length () > 0);
}

/* Compare base offset of builtin mem* partitions P1 and P2.  */

static int
offset_cmp (const void *vp1, const void *vp2)
{
  struct partition *p1 = *(struct partition *const *) vp1;
  struct partition *p2 = *(struct partition *const *) vp2;
  unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
  unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
  return (o2 < o1) - (o1 < o2);
}

/* Fuse adjacent memset builtin PARTITIONS if possible.  This is a special
   case optimization transforming below code:

     __builtin_memset (&obj, 0, 100);
     _1 = &obj + 100;
     __builtin_memset (_1, 0, 200);
     _2 = &obj + 300;
     __builtin_memset (_2, 0, 100);

   into:

     __builtin_memset (&obj, 0, 400);

   Note we don't have dependence information between different partitions
   at this point, as a result, we can't handle nonadjacent memset builtin
   partitions since dependence might be broken.  */

static void
fuse_memset_builtins (vec<struct partition *> *partitions)
{
  unsigned i, j;
  struct partition *part1, *part2;
  tree rhs1, rhs2;

  for (i = 0; partitions->iterate (i, &part1);)
    {
      if (part1->kind != PKIND_MEMSET)
	{
	  i++;
	  continue;
	}

      /* Find sub-array of memset builtins of the same base.  Index range
	 of the sub-array is [i, j) with "j > i".  */
      for (j = i + 1; partitions->iterate (j, &part2); ++j)
	{
	  if (part2->kind != PKIND_MEMSET
	      || !operand_equal_p (part1->builtin->dst_base_base,
				   part2->builtin->dst_base_base, 0))
	    break;

	  /* Memset calls setting different values can't be merged.  */
	  rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
	  rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
	  if (!operand_equal_p (rhs1, rhs2, 0))
	    break;
	}

      /* Stable sort is required in order to avoid breaking dependence.  */
      gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
		      offset_cmp);
      /* Continue with next partition.  */
      i = j;
    }

  /* Merge all consecutive memset builtin partitions.  */
  for (i = 0; i < partitions->length () - 1;)
    {
      part1 = (*partitions)[i];
      if (part1->kind != PKIND_MEMSET)
	{
	  i++;
	  continue;
	}

      part2 = (*partitions)[i + 1];
      /* Only merge memset partitions of the same base and with constant
	 access sizes.  */
      if (part2->kind != PKIND_MEMSET
	  || TREE_CODE (part1->builtin->size) != INTEGER_CST
	  || TREE_CODE (part2->builtin->size) != INTEGER_CST
	  || !operand_equal_p (part1->builtin->dst_base_base,
			       part2->builtin->dst_base_base, 0))
	{
	  i++;
	  continue;
	}
      rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
      rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
      int bytev1 = const_with_all_bytes_same (rhs1);
      int bytev2 = const_with_all_bytes_same (rhs2);
      /* Only merge memset partitions of the same value.  */
      if (bytev1 != bytev2 || bytev1 == -1)
	{
	  i++;
	  continue;
	}
      wide_int end1 = wi::add (part1->builtin->dst_base_offset,
			       wi::to_wide (part1->builtin->size));
      /* Only merge adjacent memset partitions.  */
      if (wi::ne_p (end1, part2->builtin->dst_base_offset))
	{
	  i++;
	  continue;
	}
      /* Merge partitions[i] and partitions[i+1].  */
      part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
					  part1->builtin->size,
					  part2->builtin->size);
      partition_free (part2);
      partitions->ordered_remove (i + 1);
    }
}

void
loop_distribution::finalize_partitions (class loop *loop,
					vec<struct partition *> *partitions,
					vec<ddr_p> *alias_ddrs)
{
  unsigned i;
  struct partition *partition, *a;

  if (partitions->length () == 1
      || alias_ddrs->length () > 0)
    return;

  unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
  bool same_type_p = true;
  enum partition_type type = ((*partitions)[0])->type;
  for (i = 0; partitions->iterate (i, &partition); ++i)
    {
      same_type_p &= (type == partition->type);
      if (partition_builtin_p (partition))
	{
	  num_builtin++;
	  continue;
	}
      num_normal++;
      if (partition->kind == PKIND_PARTIAL_MEMSET)
	num_partial_memset++;
    }

  /* Don't distribute current loop into too many loops given we don't have
     memory stream cost model.  Be even more conservative in case of loop
     nest distribution.  */
  if ((same_type_p && num_builtin == 0
       && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
      || (loop->inner != NULL
	  && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
      || (loop->inner == NULL
	  && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
    {
      a = (*partitions)[0];
      for (i = 1; partitions->iterate (i, &partition); ++i)
	{
	  partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
	  partition_free (partition);
	}
      partitions->truncate (1);
    }

  /* Fuse memset builtins if possible.  */
  if (partitions->length () > 1)
    fuse_memset_builtins (partitions);
}

/* Distributes the code from LOOP in such a way that producer statements
   are placed before consumer statements.  Tries to separate only the
   statements from STMTS into separate loops.  Returns the number of
   distributed loops.  Set NB_CALLS to number of generated builtin calls.
   Set *DESTROY_P to whether LOOP needs to be destroyed.  */

int
loop_distribution::distribute_loop (class loop *loop,
		 const vec<gimple *> &stmts,
		 control_dependences *cd, int *nb_calls, bool *destroy_p,
		 bool only_patterns_p)
{
  ddrs_table = new hash_table<ddr_hasher> (389);
  struct graph *rdg;
  partition *partition;
  int i, nbp;

  *destroy_p = false;
  *nb_calls = 0;
  loop_nest.create (0);
  if (!find_loop_nest (loop, &loop_nest))
    {
      loop_nest.release ();
      delete ddrs_table;
      return 0;
    }

  datarefs_vec.create (20);
  has_nonaddressable_dataref_p = false;
  rdg = build_rdg (loop, cd);
  if (!rdg)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Loop %d not distributed: failed to build the RDG.\n",
		 loop->num);

      loop_nest.release ();
      free_data_refs (datarefs_vec);
      delete ddrs_table;
      return 0;
    }

  if (datarefs_vec.length () > MAX_DATAREFS_NUM)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Loop %d not distributed: too many memory references.\n",
		 loop->num);

      free_rdg (rdg);
      loop_nest.release ();
      free_data_refs (datarefs_vec);
      delete ddrs_table;
      return 0;
    }

  data_reference_p dref;
  for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
    dref->aux = (void *) (uintptr_t) i;

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_rdg (dump_file, rdg);

  auto_vec<struct partition *, 3> partitions;
  rdg_build_partitions (rdg, stmts, &partitions);

  auto_vec<ddr_p> alias_ddrs;

  auto_bitmap stmt_in_all_partitions;
  bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
  for (i = 1; partitions.iterate (i, &partition); ++i)
    bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);

  bool any_builtin = false;
  bool reduction_in_all = false;
  int reduction_partition_num = -1;
  FOR_EACH_VEC_ELT (partitions, i, partition)
    {
      reduction_in_all
	|= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
      any_builtin |= partition_builtin_p (partition);
    }

  /* If we are only distributing patterns but did not detect any,
     simply bail out.  */
  if (only_patterns_p
      && !any_builtin)
    {
      nbp = 0;
      goto ldist_done;
    }

  /* If we are only distributing patterns fuse all partitions that
     were not classified as builtins.  This also avoids chopping
     a loop into pieces, separated by builtin calls.  That is, we
     only want no or a single loop body remaining.  */
  struct partition *into;
  if (only_patterns_p)
    {
      for (i = 0; partitions.iterate (i, &into); ++i)
	if (!partition_builtin_p (into))
	  break;
      for (++i; partitions.iterate (i, &partition); ++i)
	if (!partition_builtin_p (partition))
	  {
	    partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
	    partitions.unordered_remove (i);
	    partition_free (partition);
	    i--;
	  }
    }

  /* Due to limitations in the transform phase we have to fuse all
     reduction partitions into the last partition so the existing
     loop will contain all loop-closed PHI nodes.  */
  for (i = 0; partitions.iterate (i, &into); ++i)
    if (partition_reduction_p (into))
      break;
  for (i = i + 1; partitions.iterate (i, &partition); ++i)
    if (partition_reduction_p (partition))
      {
	partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
	partitions.unordered_remove (i);
	partition_free (partition);
	i--;
      }

  /* Apply our simple cost model - fuse partitions with similar
     memory accesses.  */
  for (i = 0; partitions.iterate (i, &into); ++i)
    {
      bool changed = false;
      for (int j = i + 1; partitions.iterate (j, &partition); ++j)
	{
	  if (share_memory_accesses (rdg, into, partition))
	    {
	      partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
	      partitions.unordered_remove (j);
	      partition_free (partition);
	      j--;
	      changed = true;
	    }
	}
      /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
         accesses when 1 and 2 have similar accesses but not 0 and 1
	 then in the next iteration we will fail to consider merging
	 1 into 0,2.  So try again if we did any merging into 0.  */
      if (changed)
	i--;
    }

  /* Put a non-builtin partition last if we need to preserve a reduction.
     In most cases this helps to keep a normal partition last avoiding to
     spill a reduction result across builtin calls.
     ???  The proper way would be to use dependences to see whether we
     can move builtin partitions earlier during merge_dep_scc_partitions
     and its sort_partitions_by_post_order.  Especially when the
     dependence graph is composed of multiple independent subgraphs the
     heuristic does not work reliably.  */
  if (reduction_in_all
      && partition_builtin_p (partitions.last()))
    FOR_EACH_VEC_ELT (partitions, i, partition)
      if (!partition_builtin_p (partition))
	{
	  partitions.unordered_remove (i);
	  partitions.quick_push (partition);
	  break;
	}

  /* Build the partition dependency graph and fuse partitions in strong
     connected component.  */
  if (partitions.length () > 1)
    {
      /* Don't support loop nest distribution under runtime alias check
	 since it's not likely to enable many vectorization opportunities.
	 Also if loop has any data reference which may be not addressable
	 since alias check needs to take, compare address of the object.  */
      if (loop->inner || has_nonaddressable_dataref_p)
	merge_dep_scc_partitions (rdg, &partitions, false);
      else
	{
	  merge_dep_scc_partitions (rdg, &partitions, true);
	  if (partitions.length () > 1)
	    break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
	}
    }

  finalize_partitions (loop, &partitions, &alias_ddrs);

  /* If there is a reduction in all partitions make sure the last
     non-builtin partition provides the LC PHI defs.  */
  if (reduction_in_all)
    {
      FOR_EACH_VEC_ELT (partitions, i, partition)
	if (!partition_builtin_p (partition))
	  reduction_partition_num = i;
      if (reduction_partition_num == -1)
	{
	  /* If all partitions are builtin, force the last one to
	     be code generated as normal partition.  */
	  partition = partitions.last ();
	  partition->kind = PKIND_NORMAL;
	}
    }

  nbp = partitions.length ();
  if (nbp == 0
      || (nbp == 1 && !partition_builtin_p (partitions[0]))
      || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
    {
      nbp = 0;
      goto ldist_done;
    }

  if (version_for_distribution_p (&partitions, &alias_ddrs))
    version_loop_by_alias_check (&partitions, loop, &alias_ddrs);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "distribute loop <%d> into partitions:\n", loop->num);
      dump_rdg_partitions (dump_file, partitions);
    }

  FOR_EACH_VEC_ELT (partitions, i, partition)
    {
      if (partition_builtin_p (partition))
	(*nb_calls)++;
      *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1,
						 i == reduction_partition_num);
    }

 ldist_done:
  loop_nest.release ();
  free_data_refs (datarefs_vec);
  for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
       iter != ddrs_table->end (); ++iter)
    {
      free_dependence_relation (*iter);
      *iter = NULL;
    }
  delete ddrs_table;

  FOR_EACH_VEC_ELT (partitions, i, partition)
    partition_free (partition);

  free_rdg (rdg);
  return nbp - *nb_calls;
}


void loop_distribution::bb_top_order_init (void)
{
  int rpo_num;
  int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
  edge entry = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
  bitmap exit_bbs = BITMAP_ALLOC (NULL);

  bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
  bb_top_order_index_size = last_basic_block_for_fn (cfun);

  entry->flags &= ~EDGE_DFS_BACK;
  bitmap_set_bit (exit_bbs, EXIT_BLOCK);
  rpo_num = rev_post_order_and_mark_dfs_back_seme (cfun, entry, exit_bbs, true,
						   rpo, NULL);
  BITMAP_FREE (exit_bbs);

  for (int i = 0; i < rpo_num; i++)
    bb_top_order_index[rpo[i]] = i;

  free (rpo);
}

void loop_distribution::bb_top_order_destroy ()
{
  free (bb_top_order_index);
  bb_top_order_index = NULL;
  bb_top_order_index_size = 0;
}


/* Given LOOP, this function records seed statements for distribution in
   WORK_LIST.  Return false if there is nothing for distribution.  */

static bool
find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
{
  basic_block *bbs = get_loop_body_in_dom_order (loop);

  /* Initialize the worklist with stmts we seed the partitions with.  */
  for (unsigned i = 0; i < loop->num_nodes; ++i)
    {
      /* In irreducible sub-regions we don't know how to redirect
	 conditions, so fail.  See PR100492.  */
      if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "loop %d contains an irreducible region.\n",
		     loop->num);
	  work_list->truncate (0);
	  break;
	}
      for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    continue;
	  /* Distribute stmts which have defs that are used outside of
	     the loop.  */
	  if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
	    continue;
	  work_list->safe_push (phi);
	}
      for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);

	  /* Ignore clobbers, they do not have true side effects.  */
	  if (gimple_clobber_p (stmt))
	    continue;

	  /* If there is a stmt with side-effects bail out - we
	     cannot and should not distribute this loop.  */
	  if (gimple_has_side_effects (stmt))
	    {
	      free (bbs);
	      return false;
	    }

	  /* Distribute stmts which have defs that are used outside of
	     the loop.  */
	  if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
	    ;
	  /* Otherwise only distribute stores for now.  */
	  else if (!gimple_vdef (stmt))
	    continue;

	  work_list->safe_push (stmt);
	}
    }
  bool res = work_list->length () > 0;
  if (res && !can_copy_bbs_p (bbs, loop->num_nodes))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "cannot copy loop %d.\n", loop->num);
      res = false;
    }
  free (bbs);
  return res;
}

/* A helper function for generate_{rawmemchr,strlen}_builtin functions in order
   to place new statements SEQ before LOOP and replace the old reduction
   variable with the new one.  */

static void
generate_reduction_builtin_1 (loop_p loop, gimple_seq &seq,
			      tree reduction_var_old, tree reduction_var_new,
			      const char *info, machine_mode load_mode)
{
  gcc_assert (flag_tree_loop_distribute_patterns);

  /* Place new statements before LOOP.  */
  gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
  gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);

  /* Replace old reduction variable with new one.  */
  imm_use_iterator iter;
  gimple *stmt;
  use_operand_p use_p;
  FOR_EACH_IMM_USE_STMT (stmt, iter, reduction_var_old)
    {
      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
	SET_USE (use_p, reduction_var_new);

      update_stmt (stmt);
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, info, GET_MODE_NAME (load_mode));
}

/* Generate a call to rawmemchr and place it before LOOP.  REDUCTION_VAR is
   replaced with a fresh SSA name representing the result of the call.  */

static void
generate_rawmemchr_builtin (loop_p loop, tree reduction_var,
			    data_reference_p store_dr, tree base, tree pattern,
			    location_t loc)
{
  gimple_seq seq = NULL;

  tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
  gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, mem, pattern);
  tree reduction_var_new = copy_ssa_name (reduction_var);
  gimple_call_set_lhs (fn_call, reduction_var_new);
  gimple_set_location (fn_call, loc);
  gimple_seq_add_stmt (&seq, fn_call);

  if (store_dr)
    {
      gassign *g = gimple_build_assign (DR_REF (store_dr), reduction_var_new);
      gimple_seq_add_stmt (&seq, g);
    }

  generate_reduction_builtin_1 (loop, seq, reduction_var, reduction_var_new,
				"generated rawmemchr%s\n",
				TYPE_MODE (TREE_TYPE (TREE_TYPE (base))));
}

/* Helper function for generate_strlen_builtin(,_using_rawmemchr)  */

static void
generate_strlen_builtin_1 (loop_p loop, gimple_seq &seq,
			   tree reduction_var_old, tree reduction_var_new,
			   machine_mode mode, tree start_len)
{
  /* REDUCTION_VAR_NEW has either size type or ptrdiff type and must be
     converted if types of old and new reduction variable are not compatible. */
  reduction_var_new = gimple_convert (&seq, TREE_TYPE (reduction_var_old),
				      reduction_var_new);

  /* Loops of the form `for (i=42; s[i]; ++i);` have an additional start
     length.  */
  if (!integer_zerop (start_len))
    {
      tree lhs = make_ssa_name (TREE_TYPE (reduction_var_new));
      gimple *g = gimple_build_assign (lhs, PLUS_EXPR, reduction_var_new,
				       start_len);
      gimple_seq_add_stmt (&seq, g);
      reduction_var_new = lhs;
    }

  generate_reduction_builtin_1 (loop, seq, reduction_var_old, reduction_var_new,
				"generated strlen%s\n", mode);
}

/* Generate a call to strlen and place it before LOOP.  REDUCTION_VAR is
   replaced with a fresh SSA name representing the result of the call.  */

static void
generate_strlen_builtin (loop_p loop, tree reduction_var, tree base,
			 tree start_len, location_t loc)
{
  gimple_seq seq = NULL;

  tree reduction_var_new = make_ssa_name (size_type_node);

  tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
  tree fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_STRLEN));
  gimple *fn_call = gimple_build_call (fn, 1, mem);
  gimple_call_set_lhs (fn_call, reduction_var_new);
  gimple_set_location (fn_call, loc);
  gimple_seq_add_stmt (&seq, fn_call);

  generate_strlen_builtin_1 (loop, seq, reduction_var, reduction_var_new,
			     QImode, start_len);
}

/* Generate code in order to mimic the behaviour of strlen but this time over
   an array of elements with mode different than QI.  REDUCTION_VAR is replaced
   with a fresh SSA name representing the result, i.e., the length.  */

static void
generate_strlen_builtin_using_rawmemchr (loop_p loop, tree reduction_var,
					 tree base, tree load_type,
					 tree start_len, location_t loc)
{
  gimple_seq seq = NULL;

  tree start = force_gimple_operand (base, &seq, true, NULL_TREE);
  tree zero = build_zero_cst (load_type);
  gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, start, zero);
  tree end = make_ssa_name (TREE_TYPE (base));
  gimple_call_set_lhs (fn_call, end);
  gimple_set_location (fn_call, loc);
  gimple_seq_add_stmt (&seq, fn_call);

  /* Determine the number of elements between START and END by
     evaluating (END - START) / sizeof (*START).  */
  tree diff = make_ssa_name (ptrdiff_type_node);
  gimple *diff_stmt = gimple_build_assign (diff, POINTER_DIFF_EXPR, end, start);
  gimple_seq_add_stmt (&seq, diff_stmt);
  /* Let SIZE be the size of each character.  */
  tree size = gimple_convert (&seq, ptrdiff_type_node,
			      TYPE_SIZE_UNIT (load_type));
  tree count = make_ssa_name (ptrdiff_type_node);
  gimple *count_stmt = gimple_build_assign (count, TRUNC_DIV_EXPR, diff, size);
  gimple_seq_add_stmt (&seq, count_stmt);

  generate_strlen_builtin_1 (loop, seq, reduction_var, count,
			     TYPE_MODE (load_type),
			     start_len);
}

/* Return true if we can count at least as many characters by taking pointer
   difference as we can count via reduction_var without an overflow.  Thus
   compute 2^n < (2^(m-1) / s) where n = TYPE_PRECISION (reduction_var_type),
   m = TYPE_PRECISION (ptrdiff_type_node), and s = size of each character.  */
static bool
reduction_var_overflows_first (tree reduction_var_type, tree load_type)
{
  widest_int n2 = wi::lshift (1, TYPE_PRECISION (reduction_var_type));;
  widest_int m2 = wi::lshift (1, TYPE_PRECISION (ptrdiff_type_node) - 1);
  widest_int s = wi::to_widest (TYPE_SIZE_UNIT (load_type));
  return wi::ltu_p (n2, wi::udiv_trunc (m2, s));
}

static gimple *
determine_reduction_stmt_1 (const loop_p loop, const basic_block *bbs)
{
  gimple *reduction_stmt = NULL;

  for (unsigned i = 0, ninsns = 0; i < loop->num_nodes; ++i)
    {
      basic_block bb = bbs[i];

      for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
	   gsi_next_nondebug (&bsi))
	{
	  gphi *phi = bsi.phi ();
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    continue;
	  if (stmt_has_scalar_dependences_outside_loop (loop, phi))
	    {
	      if (reduction_stmt)
		return NULL;
	      reduction_stmt = phi;
	    }
	}

      for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
	   gsi_next_nondebug (&bsi), ++ninsns)
	{
	  /* Bail out early for loops which are unlikely to match.  */
	  if (ninsns > 16)
	    return NULL;
	  gimple *stmt = gsi_stmt (bsi);
	  if (gimple_clobber_p (stmt))
	    continue;
	  if (gimple_code (stmt) == GIMPLE_LABEL)
	    continue;
	  if (gimple_has_volatile_ops (stmt))
	    return NULL;
	  if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
	    {
	      if (reduction_stmt)
		return NULL;
	      reduction_stmt = stmt;
	    }
	}
    }

  return reduction_stmt;
}

/* If LOOP has a single non-volatile reduction statement, then return a pointer
   to it.  Otherwise return NULL.  */
static gimple *
determine_reduction_stmt (const loop_p loop)
{
  basic_block *bbs = get_loop_body (loop);
  gimple *reduction_stmt = determine_reduction_stmt_1 (loop, bbs);
  XDELETEVEC (bbs);
  return reduction_stmt;
}

/* Transform loops which mimic the effects of builtins rawmemchr or strlen and
   replace them accordingly.  For example, a loop of the form

     for (; *p != 42; ++p);

   is replaced by

     p = rawmemchr<MODE> (p, 42);

   under the assumption that rawmemchr is available for a particular MODE.
   Another example is

     int i;
     for (i = 42; s[i]; ++i);

   which is replaced by

     i = (int)strlen (&s[42]) + 42;

   for some character array S.  In case array S is not of type character array
   we end up with

     i = (int)(rawmemchr<MODE> (&s[42], 0) - &s[42]) + 42;

   assuming that rawmemchr is available for a particular MODE.  */

bool
loop_distribution::transform_reduction_loop (loop_p loop)
{
  gimple *reduction_stmt;
  data_reference_p load_dr = NULL, store_dr = NULL;

  edge e = single_exit (loop);
  gcond *cond = safe_dyn_cast <gcond *> (last_stmt (e->src));
  if (!cond)
    return false;
  /* Ensure loop condition is an (in)equality test and loop is exited either if
     the inequality test fails or the equality test succeeds.  */
  if (!(e->flags & EDGE_FALSE_VALUE && gimple_cond_code (cond) == NE_EXPR)
      && !(e->flags & EDGE_TRUE_VALUE && gimple_cond_code (cond) == EQ_EXPR))
    return false;
  /* A limitation of the current implementation is that we only support
     constant patterns in (in)equality tests.  */
  tree pattern = gimple_cond_rhs (cond);
  if (TREE_CODE (pattern) != INTEGER_CST)
    return false;

  reduction_stmt = determine_reduction_stmt (loop);

  /* A limitation of the current implementation is that we require a reduction
     statement.  Therefore, loops without a reduction statement as in the
     following are not recognized:
     int *p;
     void foo (void) { for (; *p; ++p); } */
  if (reduction_stmt == NULL)
    return false;

  /* Reduction variables are guaranteed to be SSA names.  */
  tree reduction_var;
  switch (gimple_code (reduction_stmt))
    {
    case GIMPLE_ASSIGN:
    case GIMPLE_PHI:
      reduction_var = gimple_get_lhs (reduction_stmt);
      break;
    default:
      /* Bail out e.g. for GIMPLE_CALL.  */
      return false;
    }

  struct graph *rdg = build_rdg (loop, NULL);
  if (rdg == NULL)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Loop %d not transformed: failed to build the RDG.\n",
		 loop->num);

      return false;
    }
  auto_bitmap partition_stmts;
  bitmap_set_range (partition_stmts, 0, rdg->n_vertices);
  find_single_drs (loop, rdg, partition_stmts, &store_dr, &load_dr);
  free_rdg (rdg);

  /* Bail out if there is no single load.  */
  if (load_dr == NULL)
    return false;

  /* Reaching this point we have a loop with a single reduction variable,
     a single load, and an optional single store.  */

  tree load_ref = DR_REF (load_dr);
  tree load_type = TREE_TYPE (load_ref);
  tree load_access_base = build_fold_addr_expr (load_ref);
  tree load_access_size = TYPE_SIZE_UNIT (load_type);
  affine_iv load_iv, reduction_iv;

  if (!INTEGRAL_TYPE_P (load_type)
      || !type_has_mode_precision_p (load_type))
    return false;

  /* We already ensured that the loop condition tests for (in)equality where the
     rhs is a constant pattern. Now ensure that the lhs is the result of the
     load.  */
  if (gimple_cond_lhs (cond) != gimple_assign_lhs (DR_STMT (load_dr)))
    return false;

  /* Bail out if no affine induction variable with constant step can be
     determined.  */
  if (!simple_iv (loop, loop, load_access_base, &load_iv, false))
    return false;

  /* Bail out if memory accesses are not consecutive or not growing.  */
  if (!operand_equal_p (load_iv.step, load_access_size, 0))
    return false;

  if (!simple_iv (loop, loop, reduction_var, &reduction_iv, false))
    return false;

  /* Handle rawmemchr like loops.  */
  if (operand_equal_p (load_iv.base, reduction_iv.base)
      && operand_equal_p (load_iv.step, reduction_iv.step))
    {
      if (store_dr)
	{
	  /* Ensure that we store to X and load from X+I where I>0.  */
	  if (TREE_CODE (load_iv.base) != POINTER_PLUS_EXPR
	      || !integer_onep (TREE_OPERAND (load_iv.base, 1)))
	    return false;
	  tree ptr_base = TREE_OPERAND (load_iv.base, 0);
	  if (TREE_CODE (ptr_base) != SSA_NAME)
	    return false;
	  gimple *def = SSA_NAME_DEF_STMT (ptr_base);
	  if (!gimple_assign_single_p (def)
	      || gimple_assign_rhs1 (def) != DR_REF (store_dr))
	    return false;
	  /* Ensure that the reduction value is stored.  */
	  if (gimple_assign_rhs1 (DR_STMT (store_dr)) != reduction_var)
	    return false;
	}
      /* Bail out if target does not provide rawmemchr for a certain mode.  */
      machine_mode mode = TYPE_MODE (load_type);
      if (direct_optab_handler (rawmemchr_optab, mode) == CODE_FOR_nothing)
	return false;
      location_t loc = gimple_location (DR_STMT (load_dr));
      generate_rawmemchr_builtin (loop, reduction_var, store_dr, load_iv.base,
				  pattern, loc);
      return true;
    }

  /* Handle strlen like loops.  */
  if (store_dr == NULL
      && integer_zerop (pattern)
      && INTEGRAL_TYPE_P (TREE_TYPE (reduction_var))
      && TREE_CODE (reduction_iv.base) == INTEGER_CST
      && TREE_CODE (reduction_iv.step) == INTEGER_CST
      && integer_onep (reduction_iv.step))
    {
      location_t loc = gimple_location (DR_STMT (load_dr));
      tree reduction_var_type = TREE_TYPE (reduction_var);
      /* While determining the length of a string an overflow might occur.
	 If an overflow only occurs in the loop implementation and not in the
	 strlen implementation, then either the overflow is undefined or the
	 truncated result of strlen equals the one of the loop.  Otherwise if
	 an overflow may also occur in the strlen implementation, then
	 replacing a loop by a call to strlen is sound whenever we ensure that
	 if an overflow occurs in the strlen implementation, then also an
	 overflow occurs in the loop implementation which is undefined.  It
	 seems reasonable to relax this and assume that the strlen
	 implementation cannot overflow in case sizetype is big enough in the
	 sense that an overflow can only happen for string objects which are
	 bigger than half of the address space; at least for 32-bit targets and
	 up.

	 For strlen which makes use of rawmemchr the maximal length of a string
	 which can be determined without an overflow is PTRDIFF_MAX / S where
	 each character has size S.  Since an overflow for ptrdiff type is
	 undefined we have to make sure that if an overflow occurs, then an
	 overflow occurs in the loop implementation, too, and this is
	 undefined, too.  Similar as before we relax this and assume that no
	 string object is larger than half of the address space; at least for
	 32-bit targets and up.  */
      if (TYPE_MODE (load_type) == TYPE_MODE (char_type_node)
	  && TYPE_PRECISION (load_type) == TYPE_PRECISION (char_type_node)
	  && ((TYPE_PRECISION (sizetype) >= TYPE_PRECISION (ptr_type_node) - 1
	       && TYPE_PRECISION (ptr_type_node) >= 32)
	      || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
		  && TYPE_PRECISION (reduction_var_type) <= TYPE_PRECISION (sizetype)))
	  && builtin_decl_implicit (BUILT_IN_STRLEN))
	generate_strlen_builtin (loop, reduction_var, load_iv.base,
				 reduction_iv.base, loc);
      else if (direct_optab_handler (rawmemchr_optab, TYPE_MODE (load_type))
	       != CODE_FOR_nothing
	       && ((TYPE_PRECISION (ptrdiff_type_node) == TYPE_PRECISION (ptr_type_node)
		    && TYPE_PRECISION (ptrdiff_type_node) >= 32)
		   || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
		       && reduction_var_overflows_first (reduction_var_type, load_type))))
	generate_strlen_builtin_using_rawmemchr (loop, reduction_var,
						 load_iv.base,
						 load_type,
						 reduction_iv.base, loc);
      else
	return false;
      return true;
    }

  return false;
}

/* Given innermost LOOP, return the outermost enclosing loop that forms a
   perfect loop nest.  */

static class loop *
prepare_perfect_loop_nest (class loop *loop)
{
  class loop *outer = loop_outer (loop);
  tree niters = number_of_latch_executions (loop);

  /* TODO: We only support the innermost 3-level loop nest distribution
     because of compilation time issue for now.  This should be relaxed
     in the future.  Note we only allow 3-level loop nest distribution
     when parallelizing loops.  */
  while ((loop->inner == NULL
	  || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
	 && loop_outer (outer)
	 && outer->inner == loop && loop->next == NULL
	 && single_exit (outer)
	 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
	 && (niters = number_of_latch_executions (outer)) != NULL_TREE
	 && niters != chrec_dont_know)
    {
      loop = outer;
      outer = loop_outer (loop);
    }

  return loop;
}


unsigned int
loop_distribution::execute (function *fun)
{
  bool changed = false;
  basic_block bb;
  control_dependences *cd = NULL;
  auto_vec<loop_p> loops_to_be_destroyed;

  if (number_of_loops (fun) <= 1)
    return 0;

  bb_top_order_init ();

  FOR_ALL_BB_FN (bb, fun)
    {
      gimple_stmt_iterator gsi;
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	gimple_set_uid (gsi_stmt (gsi), -1);
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	gimple_set_uid (gsi_stmt (gsi), -1);
    }

  /* We can at the moment only distribute non-nested loops, thus restrict
     walking to innermost loops.  */
  for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
    {
      /* Don't distribute multiple exit edges loop, or cold loop when
         not doing pattern detection.  */
      if (!single_exit (loop)
	  || (!flag_tree_loop_distribute_patterns
	      && !optimize_loop_for_speed_p (loop)))
	continue;

      /* If niters is unknown don't distribute loop but rather try to transform
	 it to a call to a builtin.  */
      tree niters = number_of_latch_executions (loop);
      if (niters == NULL_TREE || niters == chrec_dont_know)
	{
	  datarefs_vec.create (20);
	  if (flag_tree_loop_distribute_patterns
	      && transform_reduction_loop (loop))
	    {
	      changed = true;
	      loops_to_be_destroyed.safe_push (loop);
	      if (dump_enabled_p ())
		{
		  dump_user_location_t loc = find_loop_location (loop);
		  dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
				   loc, "Loop %d transformed into a builtin.\n",
				   loop->num);
		}
	    }
	  free_data_refs (datarefs_vec);
	  continue;
	}

      /* Get the perfect loop nest for distribution.  */
      loop = prepare_perfect_loop_nest (loop);
      for (; loop; loop = loop->inner)
	{
	  auto_vec<gimple *> work_list;
	  if (!find_seed_stmts_for_distribution (loop, &work_list))
	    continue;

	  const char *str = loop->inner ? " nest" : "";
	  dump_user_location_t loc = find_loop_location (loop);
	  if (!cd)
	    {
	      calculate_dominance_info (CDI_DOMINATORS);
	      calculate_dominance_info (CDI_POST_DOMINATORS);
	      cd = new control_dependences ();
	      free_dominance_info (CDI_POST_DOMINATORS);
	    }

	  bool destroy_p;
	  int nb_generated_loops, nb_generated_calls;
	  nb_generated_loops
	    = distribute_loop (loop, work_list, cd, &nb_generated_calls,
			       &destroy_p, (!optimize_loop_for_speed_p (loop)
					    || !flag_tree_loop_distribution));
	  if (destroy_p)
	    loops_to_be_destroyed.safe_push (loop);

	  if (nb_generated_loops + nb_generated_calls > 0)
	    {
	      changed = true;
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
				 loc, "Loop%s %d distributed: split to %d loops "
				 "and %d library calls.\n", str, loop->num,
				 nb_generated_loops, nb_generated_calls);

	      break;
	    }

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
	}
    }

  if (cd)
    delete cd;

  if (bb_top_order_index != NULL)
    bb_top_order_destroy ();

  if (changed)
    {
      /* Destroy loop bodies that could not be reused.  Do this late as we
	 otherwise can end up refering to stale data in control dependences.  */
      unsigned i;
      class loop *loop;
      FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
	destroy_loop (loop);

      /* Cached scalar evolutions now may refer to wrong or non-existing
	 loops.  */
      scev_reset ();
      mark_virtual_operands_for_renaming (fun);
      rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
    }

  checking_verify_loop_structure ();

  return changed ? TODO_cleanup_cfg : 0;
}


/* Distribute all loops in the current function.  */

namespace {

const pass_data pass_data_loop_distribution =
{
  GIMPLE_PASS, /* type */
  "ldist", /* name */
  OPTGROUP_LOOP, /* optinfo_flags */
  TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_loop_distribution : public gimple_opt_pass
{
public:
  pass_loop_distribution (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_loop_distribution, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override
    {
      return flag_tree_loop_distribution
	|| flag_tree_loop_distribute_patterns;
    }

  unsigned int execute (function *) final override;

}; // class pass_loop_distribution

unsigned int
pass_loop_distribution::execute (function *fun)
{
  return loop_distribution ().execute (fun);
}

} // anon namespace

gimple_opt_pass *
make_pass_loop_distribution (gcc::context *ctxt)
{
  return new pass_loop_distribution (ctxt);
}