summaryrefslogtreecommitdiff
path: root/gcc/tree-outof-ssa.c
blob: 82cc0ffea59e9752f737914a6f58d2a80ce0f445 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
/* Convert a program in SSA form into Normal form.
   Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
   Contributed by Andrew Macleod <amacleod@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "ggc.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-ssa-live.h"
#include "tree-pass.h"
#include "toplev.h"


/* Used to hold all the components required to do SSA PHI elimination.
   The node and pred/succ list is a simple linear list of nodes and
   edges represented as pairs of nodes.

   The predecessor and successor list:  Nodes are entered in pairs, where
   [0] ->PRED, [1]->SUCC.  All the even indexes in the array represent 
   predecessors, all the odd elements are successors. 
   
   Rationale:
   When implemented as bitmaps, very large programs SSA->Normal times were 
   being dominated by clearing the interference graph.

   Typically this list of edges is extremely small since it only includes 
   PHI results and uses from a single edge which have not coalesced with 
   each other.  This means that no virtual PHI nodes are included, and
   empirical evidence suggests that the number of edges rarely exceed
   3, and in a bootstrap of GCC, the maximum size encountered was 7.
   This also limits the number of possible nodes that are involved to
   rarely more than 6, and in the bootstrap of gcc, the maximum number
   of nodes encountered was 12.  */
 
typedef struct _elim_graph {
  /* Size of the elimination vectors.  */
  int size;

  /* List of nodes in the elimination graph.  */
  VEC(tree,heap) *nodes;

  /*  The predecessor and successor edge list.  */
  VEC(int,heap) *edge_list;

  /* Visited vector.  */
  sbitmap visited;

  /* Stack for visited nodes.  */
  VEC(int,heap) *stack;
  
  /* The variable partition map.  */
  var_map map;

  /* Edge being eliminated by this graph.  */
  edge e;

  /* List of constant copies to emit.  These are pushed on in pairs.  */
  VEC(tree,heap) *const_copies;
} *elim_graph;


/* Create a temporary variable based on the type of variable T.  Use T's name
   as the prefix.  */

static tree
create_temp (tree t)
{
  tree tmp;
  const char *name = NULL;
  tree type;

  if (TREE_CODE (t) == SSA_NAME)
    t = SSA_NAME_VAR (t);

  gcc_assert (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL);

  type = TREE_TYPE (t);
  tmp = DECL_NAME (t);
  if (tmp)
    name = IDENTIFIER_POINTER (tmp);

  if (name == NULL)
    name = "temp";
  tmp = create_tmp_var (type, name);

  if (DECL_DEBUG_EXPR_IS_FROM (t) && DECL_DEBUG_EXPR (t))
    {
      SET_DECL_DEBUG_EXPR (tmp, DECL_DEBUG_EXPR (t));  
      DECL_DEBUG_EXPR_IS_FROM (tmp) = 1;
    }
  else if (!DECL_IGNORED_P (t))
    {
      SET_DECL_DEBUG_EXPR (tmp, t);
      DECL_DEBUG_EXPR_IS_FROM (tmp) = 1;
    }
  DECL_ARTIFICIAL (tmp) = DECL_ARTIFICIAL (t);
  DECL_IGNORED_P (tmp) = DECL_IGNORED_P (t);
  DECL_GIMPLE_REG_P (tmp) = DECL_GIMPLE_REG_P (t);
  add_referenced_var (tmp);

  /* add_referenced_var will create the annotation and set up some
     of the flags in the annotation.  However, some flags we need to
     inherit from our original variable.  */
  set_symbol_mem_tag (tmp, symbol_mem_tag (t));
  if (is_call_clobbered (t))
    mark_call_clobbered (tmp, var_ann (t)->escape_mask);
  if (bitmap_bit_p (gimple_call_used_vars (cfun), DECL_UID (t)))
    bitmap_set_bit (gimple_call_used_vars (cfun), DECL_UID (tmp));

  return tmp;
}


/* This helper function fill insert a copy from a constant or variable SRC to 
   variable DEST on edge E.  */

static void
insert_copy_on_edge (edge e, tree dest, tree src)
{
  gimple copy;

  copy = gimple_build_assign (dest, src);
  set_is_used (dest);

  if (TREE_CODE (src) == ADDR_EXPR)
    src = TREE_OPERAND (src, 0);
  if (TREE_CODE (src) == VAR_DECL || TREE_CODE (src) == PARM_DECL)
    set_is_used (src);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Inserting a copy on edge BB%d->BB%d :",
	       e->src->index,
	       e->dest->index);
      print_gimple_stmt (dump_file, copy, 0, dump_flags);
      fprintf (dump_file, "\n");
    }

  gsi_insert_on_edge (e, copy);
}


/* Create an elimination graph with SIZE nodes and associated data
   structures.  */

static elim_graph
new_elim_graph (int size)
{
  elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));

  g->nodes = VEC_alloc (tree, heap, 30);
  g->const_copies = VEC_alloc (tree, heap, 20);
  g->edge_list = VEC_alloc (int, heap, 20);
  g->stack = VEC_alloc (int, heap, 30);
  
  g->visited = sbitmap_alloc (size);

  return g;
}


/* Empty elimination graph G.  */

static inline void
clear_elim_graph (elim_graph g)
{
  VEC_truncate (tree, g->nodes, 0);
  VEC_truncate (int, g->edge_list, 0);
}


/* Delete elimination graph G.  */

static inline void
delete_elim_graph (elim_graph g)
{
  sbitmap_free (g->visited);
  VEC_free (int, heap, g->stack);
  VEC_free (int, heap, g->edge_list);
  VEC_free (tree, heap, g->const_copies);
  VEC_free (tree, heap, g->nodes);
  free (g);
}


/* Return the number of nodes in graph G.  */

static inline int
elim_graph_size (elim_graph g)
{
  return VEC_length (tree, g->nodes);
}


/* Add NODE to graph G, if it doesn't exist already.  */

static inline void 
elim_graph_add_node (elim_graph g, tree node)
{
  int x;
  tree t;

  for (x = 0; VEC_iterate (tree, g->nodes, x, t); x++)
    if (t == node)
      return;
  VEC_safe_push (tree, heap, g->nodes, node);
}


/* Add the edge PRED->SUCC to graph G.  */

static inline void
elim_graph_add_edge (elim_graph g, int pred, int succ)
{
  VEC_safe_push (int, heap, g->edge_list, pred);
  VEC_safe_push (int, heap, g->edge_list, succ);
}


/* Remove an edge from graph G for which NODE is the predecessor, and
   return the successor node.  -1 is returned if there is no such edge.  */

static inline int
elim_graph_remove_succ_edge (elim_graph g, int node)
{
  int y;
  unsigned x;
  for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
    if (VEC_index (int, g->edge_list, x) == node)
      {
        VEC_replace (int, g->edge_list, x, -1);
	y = VEC_index (int, g->edge_list, x + 1);
	VEC_replace (int, g->edge_list, x + 1, -1);
	return y;
      }
  return -1;
}


/* Find all the nodes in GRAPH which are successors to NODE in the
   edge list.  VAR will hold the partition number found.  CODE is the
   code fragment executed for every node found.  */

#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, CODE)		\
do {									\
  unsigned x_;								\
  int y_;								\
  for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2)	\
    {									\
      y_ = VEC_index (int, (GRAPH)->edge_list, x_);			\
      if (y_ != (NODE))							\
        continue;							\
      (VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1);		\
      CODE;								\
    }									\
} while (0)


/* Find all the nodes which are predecessors of NODE in the edge list for
   GRAPH.  VAR will hold the partition number found.  CODE is the
   code fragment executed for every node found.  */

#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, CODE)		\
do {									\
  unsigned x_;								\
  int y_;								\
  for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2)	\
    {									\
      y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1);			\
      if (y_ != (NODE))							\
        continue;							\
      (VAR) = VEC_index (int, (GRAPH)->edge_list, x_);			\
      CODE;								\
    }									\
} while (0)


/* Add T to elimination graph G.  */

static inline void
eliminate_name (elim_graph g, tree T)
{
  elim_graph_add_node (g, T);
}


/* Build elimination graph G for basic block BB on incoming PHI edge
   G->e.  */

static void
eliminate_build (elim_graph g, basic_block B)
{
  tree T0, Ti;
  int p0, pi;
  gimple_stmt_iterator gsi;

  clear_elim_graph (g);
  
  for (gsi = gsi_start_phis (B); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);

      T0 = var_to_partition_to_var (g->map, gimple_phi_result (phi));
      
      /* Ignore results which are not in partitions.  */
      if (T0 == NULL_TREE)
	continue;

      Ti = PHI_ARG_DEF (phi, g->e->dest_idx);

      /* If this argument is a constant, or a SSA_NAME which is being
	 left in SSA form, just queue a copy to be emitted on this
	 edge.  */
      if (!phi_ssa_name_p (Ti)
	  || (TREE_CODE (Ti) == SSA_NAME
	      && var_to_partition (g->map, Ti) == NO_PARTITION))
        {
	  /* Save constant copies until all other copies have been emitted
	     on this edge.  */
	  VEC_safe_push (tree, heap, g->const_copies, T0);
	  VEC_safe_push (tree, heap, g->const_copies, Ti);
	}
      else
        {
	  Ti = var_to_partition_to_var (g->map, Ti);
	  if (T0 != Ti)
	    {
	      eliminate_name (g, T0);
	      eliminate_name (g, Ti);
	      p0 = var_to_partition (g->map, T0);
	      pi = var_to_partition (g->map, Ti);
	      elim_graph_add_edge (g, p0, pi);
	    }
	}
    }
}


/* Push successors of T onto the elimination stack for G.  */

static void 
elim_forward (elim_graph g, int T)
{
  int S;
  SET_BIT (g->visited, T);
  FOR_EACH_ELIM_GRAPH_SUCC (g, T, S,
    {
      if (!TEST_BIT (g->visited, S))
        elim_forward (g, S);
    });
  VEC_safe_push (int, heap, g->stack, T);
}


/* Return 1 if there unvisited predecessors of T in graph G.  */

static int
elim_unvisited_predecessor (elim_graph g, int T)
{
  int P;
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, 
    {
      if (!TEST_BIT (g->visited, P))
        return 1;
    });
  return 0;
}

/* Process predecessors first, and insert a copy.  */

static void
elim_backward (elim_graph g, int T)
{
  int P;
  SET_BIT (g->visited, T);
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, 
    {
      if (!TEST_BIT (g->visited, P))
        {
	  elim_backward (g, P);
	  insert_copy_on_edge (g->e, 
			       partition_to_var (g->map, P), 
			       partition_to_var (g->map, T));
	}
    });
}

/* Insert required copies for T in graph G.  Check for a strongly connected 
   region, and create a temporary to break the cycle if one is found.  */

static void 
elim_create (elim_graph g, int T)
{
  tree U;
  int P, S;

  if (elim_unvisited_predecessor (g, T))
    {
      U = create_temp (partition_to_var (g->map, T));
      insert_copy_on_edge (g->e, U, partition_to_var (g->map, T));
      FOR_EACH_ELIM_GRAPH_PRED (g, T, P, 
	{
	  if (!TEST_BIT (g->visited, P))
	    {
	      elim_backward (g, P);
	      insert_copy_on_edge (g->e, partition_to_var (g->map, P), U);
	    }
	});
    }
  else
    {
      S = elim_graph_remove_succ_edge (g, T);
      if (S != -1)
	{
	  SET_BIT (g->visited, T);
	  insert_copy_on_edge (g->e, 
			       partition_to_var (g->map, T), 
			       partition_to_var (g->map, S));
	}
    }
  
}


/* Eliminate all the phi nodes on edge E in graph G.  */

static void
eliminate_phi (edge e, elim_graph g)
{
  int x;
  basic_block B = e->dest;

  gcc_assert (VEC_length (tree, g->const_copies) == 0);

  /* Abnormal edges already have everything coalesced.  */
  if (e->flags & EDGE_ABNORMAL)
    return;

  g->e = e;

  eliminate_build (g, B);

  if (elim_graph_size (g) != 0)
    {
      tree var;

      sbitmap_zero (g->visited);
      VEC_truncate (int, g->stack, 0);

      for (x = 0; VEC_iterate (tree, g->nodes, x, var); x++)
        {
	  int p = var_to_partition (g->map, var);
	  if (!TEST_BIT (g->visited, p))
	    elim_forward (g, p);
	}
       
      sbitmap_zero (g->visited);
      while (VEC_length (int, g->stack) > 0)
	{
	  x = VEC_pop (int, g->stack);
	  if (!TEST_BIT (g->visited, x))
	    elim_create (g, x);
	}
    }

  /* If there are any pending constant copies, issue them now.  */
  while (VEC_length (tree, g->const_copies) > 0)
    {
      tree src, dest;
      src = VEC_pop (tree, g->const_copies);
      dest = VEC_pop (tree, g->const_copies);
      insert_copy_on_edge (e, dest, src);
    }
}


/* Take the ssa-name var_map MAP, and assign real variables to each 
   partition.  */

static void
assign_vars (var_map map)
{
  int x, num;
  tree var, root;
  var_ann_t ann;

  num = num_var_partitions (map);
  for (x = 0; x < num; x++)
    {
      var = partition_to_var (map, x);
      if (TREE_CODE (var) != SSA_NAME)
	{
	  ann = var_ann (var);
	  /* It must already be coalesced.  */
	  gcc_assert (ann->out_of_ssa_tag == 1);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "partition %d already has variable ", x);
	      print_generic_expr (dump_file, var, TDF_SLIM);
	      fprintf (dump_file, " assigned to it.\n");
	    }
	}
      else
        {
	  root = SSA_NAME_VAR (var);
	  ann = var_ann (root);
	  /* If ROOT is already associated, create a new one.  */
	  if (ann->out_of_ssa_tag)
	    {
	      root = create_temp (root);
	      ann = var_ann (root);
	    }
	  /* ROOT has not been coalesced yet, so use it.  */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Partition %d is assigned to var ", x);
	      print_generic_stmt (dump_file, root, TDF_SLIM);
	    }
	  change_partition_var (map, root, x);
	}
    }
}


/* Replace use operand P with whatever variable it has been rewritten to based 
   on the partitions in MAP.  EXPR is an optional expression vector over SSA 
   versions which is used to replace P with an expression instead of a variable.
   If the stmt is changed, return true.  */ 

static inline bool
replace_use_variable (var_map map, use_operand_p p, gimple *expr)
{
  tree new_var;
  tree var = USE_FROM_PTR (p);

  /* Check if we are replacing this variable with an expression.  */
  if (expr)
    {
      int version = SSA_NAME_VERSION (var);
      if (expr[version])
        {
	  SET_USE (p, gimple_assign_rhs_to_tree (expr[version]));
	  return true;
	}
    }

  new_var = var_to_partition_to_var (map, var);
  if (new_var)
    {
      SET_USE (p, new_var);
      set_is_used (new_var);
      return true;
    }
  return false;
}


/* Replace def operand DEF_P with whatever variable it has been rewritten to 
   based on the partitions in MAP.  EXPR is an optional expression vector over
   SSA versions which is used to replace DEF_P with an expression instead of a 
   variable.  If the stmt is changed, return true.  */ 

static inline bool
replace_def_variable (var_map map, def_operand_p def_p, tree *expr)
{
  tree new_var;
  tree var = DEF_FROM_PTR (def_p);

  /* Do nothing if we are replacing this variable with an expression.  */
  if (expr && expr[SSA_NAME_VERSION (var)])
    return true;

  new_var = var_to_partition_to_var (map, var);
  if (new_var)
    {
      SET_DEF (def_p, new_var);
      set_is_used (new_var);
      return true;
    }
  return false;
}


/* Remove each argument from PHI.  If an arg was the last use of an SSA_NAME, 
   check to see if this allows another PHI node to be removed.  */

static void
remove_gimple_phi_args (gimple phi)
{
  use_operand_p arg_p;
  ssa_op_iter iter;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Removing Dead PHI definition: ");
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
    }

  FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
    {
      tree arg = USE_FROM_PTR (arg_p);
      if (TREE_CODE (arg) == SSA_NAME)
        {
	  /* Remove the reference to the existing argument.  */
	  SET_USE (arg_p, NULL_TREE);
	  if (has_zero_uses (arg))
	    {
	      gimple stmt;
	      gimple_stmt_iterator gsi;

	      stmt = SSA_NAME_DEF_STMT (arg);

	      /* Also remove the def if it is a PHI node.  */
	      if (gimple_code (stmt) == GIMPLE_PHI)
		{
		  remove_gimple_phi_args (stmt);
		  gsi = gsi_for_stmt (stmt);
		  remove_phi_node (&gsi, true);
		}

	    }
	}
    }
}

/* Remove any PHI node which is a virtual PHI, or a PHI with no uses.  */

static void
eliminate_useless_phis (void)
{
  basic_block bb;
  gimple_stmt_iterator gsi;
  tree result;

  FOR_EACH_BB (bb)
    {
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
        {
	  gimple phi = gsi_stmt (gsi);
	  result = gimple_phi_result (phi);
	  if (!is_gimple_reg (SSA_NAME_VAR (result)))
	    {
#ifdef ENABLE_CHECKING
	      size_t i;
	      /* There should be no arguments which are not virtual, or the
	         results will be incorrect.  */
	      for (i = 0; i < gimple_phi_num_args (phi); i++)
	        {
		  tree arg = PHI_ARG_DEF (phi, i);
		  if (TREE_CODE (arg) == SSA_NAME 
		      && is_gimple_reg (SSA_NAME_VAR (arg)))
		    {
		      fprintf (stderr, "Argument of PHI is not virtual (");
		      print_generic_expr (stderr, arg, TDF_SLIM);
		      fprintf (stderr, "), but the result is :");
		      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
		      internal_error ("SSA corruption");
		    }
		}
#endif
	      remove_phi_node (&gsi, true);
	    }
          else
	    {
	      /* Also remove real PHIs with no uses.  */
	      if (has_zero_uses (result))
	        {
		  remove_gimple_phi_args (phi);
		  remove_phi_node (&gsi, true);
		}
	      else
		gsi_next (&gsi);
	    }
	}
    }
}


/* This function will rewrite the current program using the variable mapping
   found in MAP.  If the replacement vector VALUES is provided, any 
   occurrences of partitions with non-null entries in the vector will be 
   replaced with the expression in the vector instead of its mapped 
   variable.  */

static void
rewrite_trees (var_map map, gimple *values)
{
  elim_graph g;
  basic_block bb;
  gimple_stmt_iterator gsi;
  edge e;
  gimple_seq phi;
  bool changed;
 
#ifdef ENABLE_CHECKING
  /* Search for PHIs where the destination has no partition, but one
     or more arguments has a partition.  This should not happen and can
     create incorrect code.  */
  FOR_EACH_BB (bb)
    {
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple phi = gsi_stmt (gsi);
	  tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
	  if (T0 == NULL_TREE)
	    {
	      size_t i;
	      for (i = 0; i < gimple_phi_num_args (phi); i++)
		{
		  tree arg = PHI_ARG_DEF (phi, i);

		  if (TREE_CODE (arg) == SSA_NAME
		      && var_to_partition (map, arg) != NO_PARTITION)
		    {
		      fprintf (stderr, "Argument of PHI is in a partition :(");
		      print_generic_expr (stderr, arg, TDF_SLIM);
		      fprintf (stderr, "), but the result is not :");
		      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
		      internal_error ("SSA corruption");
		    }
		}
	    }
	}
    }
#endif

  /* Replace PHI nodes with any required copies.  */
  g = new_elim_graph (map->num_partitions);
  g->map = map;
  FOR_EACH_BB (bb)
    {
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
	{
	  gimple stmt = gsi_stmt (gsi);
	  use_operand_p use_p, copy_use_p;
	  def_operand_p def_p;
	  bool remove = false, is_copy = false;
	  int num_uses = 0;
	  ssa_op_iter iter;

	  changed = false;

	  if (gimple_assign_copy_p (stmt))
	    is_copy = true;

	  copy_use_p = NULL_USE_OPERAND_P;
	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
	    {
	      if (replace_use_variable (map, use_p, values))
		changed = true;
	      copy_use_p = use_p;
	      num_uses++;
	    }

	  if (num_uses != 1)
	    is_copy = false;

	  def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);

	  if (def_p != NULL)
	    {
	      /* Mark this stmt for removal if it is the list of replaceable 
		 expressions.  */
	      if (values && values[SSA_NAME_VERSION (DEF_FROM_PTR (def_p))])
		remove = true;
	      else
		{
		  if (replace_def_variable (map, def_p, NULL))
		    changed = true;
		  /* If both SSA_NAMEs coalesce to the same variable,
		     mark the now redundant copy for removal.  */
		  if (is_copy)
		    {
		      gcc_assert (copy_use_p != NULL_USE_OPERAND_P);
		      if (DEF_FROM_PTR (def_p) == USE_FROM_PTR (copy_use_p))
			remove = true;
		    }
		}
	    }
	  else
	    FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
	      if (replace_def_variable (map, def_p, NULL))
		changed = true;

	  /* Remove any stmts marked for removal.  */
	  if (remove)
	    gsi_remove (&gsi, true);
	  else
	    {
	      if (changed)
		if (maybe_clean_or_replace_eh_stmt (stmt, stmt))
		  gimple_purge_dead_eh_edges (bb);
	      gsi_next (&gsi);
	    }
	}

      phi = phi_nodes (bb);
      if (phi)
        {
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    eliminate_phi (e, g);
	}
    }

  delete_elim_graph (g);
}

/* These are the local work structures used to determine the best place to 
   insert the copies that were placed on edges by the SSA->normal pass..  */
static VEC(edge,heap) *edge_leader;
static VEC(gimple_seq,heap) *stmt_list;
static bitmap leader_has_match = NULL;
static edge leader_match = NULL;


/* Pass this function to make_forwarder_block so that all the edges with
   matching PENDING_STMT lists to 'curr_stmt_list' get redirected.  E is the
   edge to test for a match.  */

static inline bool 
same_stmt_list_p (edge e)
{
  return (e->aux == (PTR) leader_match) ? true : false;
}


/* Return TRUE if S1 and S2 are equivalent copies.  */

static inline bool
identical_copies_p (const_gimple s1, const_gimple s2)
{
#ifdef ENABLE_CHECKING
  gcc_assert (is_gimple_assign (s1));
  gcc_assert (is_gimple_assign (s2));
  gcc_assert (DECL_P (gimple_assign_lhs (s1)));
  gcc_assert (DECL_P (gimple_assign_lhs (s2)));
#endif

  if (gimple_assign_lhs (s1) != gimple_assign_lhs (s2))
    return false;

  if (gimple_assign_rhs1 (s1) != gimple_assign_rhs1 (s2))
    return false;

  return true;
}


/* Compare the PENDING_STMT list for edges E1 and E2. Return true if the lists
   contain the same sequence of copies.  */

static inline bool 
identical_stmt_lists_p (const_edge e1, const_edge e2)
{
  gimple_seq t1 = PENDING_STMT (e1);
  gimple_seq t2 = PENDING_STMT (e2);
  gimple_stmt_iterator gsi1, gsi2;

  for (gsi1 = gsi_start (t1), gsi2 = gsi_start (t2);
       !gsi_end_p (gsi1) && !gsi_end_p (gsi2); 
       gsi_next (&gsi1), gsi_next (&gsi2))
    {
      if (!identical_copies_p (gsi_stmt (gsi1), gsi_stmt (gsi2)))
        break;
    }

  if (!gsi_end_p (gsi1) || !gsi_end_p (gsi2))
    return false;

  return true;
}


/* Allocate data structures used in analyze_edges_for_bb.   */

static void
init_analyze_edges_for_bb (void)
{
  edge_leader = VEC_alloc (edge, heap, 25);
  stmt_list = VEC_alloc (gimple_seq, heap, 25);
  leader_has_match = BITMAP_ALLOC (NULL);
}


/* Free data structures used in analyze_edges_for_bb.   */

static void
fini_analyze_edges_for_bb (void)
{
  VEC_free (edge, heap, edge_leader);
  VEC_free (gimple_seq, heap, stmt_list);
  BITMAP_FREE (leader_has_match);
}

/* A helper function to be called via walk_tree.  Return DATA if it is
  contained in subtree TP.  */
 
static tree
contains_tree_r (tree * tp, int *walk_subtrees, void *data)
{
  if (*tp == data)
    {
      *walk_subtrees = 0;
      return (tree) data;
    }
  else
    return NULL_TREE;
}

/* A threshold for the number of insns contained in the latch block.
   It is used to prevent blowing the loop with too many copies from
   the latch.  */
#define MAX_STMTS_IN_LATCH 2

/* Return TRUE if the stmts on SINGLE-EDGE can be moved to the
   body of the loop.  This should be permitted only if SINGLE-EDGE is a
   single-basic-block latch edge and thus cleaning the latch will help
   to create a single-basic-block loop.  Otherwise return FALSE.  */

static bool
process_single_block_loop_latch (edge single_edge)
{
  gimple_seq stmts;
  basic_block b_exit, b_pheader, b_loop = single_edge->src;
  edge_iterator ei;
  edge e;
  gimple_stmt_iterator gsi, gsi_exit;
  gimple_stmt_iterator tsi;
  tree expr;
  gimple stmt;
  unsigned int count = 0;

  if (single_edge == NULL || (single_edge->dest != single_edge->src)
      || (EDGE_COUNT (b_loop->succs) != 2)
      || (EDGE_COUNT (b_loop->preds) != 2))
    return false;

  /* Get the stmts on the latch edge.  */
  stmts = PENDING_STMT (single_edge);

  /* Find the successor edge which is not the latch edge.  */
  FOR_EACH_EDGE (e, ei, b_loop->succs) 
   if (e->dest != b_loop)
    break;

  b_exit = e->dest;

  /* Check that the exit block has only the loop as a predecessor,
     and that there are no pending stmts on that edge as well.   */
  if (EDGE_COUNT (b_exit->preds) != 1 || PENDING_STMT (e))
    return false;

  /* Find the predecessor edge which is not the latch edge.  */
  FOR_EACH_EDGE (e, ei, b_loop->preds) 
   if (e->src != b_loop)
    break;

  b_pheader = e->src;

  if (b_exit == b_pheader || b_exit == b_loop || b_pheader == b_loop)
    return false;

  gsi_exit = gsi_after_labels (b_exit);

  /* Get the last stmt in the loop body.  */
  gsi = gsi_last_bb (single_edge->src);
  stmt = gsi_stmt (gsi);

  if (gimple_code (stmt) != GIMPLE_COND)
    return false;


  expr = build2 (gimple_cond_code (stmt), boolean_type_node,
                 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
  /* Iterate over the insns on the latch and count them.  */
  for (tsi = gsi_start (stmts); !gsi_end_p (tsi); gsi_next (&tsi))
    {
      gimple stmt1 = gsi_stmt (tsi);
      tree var;

      count++;
      /* Check that the condition does not contain any new definition
         created in the latch as the stmts from the latch intended
         to precede it.  */
      if (gimple_code (stmt1) != GIMPLE_ASSIGN)
        return false;
      var = gimple_assign_lhs (stmt1);
      if (TREE_THIS_VOLATILE (var)
	  || TYPE_VOLATILE (TREE_TYPE (var))
	  || walk_tree (&expr, contains_tree_r, var, NULL))
	return false;
    }
  /* Check that the latch does not contain more than MAX_STMTS_IN_LATCH
     insns.  The purpose of this restriction is to prevent blowing the
     loop with too many copies from the latch.  */
  if (count > MAX_STMTS_IN_LATCH)
    return false;

  /* Apply the transformation - clean up the latch block:  

     var = something; 
     L1:
     x1 = expr;
     if (cond) goto L2 else goto L3;
     L2:
     var = x1;
     goto L1
     L3:
     ...

     ==>

     var = something;
     L1:
     x1 = expr;
     tmp_var = var;
     var = x1;
     if (cond) goto L1 else goto L2;
     L2:
     var = tmp_var;
     ... 
   */
  for (tsi = gsi_start (stmts); !gsi_end_p (tsi); gsi_next (&tsi))
    {
      gimple stmt1 = gsi_stmt (tsi);
      tree var, tmp_var;
      gimple copy;

      /* Create a new variable to load back the value of var in case
         we exit the loop.  */
      var = gimple_assign_lhs (stmt1);
      tmp_var = create_temp (var);
      copy = gimple_build_assign (tmp_var, var);
      set_is_used (tmp_var);
      gsi_insert_before (&gsi, copy, GSI_SAME_STMT);
      copy = gimple_build_assign (var, tmp_var);
      gsi_insert_before (&gsi_exit, copy, GSI_SAME_STMT);
    }

  PENDING_STMT (single_edge) = 0;
  /* Insert the new stmts to the loop body.  */
  gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);

  if (dump_file)
    fprintf (dump_file,
	     "\nCleaned-up latch block of loop with single BB: %d\n\n",
	     single_edge->dest->index);

  return true;
}

/* Look at all the incoming edges to block BB, and decide where the best place
   to insert the stmts on each edge are, and perform those insertions.  */

static void
analyze_edges_for_bb (basic_block bb)
{
  edge e;
  edge_iterator ei;
  int count;
  unsigned int x;
  bool have_opportunity;
  gimple_stmt_iterator gsi;
  gimple stmt;
  edge single_edge = NULL;
  bool is_label;
  edge leader;

  count = 0;

  /* Blocks which contain at least one abnormal edge cannot use 
     make_forwarder_block.  Look for these blocks, and commit any PENDING_STMTs
     found on edges in these block.  */
  have_opportunity = true;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (e->flags & EDGE_ABNORMAL)
      {
        have_opportunity = false;
	break;
      }

  if (!have_opportunity)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (PENDING_STMT (e))
	  gsi_commit_one_edge_insert (e, NULL);
      return;
    }

  /* Find out how many edges there are with interesting pending stmts on them.  
     Commit the stmts on edges we are not interested in.  */
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      if (PENDING_STMT (e))
        {
	  gcc_assert (!(e->flags & EDGE_ABNORMAL));
	  if (e->flags & EDGE_FALLTHRU)
	    {
	      gsi = gsi_start_bb (e->src);
	      if (!gsi_end_p (gsi))
	        {
		  stmt = gsi_stmt (gsi);
		  gsi_next (&gsi);
		  gcc_assert (stmt != NULL);
		  is_label = (gimple_code (stmt) == GIMPLE_LABEL);
		  /* Punt if it has non-label stmts, or isn't local.  */
		  if (!is_label
		      || DECL_NONLOCAL (gimple_label_label (stmt)) 
		      || !gsi_end_p (gsi))
		    {
		      gsi_commit_one_edge_insert (e, NULL);
		      continue;
		    }
		}
	    }
	  single_edge = e;
	  count++;
	}
    }

  /* If there aren't at least 2 edges, no sharing will happen.  */
  if (count < 2)
    {
      if (single_edge)
      {
       /* Add stmts to the edge unless processed specially as a
          single-block loop latch edge. */
       if (!process_single_block_loop_latch (single_edge))
         gsi_commit_one_edge_insert (single_edge, NULL);
      }
      return;
    }

  /* Ensure that we have empty worklists.  */
#ifdef ENABLE_CHECKING
  gcc_assert (VEC_length (edge, edge_leader) == 0);
  gcc_assert (VEC_length (gimple_seq, stmt_list) == 0);
  gcc_assert (bitmap_empty_p (leader_has_match));
#endif

  /* Find the "leader" block for each set of unique stmt lists.  Preference is
     given to FALLTHRU blocks since they would need a GOTO to arrive at another
     block.  The leader edge destination is the block which all the other edges
     with the same stmt list will be redirected to.  */
  have_opportunity = false;
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      if (PENDING_STMT (e))
	{
	  bool found = false;

	  /* Look for the same stmt list in edge leaders list.  */
	  for (x = 0; VEC_iterate (edge, edge_leader, x, leader); x++)
	    {
	      if (identical_stmt_lists_p (leader, e))
		{
		  /* Give this edge the same stmt list pointer.  */
		  PENDING_STMT (e) = NULL;
		  e->aux = leader;
		  bitmap_set_bit (leader_has_match, x);
		  have_opportunity = found = true;
		  break;
		}
	    }

	  /* If no similar stmt list, add this edge to the leader list.  */
	  if (!found)
	    {
	      VEC_safe_push (edge, heap, edge_leader, e);
	      VEC_safe_push (gimple_seq, heap, stmt_list, PENDING_STMT (e));
	    }
	}
     }

  /* If there are no similar lists, just issue the stmts.  */
  if (!have_opportunity)
    {
      for (x = 0; VEC_iterate (edge, edge_leader, x, leader); x++)
	gsi_commit_one_edge_insert (leader, NULL);
      VEC_truncate (edge, edge_leader, 0);
      VEC_truncate (gimple_seq, stmt_list, 0);
      bitmap_clear (leader_has_match);
      return;
    }

  if (dump_file)
    fprintf (dump_file, "\nOpportunities in BB %d for stmt/block reduction:\n",
	     bb->index);
  
  /* For each common list, create a forwarding block and issue the stmt's
     in that block.  */
  for (x = 0; VEC_iterate (edge, edge_leader, x, leader); x++)
    if (bitmap_bit_p (leader_has_match, x))
      {
	edge new_edge;
	gimple_stmt_iterator gsi;
	gimple_seq curr_stmt_list;

	leader_match = leader;

	/* The tree_* cfg manipulation routines use the PENDING_EDGE field
	   for various PHI manipulations, so it gets cleared when calls are 
	   made to make_forwarder_block(). So make sure the edge is clear, 
	   and use the saved stmt list.  */
	PENDING_STMT (leader) = NULL;
	leader->aux = leader;
	curr_stmt_list = VEC_index (gimple_seq, stmt_list, x);

        new_edge = make_forwarder_block (leader->dest, same_stmt_list_p, 
					 NULL);
	bb = new_edge->dest;
	if (dump_file)
	  {
	    fprintf (dump_file, "Splitting BB %d for Common stmt list.  ", 
		     leader->dest->index);
	    fprintf (dump_file, "Original block is now BB%d.\n", bb->index);
	    print_gimple_seq (dump_file, curr_stmt_list, 0, TDF_VOPS);
	  }

	FOR_EACH_EDGE (e, ei, new_edge->src->preds)
	  {
	    e->aux = NULL;
	    if (dump_file)
	      fprintf (dump_file, "  Edge (%d->%d) lands here.\n", 
		       e->src->index, e->dest->index);
	  }

	gsi = gsi_last_bb (leader->dest);
	gsi_insert_seq_after (&gsi, curr_stmt_list, GSI_NEW_STMT);

	leader_match = NULL;
	/* We should never get a new block now.  */
      }
    else
      {
	PENDING_STMT (leader) = VEC_index (gimple_seq, stmt_list, x);
	gsi_commit_one_edge_insert (leader, NULL);
      }

   
  /* Clear the working data structures.  */
  VEC_truncate (edge, edge_leader, 0);
  VEC_truncate (gimple_seq, stmt_list, 0);
  bitmap_clear (leader_has_match);
}


/* This function will analyze the insertions which were performed on edges,
   and decide whether they should be left on that edge, or whether it is more
   efficient to emit some subset of them in a single block.  All stmts are
   inserted somewhere.  */

static void
perform_edge_inserts (void)
{
  basic_block bb;

  if (dump_file)
    fprintf(dump_file, "Analyzing Edge Insertions.\n");

  /* analyze_edges_for_bb calls make_forwarder_block, which tries to
     incrementally update the dominator information.  Since we don't
     need dominator information after this pass, go ahead and free the
     dominator information.  */
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);

  /* Allocate data structures used in analyze_edges_for_bb.   */
  init_analyze_edges_for_bb ();

  FOR_EACH_BB (bb)
    analyze_edges_for_bb (bb);

  analyze_edges_for_bb (EXIT_BLOCK_PTR);

  /* Free data structures used in analyze_edges_for_bb.   */
  fini_analyze_edges_for_bb ();

#ifdef ENABLE_CHECKING
  {
    edge_iterator ei;
    edge e;
    FOR_EACH_BB (bb)
      {
	FOR_EACH_EDGE (e, ei, bb->preds)
	  {
	    if (PENDING_STMT (e))
	      error (" Pending stmts not issued on PRED edge (%d, %d)\n", 
		     e->src->index, e->dest->index);
	  }
	FOR_EACH_EDGE (e, ei, bb->succs)
	  {
	    if (PENDING_STMT (e))
	      error (" Pending stmts not issued on SUCC edge (%d, %d)\n", 
		     e->src->index, e->dest->index);
	  }
      }
    FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
      {
	if (PENDING_STMT (e))
	  error (" Pending stmts not issued on ENTRY edge (%d, %d)\n", 
		 e->src->index, e->dest->index);
      }
    FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
      {
	if (PENDING_STMT (e))
	  error (" Pending stmts not issued on EXIT edge (%d, %d)\n", 
		 e->src->index, e->dest->index);
      }
  }
#endif
}


/* Remove the ssa-names in the current function and translate them into normal
   compiler variables.  PERFORM_TER is true if Temporary Expression Replacement
   should also be used.  */

static void
remove_ssa_form (bool perform_ter)
{
  basic_block bb;
  gimple *values = NULL;
  var_map map;
  gimple_stmt_iterator gsi;

  map = coalesce_ssa_name ();

  /* Return to viewing the variable list as just all reference variables after
     coalescing has been performed.  */
  partition_view_normal (map, false);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "After Coalescing:\n");
      dump_var_map (dump_file, map);
    }

  if (perform_ter)
    {
      values = find_replaceable_exprs (map);
      if (values && dump_file && (dump_flags & TDF_DETAILS))
	dump_replaceable_exprs (dump_file, values);
    }

  /* Assign real variables to the partitions now.  */
  assign_vars (map);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "After Base variable replacement:\n");
      dump_var_map (dump_file, map);
    }

  rewrite_trees (map, values);

  if (values)
    free (values);

  /* Remove PHI nodes which have been translated back to real variables.  */
  FOR_EACH_BB (bb)
    for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);)
      remove_phi_node (&gsi, true);

  /* If any copies were inserted on edges, analyze and insert them now.  */
  perform_edge_inserts ();

  delete_var_map (map);
}


/* Search every PHI node for arguments associated with backedges which
   we can trivially determine will need a copy (the argument is either
   not an SSA_NAME or the argument has a different underlying variable
   than the PHI result).

   Insert a copy from the PHI argument to a new destination at the
   end of the block with the backedge to the top of the loop.  Update
   the PHI argument to reference this new destination.  */

static void
insert_backedge_copies (void)
{
  basic_block bb;
  gimple_stmt_iterator gsi;

  FOR_EACH_BB (bb)
    {
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple phi = gsi_stmt (gsi);
	  tree result = gimple_phi_result (phi);
	  tree result_var;
	  size_t i;

	  if (!is_gimple_reg (result))
	    continue;

	  result_var = SSA_NAME_VAR (result);
	  for (i = 0; i < gimple_phi_num_args (phi); i++)
	    {
	      tree arg = gimple_phi_arg_def (phi, i);
	      edge e = gimple_phi_arg_edge (phi, i);

	      /* If the argument is not an SSA_NAME, then we will need a 
		 constant initialization.  If the argument is an SSA_NAME with
		 a different underlying variable then a copy statement will be 
		 needed.  */
	      if ((e->flags & EDGE_DFS_BACK)
		  && (TREE_CODE (arg) != SSA_NAME
		      || SSA_NAME_VAR (arg) != result_var))
		{
		  tree name;
		  gimple stmt, last = NULL;
		  gimple_stmt_iterator gsi2;

		  gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
		  if (!gsi_end_p (gsi2))
		    last = gsi_stmt (gsi2);

		  /* In theory the only way we ought to get back to the
		     start of a loop should be with a COND_EXPR or GOTO_EXPR.
		     However, better safe than sorry. 
		     If the block ends with a control statement or
		     something that might throw, then we have to
		     insert this assignment before the last
		     statement.  Else insert it after the last statement.  */
		  if (last && stmt_ends_bb_p (last))
		    {
		      /* If the last statement in the block is the definition
			 site of the PHI argument, then we can't insert
			 anything after it.  */
		      if (TREE_CODE (arg) == SSA_NAME
			  && SSA_NAME_DEF_STMT (arg) == last)
			continue;
		    }

		  /* Create a new instance of the underlying variable of the 
		     PHI result.  */
		  stmt = gimple_build_assign (result_var,
					      gimple_phi_arg_def (phi, i));
		  name = make_ssa_name (result_var, stmt);
		  gimple_assign_set_lhs (stmt, name);

		  /* Insert the new statement into the block and update
		     the PHI node.  */
		  if (last && stmt_ends_bb_p (last))
		    gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
		  else
		    gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
		  SET_PHI_ARG_DEF (phi, i, name);
		}
	    }
	}
    }
}

/* Take the current function out of SSA form, translating PHIs as described in
   R. Morgan, ``Building an Optimizing Compiler'',
   Butterworth-Heinemann, Boston, MA, 1998. pp 176-186.  */

static unsigned int
rewrite_out_of_ssa (void)
{
  /* If elimination of a PHI requires inserting a copy on a backedge,
     then we will have to split the backedge which has numerous
     undesirable performance effects.

     A significant number of such cases can be handled here by inserting
     copies into the loop itself.  */
  insert_backedge_copies ();


  /* Eliminate PHIs which are of no use, such as virtual or dead phis.  */
  eliminate_useless_phis ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);

  remove_ssa_form (flag_tree_ter && !flag_mudflap);

  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);

  cfun->gimple_df->in_ssa_p = false;
  return 0;
}


/* Define the parameters of the out of SSA pass.  */

struct gimple_opt_pass pass_del_ssa = 
{
 {
  GIMPLE_PASS,
  "optimized",				/* name */
  NULL,					/* gate */
  rewrite_out_of_ssa,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_SSA_TO_NORMAL,		/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  /* ??? If TER is enabled, we also kill gimple.  */
  PROP_ssa,				/* properties_destroyed */
  TODO_verify_ssa | TODO_verify_flow
    | TODO_verify_stmts,		/* todo_flags_start */
  TODO_dump_func
  | TODO_ggc_collect
  | TODO_remove_unused_locals		/* todo_flags_finish */
 }
};