summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dom.c
blob: d9edd0813ce07f679ff44e3ddcdff700fd1f3f25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
/* SSA Dominator optimizations for trees
   Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "ggc.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "output.h"
#include "errors.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-flow.h"
#include "domwalk.h"
#include "real.h"
#include "tree-pass.h"
#include "tree-ssa-propagate.h"
#include "langhooks.h"

/* This file implements optimizations on the dominator tree.  */


/* Structure for recording edge equivalences as well as any pending
   edge redirections during the dominator optimizer.

   Computing and storing the edge equivalences instead of creating
   them on-demand can save significant amounts of time, particularly
   for pathological cases involving switch statements.  

   These structures live for a single iteration of the dominator
   optimizer in the edge's AUX field.  At the end of an iteration we
   free each of these structures and update the AUX field to point
   to any requested redirection target (the code for updating the
   CFG and SSA graph for edge redirection expects redirection edge
   targets to be in the AUX field for each edge.  */

struct edge_info
{
  /* If this edge creates a simple equivalence, the LHS and RHS of
     the equivalence will be stored here.  */
  tree lhs;
  tree rhs;

  /* Traversing an edge may also indicate one or more particular conditions
     are true or false.  The number of recorded conditions can vary, but
     can be determined by the condition's code.  So we have an array
     and its maximum index rather than use a varray.  */
  tree *cond_equivalences;
  unsigned int max_cond_equivalences;

  /* If we can thread this edge this field records the new target.  */
  edge redirection_target;
};


/* Hash table with expressions made available during the renaming process.
   When an assignment of the form X_i = EXPR is found, the statement is
   stored in this table.  If the same expression EXPR is later found on the
   RHS of another statement, it is replaced with X_i (thus performing
   global redundancy elimination).  Similarly as we pass through conditionals
   we record the conditional itself as having either a true or false value
   in this table.  */
static htab_t avail_exprs;

/* Stack of available expressions in AVAIL_EXPRs.  Each block pushes any
   expressions it enters into the hash table along with a marker entry
   (null).  When we finish processing the block, we pop off entries and
   remove the expressions from the global hash table until we hit the
   marker.  */
static VEC(tree,heap) *avail_exprs_stack;

/* Stack of statements we need to rescan during finalization for newly
   exposed variables.

   Statement rescanning must occur after the current block's available
   expressions are removed from AVAIL_EXPRS.  Else we may change the
   hash code for an expression and be unable to find/remove it from
   AVAIL_EXPRS.  */
static VEC(tree,heap) *stmts_to_rescan;

/* Structure for entries in the expression hash table.

   This requires more memory for the hash table entries, but allows us
   to avoid creating silly tree nodes and annotations for conditionals,
   eliminates 2 global hash tables and two block local varrays.
   
   It also allows us to reduce the number of hash table lookups we
   have to perform in lookup_avail_expr and finally it allows us to
   significantly reduce the number of calls into the hashing routine
   itself.  */

struct expr_hash_elt
{
  /* The value (lhs) of this expression.  */
  tree lhs;

  /* The expression (rhs) we want to record.  */
  tree rhs;

  /* The annotation if this element corresponds to a statement.  */
  stmt_ann_t ann;

  /* The hash value for RHS/ann.  */
  hashval_t hash;
};

/* Stack of dest,src pairs that need to be restored during finalization.

   A NULL entry is used to mark the end of pairs which need to be
   restored during finalization of this block.  */
static VEC(tree,heap) *const_and_copies_stack;

/* Bitmap of SSA_NAMEs known to have a nonzero value, even if we do not
   know their exact value.  */
static bitmap nonzero_vars;

/* Stack of SSA_NAMEs which need their NONZERO_VARS property cleared
   when the current block is finalized. 

   A NULL entry is used to mark the end of names needing their 
   entry in NONZERO_VARS cleared during finalization of this block.  */
static VEC(tree,heap) *nonzero_vars_stack;

/* Track whether or not we have changed the control flow graph.  */
static bool cfg_altered;

/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;

/* Statistics for dominator optimizations.  */
struct opt_stats_d
{
  long num_stmts;
  long num_exprs_considered;
  long num_re;
  long num_const_prop;
  long num_copy_prop;
};

static struct opt_stats_d opt_stats;

/* Value range propagation record.  Each time we encounter a conditional
   of the form SSA_NAME COND CONST we create a new vrp_element to record
   how the condition affects the possible values SSA_NAME may have.

   Each record contains the condition tested (COND), and the range of
   values the variable may legitimately have if COND is true.  Note the
   range of values may be a smaller range than COND specifies if we have
   recorded other ranges for this variable.  Each record also contains the
   block in which the range was recorded for invalidation purposes.

   Note that the current known range is computed lazily.  This allows us
   to avoid the overhead of computing ranges which are never queried.

   When we encounter a conditional, we look for records which constrain
   the SSA_NAME used in the condition.  In some cases those records allow
   us to determine the condition's result at compile time.  In other cases
   they may allow us to simplify the condition.

   We also use value ranges to do things like transform signed div/mod
   operations into unsigned div/mod or to simplify ABS_EXPRs. 

   Simple experiments have shown these optimizations to not be all that
   useful on switch statements (much to my surprise).  So switch statement
   optimizations are not performed.

   Note carefully we do not propagate information through each statement
   in the block.  i.e., if we know variable X has a value defined of
   [0, 25] and we encounter Y = X + 1, we do not track a value range
   for Y (which would be [1, 26] if we cared).  Similarly we do not
   constrain values as we encounter narrowing typecasts, etc.  */

struct vrp_element
{
  /* The highest and lowest values the variable in COND may contain when
     COND is true.  Note this may not necessarily be the same values
     tested by COND if the same variable was used in earlier conditionals. 

     Note this is computed lazily and thus can be NULL indicating that
     the values have not been computed yet.  */
  tree low;
  tree high;

  /* The actual conditional we recorded.  This is needed since we compute
     ranges lazily.  */
  tree cond;

  /* The basic block where this record was created.  We use this to determine
     when to remove records.  */
  basic_block bb;
};

/* A hash table holding value range records (VRP_ELEMENTs) for a given
   SSA_NAME.  We used to use a varray indexed by SSA_NAME_VERSION, but
   that gets awful wasteful, particularly since the density objects
   with useful information is very low.  */
static htab_t vrp_data;

/* An entry in the VRP_DATA hash table.  We record the variable and a
   varray of VRP_ELEMENT records associated with that variable.  */
struct vrp_hash_elt
{
  tree var;
  varray_type records;
};

/* Array of variables which have their values constrained by operations
   in this basic block.  We use this during finalization to know
   which variables need their VRP data updated.  */

/* Stack of SSA_NAMEs which had their values constrained by operations
   in this basic block.  During finalization of this block we use this
   list to determine which variables need their VRP data updated.

   A NULL entry marks the end of the SSA_NAMEs associated with this block.  */
static VEC(tree,heap) *vrp_variables_stack;

struct eq_expr_value
{
  tree src;
  tree dst;
};

/* Local functions.  */
static void optimize_stmt (struct dom_walk_data *, 
			   basic_block bb,
			   block_stmt_iterator);
static tree lookup_avail_expr (tree, bool);
static hashval_t vrp_hash (const void *);
static int vrp_eq (const void *, const void *);
static hashval_t avail_expr_hash (const void *);
static hashval_t real_avail_expr_hash (const void *);
static int avail_expr_eq (const void *, const void *);
static void htab_statistics (FILE *, htab_t);
static void record_cond (tree, tree);
static void record_const_or_copy (tree, tree);
static void record_equality (tree, tree);
static tree update_rhs_and_lookup_avail_expr (tree, tree, bool);
static tree simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *,
						tree, int);
static tree simplify_cond_and_lookup_avail_expr (tree, stmt_ann_t, int);
static tree simplify_switch_and_lookup_avail_expr (tree, int);
static tree find_equivalent_equality_comparison (tree);
static void record_range (tree, basic_block);
static bool extract_range_from_cond (tree, tree *, tree *, int *);
static void record_equivalences_from_phis (basic_block);
static void record_equivalences_from_incoming_edge (basic_block);
static bool eliminate_redundant_computations (struct dom_walk_data *,
					      tree, stmt_ann_t);
static void record_equivalences_from_stmt (tree, int, stmt_ann_t);
static void thread_across_edge (struct dom_walk_data *, edge);
static void dom_opt_finalize_block (struct dom_walk_data *, basic_block);
static void dom_opt_initialize_block (struct dom_walk_data *, basic_block);
static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block);
static void remove_local_expressions_from_table (void);
static void restore_vars_to_original_value (void);
static edge single_incoming_edge_ignoring_loop_edges (basic_block);
static void restore_nonzero_vars_to_original_value (void);
static inline bool unsafe_associative_fp_binop (tree);


/* Local version of fold that doesn't introduce cruft.  */

static tree
local_fold (tree t)
{
  t = fold (t);

  /* Strip away useless type conversions.  Both the NON_LVALUE_EXPR that
     may have been added by fold, and "useless" type conversions that might
     now be apparent due to propagation.  */
  STRIP_USELESS_TYPE_CONVERSION (t);

  return t;
}

/* Allocate an EDGE_INFO for edge E and attach it to E.
   Return the new EDGE_INFO structure.  */

static struct edge_info *
allocate_edge_info (edge e)
{
  struct edge_info *edge_info;

  edge_info = xcalloc (1, sizeof (struct edge_info));

  e->aux = edge_info;
  return edge_info;
}

/* Free all EDGE_INFO structures associated with edges in the CFG.
   If a particular edge can be threaded, copy the redirection
   target from the EDGE_INFO structure into the edge's AUX field
   as required by code to update the CFG and SSA graph for
   jump threading.  */

static void
free_all_edge_infos (void)
{
  basic_block bb;
  edge_iterator ei;
  edge e;

  FOR_EACH_BB (bb)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
        {
	 struct edge_info *edge_info = e->aux;

	  if (edge_info)
	    {
	      e->aux = edge_info->redirection_target;
	      if (edge_info->cond_equivalences)
		free (edge_info->cond_equivalences);
	      free (edge_info);
	    }
	}
    }
}

/* Jump threading, redundancy elimination and const/copy propagation. 

   This pass may expose new symbols that need to be renamed into SSA.  For
   every new symbol exposed, its corresponding bit will be set in
   VARS_TO_RENAME.  */

static void
tree_ssa_dominator_optimize (void)
{
  struct dom_walk_data walk_data;
  unsigned int i;
  struct loops loops_info;

  memset (&opt_stats, 0, sizeof (opt_stats));

  /* Create our hash tables.  */
  avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free);
  vrp_data = htab_create (ceil_log2 (num_ssa_names), vrp_hash, vrp_eq, free);
  avail_exprs_stack = VEC_alloc (tree, heap, 20);
  const_and_copies_stack = VEC_alloc (tree, heap, 20);
  nonzero_vars_stack = VEC_alloc (tree, heap, 20);
  vrp_variables_stack = VEC_alloc (tree, heap, 20);
  stmts_to_rescan = VEC_alloc (tree, heap, 20);
  nonzero_vars = BITMAP_ALLOC (NULL);
  need_eh_cleanup = BITMAP_ALLOC (NULL);

  /* Setup callbacks for the generic dominator tree walker.  */
  walk_data.walk_stmts_backward = false;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = NULL;
  walk_data.before_dom_children_before_stmts = dom_opt_initialize_block;
  walk_data.before_dom_children_walk_stmts = optimize_stmt;
  walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges;
  walk_data.after_dom_children_before_stmts = NULL;
  walk_data.after_dom_children_walk_stmts = NULL;
  walk_data.after_dom_children_after_stmts = dom_opt_finalize_block;
  /* Right now we only attach a dummy COND_EXPR to the global data pointer.
     When we attach more stuff we'll need to fill this out with a real
     structure.  */
  walk_data.global_data = NULL;
  walk_data.block_local_data_size = 0;
  walk_data.interesting_blocks = NULL;

  /* Now initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  calculate_dominance_info (CDI_DOMINATORS);

  /* We need to know which edges exit loops so that we can
     aggressively thread through loop headers to an exit
     edge.  */
  flow_loops_find (&loops_info);
  mark_loop_exit_edges (&loops_info);
  flow_loops_free (&loops_info);

  /* Clean up the CFG so that any forwarder blocks created by loop
     canonicalization are removed.  */
  cleanup_tree_cfg ();

  /* If we prove certain blocks are unreachable, then we want to
     repeat the dominator optimization process as PHI nodes may
     have turned into copies which allows better propagation of
     values.  So we repeat until we do not identify any new unreachable
     blocks.  */
  do
    {
      /* Optimize the dominator tree.  */
      cfg_altered = false;

      /* We need accurate information regarding back edges in the CFG
	 for jump threading.  */
      mark_dfs_back_edges ();

      /* Recursively walk the dominator tree optimizing statements.  */
      walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);

      /* If we exposed any new variables, go ahead and put them into
	 SSA form now, before we handle jump threading.  This simplifies
	 interactions between rewriting of _DECL nodes into SSA form
	 and rewriting SSA_NAME nodes into SSA form after block
	 duplication and CFG manipulation.  */
      update_ssa (TODO_update_ssa);

      free_all_edge_infos ();

      {
	block_stmt_iterator bsi;
	basic_block bb;
	FOR_EACH_BB (bb)
	  {
	    for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	      {
		update_stmt_if_modified (bsi_stmt (bsi));
	      }
	  }
      }

      /* Thread jumps, creating duplicate blocks as needed.  */
      cfg_altered |= thread_through_all_blocks ();

      /* Removal of statements may make some EH edges dead.  Purge
	 such edges from the CFG as needed.  */
      if (!bitmap_empty_p (need_eh_cleanup))
	{
	  cfg_altered |= tree_purge_all_dead_eh_edges (need_eh_cleanup);
	  bitmap_zero (need_eh_cleanup);
	}

      if (cfg_altered)
        free_dominance_info (CDI_DOMINATORS);

      cfg_altered = cleanup_tree_cfg ();

      if (rediscover_loops_after_threading)
	{
	  /* Rerun basic loop analysis to discover any newly
	     created loops and update the set of exit edges.  */
	  rediscover_loops_after_threading = false;
	  flow_loops_find (&loops_info);
	  mark_loop_exit_edges (&loops_info);
	  flow_loops_free (&loops_info);

	  /* Remove any forwarder blocks inserted by loop
	     header canonicalization.  */
	  cleanup_tree_cfg ();
	}

      calculate_dominance_info (CDI_DOMINATORS);

      update_ssa (TODO_update_ssa);

      /* Reinitialize the various tables.  */
      bitmap_clear (nonzero_vars);
      htab_empty (avail_exprs);
      htab_empty (vrp_data);

      /* Finally, remove everything except invariants in SSA_NAME_VALUE.

	 This must be done before we iterate as we might have a
	 reference to an SSA_NAME which was removed by the call to
	 rewrite_ssa_into_ssa.

	 Long term we will be able to let everything in SSA_NAME_VALUE
	 persist.  However, for now, we know this is the safe thing to do.  */
      for (i = 0; i < num_ssa_names; i++)
	{
	  tree name = ssa_name (i);
	  tree value;

	  if (!name)
	    continue;

	  value = SSA_NAME_VALUE (name);
	  if (value && !is_gimple_min_invariant (value))
	    SSA_NAME_VALUE (name) = NULL;
	}
    }
  while (optimize > 1 && cfg_altered);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    dump_dominator_optimization_stats (dump_file);

  /* We emptied the hash table earlier, now delete it completely.  */
  htab_delete (avail_exprs);
  htab_delete (vrp_data);

  /* It is not necessary to clear CURRDEFS, REDIRECTION_EDGES, VRP_DATA,
     CONST_AND_COPIES, and NONZERO_VARS as they all get cleared at the bottom
     of the do-while loop above.  */

  /* And finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  /* Free nonzero_vars.  */
  BITMAP_FREE (nonzero_vars);
  BITMAP_FREE (need_eh_cleanup);
  
  VEC_free (tree, heap, avail_exprs_stack);
  VEC_free (tree, heap, const_and_copies_stack);
  VEC_free (tree, heap, nonzero_vars_stack);
  VEC_free (tree, heap, vrp_variables_stack);
  VEC_free (tree, heap, stmts_to_rescan);
}

static bool
gate_dominator (void)
{
  return flag_tree_dom != 0;
}

struct tree_opt_pass pass_dominator = 
{
  "dom",				/* name */
  gate_dominator,			/* gate */
  tree_ssa_dominator_optimize,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_SSA_DOMINATOR_OPTS,		/* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func
    | TODO_update_ssa
    | TODO_verify_ssa,			/* todo_flags_finish */
  0					/* letter */
};


/* We are exiting E->src, see if E->dest ends with a conditional
   jump which has a known value when reached via E. 

   Special care is necessary if E is a back edge in the CFG as we
   will have already recorded equivalences for E->dest into our
   various tables, including the result of the conditional at
   the end of E->dest.  Threading opportunities are severely
   limited in that case to avoid short-circuiting the loop
   incorrectly.

   Note it is quite common for the first block inside a loop to
   end with a conditional which is either always true or always
   false when reached via the loop backedge.  Thus we do not want
   to blindly disable threading across a loop backedge.  */

static void
thread_across_edge (struct dom_walk_data *walk_data, edge e)
{
  block_stmt_iterator bsi;
  tree stmt = NULL;
  tree phi;

  /* If E->dest does not end with a conditional, then there is
     nothing to do.  */
  bsi = bsi_last (e->dest);
  if (bsi_end_p (bsi)
      || ! bsi_stmt (bsi)
      || (TREE_CODE (bsi_stmt (bsi)) != COND_EXPR
	  && TREE_CODE (bsi_stmt (bsi)) != GOTO_EXPR
	  && TREE_CODE (bsi_stmt (bsi)) != SWITCH_EXPR))
    return;

  /* The basic idea here is to use whatever knowledge we have
     from our dominator walk to simplify statements in E->dest,
     with the ultimate goal being to simplify the conditional
     at the end of E->dest.

     Note that we must undo any changes we make to the underlying
     statements as the simplifications we are making are control
     flow sensitive (ie, the simplifications are valid when we 
     traverse E, but may not be valid on other paths to E->dest.  */
     
  /* Each PHI creates a temporary equivalence, record them.  Again
     these are context sensitive equivalences and will be removed
     by our caller.  */
  for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
    {
      tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
      tree dst = PHI_RESULT (phi);

      /* If the desired argument is not the same as this PHI's result 
	 and it is set by a PHI in E->dest, then we can not thread
	 through E->dest.  */
      if (src != dst
	  && TREE_CODE (src) == SSA_NAME
	  && TREE_CODE (SSA_NAME_DEF_STMT (src)) == PHI_NODE
	  && bb_for_stmt (SSA_NAME_DEF_STMT (src)) == e->dest)
	return;

      record_const_or_copy (dst, src);
    }

  /* Try to simplify each statement in E->dest, ultimately leading to
     a simplification of the COND_EXPR at the end of E->dest.

     We might consider marking just those statements which ultimately
     feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
     would be recovered by trying to simplify fewer statements.

     If we are able to simplify a statement into the form
     SSA_NAME = (SSA_NAME | gimple invariant), then we can record
     a context sensitive equivalency which may help us simplify
     later statements in E->dest. 

     Failure to simplify into the form above merely means that the
     statement provides no equivalences to help simplify later
     statements.  This does not prevent threading through E->dest.  */
  for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
    {
      tree cached_lhs;

      stmt = bsi_stmt (bsi);

      /* Ignore empty statements and labels.  */
      if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
	continue;

      /* Safely handle threading across loop backedges.  This is
	 over conservative, but still allows us to capture the
	 majority of the cases where we can thread across a loop
	 backedge.  */
      if ((e->flags & EDGE_DFS_BACK) != 0
	  && TREE_CODE (stmt) != COND_EXPR
	  && TREE_CODE (stmt) != SWITCH_EXPR)
	return;

      /* If the statement has volatile operands, then we assume we
	 can not thread through this block.  This is overly
	 conservative in some ways.  */
      if (TREE_CODE (stmt) == ASM_EXPR && ASM_VOLATILE_P (stmt))
	return;

      /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
	 value, then do not try to simplify this statement as it will
	 not simplify in any way that is helpful for jump threading.  */
      if (TREE_CODE (stmt) != MODIFY_EXPR
	  || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
	continue;

      /* At this point we have a statement which assigns an RHS to an
	 SSA_VAR on the LHS.  We want to try and simplify this statement
	 to expose more context sensitive equivalences which in turn may
	 allow us to simplify the condition at the end of the loop.  */
      if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
	cached_lhs = TREE_OPERAND (stmt, 1);
      else
	{
	  /* Copy the operands.  */
	  stmt_ann_t ann = stmt_ann (stmt);
	  use_optype uses = USE_OPS (ann);
	  vuse_optype vuses = VUSE_OPS (ann);
	  tree *uses_copy = xmalloc (NUM_USES (uses) * sizeof (tree));
	  tree *vuses_copy = xmalloc (NUM_VUSES (vuses) * sizeof (tree));
	  unsigned int i;

	  /* Make a copy of the uses into USES_COPY, then cprop into
	     the use operands.  */
	  for (i = 0; i < NUM_USES (uses); i++)
	    {
	      tree tmp = NULL;

	      uses_copy[i] = USE_OP (uses, i);
	      if (TREE_CODE (USE_OP (uses, i)) == SSA_NAME)
		tmp = SSA_NAME_VALUE (USE_OP (uses, i));
	      if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
		SET_USE_OP (uses, i, tmp);
	    }

	  /* Similarly for virtual uses.  */
	  for (i = 0; i < NUM_VUSES (vuses); i++)
	    {
	      tree tmp = NULL;

	      vuses_copy[i] = VUSE_OP (vuses, i);
	      if (TREE_CODE (VUSE_OP (vuses, i)) == SSA_NAME)
		tmp = SSA_NAME_VALUE (VUSE_OP (vuses, i));
	      if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
		SET_VUSE_OP (vuses, i, tmp);
	    }

	  /* Try to fold/lookup the new expression.  Inserting the
	     expression into the hash table is unlikely to help
	     simplify anything later, so just query the hashtable.  */
	  cached_lhs = fold (TREE_OPERAND (stmt, 1));
	  if (TREE_CODE (cached_lhs) != SSA_NAME
	      && !is_gimple_min_invariant (cached_lhs))
	    cached_lhs = lookup_avail_expr (stmt, false);

	  /* Restore the statement's original uses/defs.  */
	  for (i = 0; i < NUM_USES (uses); i++)
	    SET_USE_OP (uses, i, uses_copy[i]);

	  for (i = 0; i < NUM_VUSES (vuses); i++)
	    SET_VUSE_OP (vuses, i, vuses_copy[i]);

	  free (uses_copy);
	  free (vuses_copy);
	}

      /* Record the context sensitive equivalence if we were able
	 to simplify this statement.  */
      if (cached_lhs
	  && (TREE_CODE (cached_lhs) == SSA_NAME
	      || is_gimple_min_invariant (cached_lhs)))
	record_const_or_copy (TREE_OPERAND (stmt, 0), cached_lhs);
    }

  /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
     will be taken.  */
  if (stmt
      && (TREE_CODE (stmt) == COND_EXPR
	  || TREE_CODE (stmt) == GOTO_EXPR
	  || TREE_CODE (stmt) == SWITCH_EXPR))
    {
      tree cond, cached_lhs;

      /* Now temporarily cprop the operands and try to find the resulting
	 expression in the hash tables.  */
      if (TREE_CODE (stmt) == COND_EXPR)
	cond = COND_EXPR_COND (stmt);
      else if (TREE_CODE (stmt) == GOTO_EXPR)
	cond = GOTO_DESTINATION (stmt);
      else
	cond = SWITCH_COND (stmt);

      if (COMPARISON_CLASS_P (cond))
	{
	  tree dummy_cond, op0, op1;
	  enum tree_code cond_code;

	  op0 = TREE_OPERAND (cond, 0);
	  op1 = TREE_OPERAND (cond, 1);
	  cond_code = TREE_CODE (cond);

	  /* Get the current value of both operands.  */
	  if (TREE_CODE (op0) == SSA_NAME)
	    {
	      tree tmp = SSA_NAME_VALUE (op0);
	      if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
		op0 = tmp;
	    }

	  if (TREE_CODE (op1) == SSA_NAME)
	    {
	      tree tmp = SSA_NAME_VALUE (op1);
	      if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
		op1 = tmp;
	    }

	  /* Stuff the operator and operands into our dummy conditional
	     expression, creating the dummy conditional if necessary.  */
	  dummy_cond = walk_data->global_data;
	  if (! dummy_cond)
	    {
	      dummy_cond = build (cond_code, boolean_type_node, op0, op1);
	      dummy_cond = build (COND_EXPR, void_type_node,
				  dummy_cond, NULL, NULL);
	      walk_data->global_data = dummy_cond;
	    }
	  else
	    {
	      TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
	    }

	  /* If the conditional folds to an invariant, then we are done,
	     otherwise look it up in the hash tables.  */
	  cached_lhs = local_fold (COND_EXPR_COND (dummy_cond));
	  if (! is_gimple_min_invariant (cached_lhs))
	    {
	      cached_lhs = lookup_avail_expr (dummy_cond, false);
	      if (!cached_lhs || ! is_gimple_min_invariant (cached_lhs))
		cached_lhs = simplify_cond_and_lookup_avail_expr (dummy_cond,
								  NULL,
								  false);
	    }
	}
      /* We can have conditionals which just test the state of a
	 variable rather than use a relational operator.  These are
	 simpler to handle.  */
      else if (TREE_CODE (cond) == SSA_NAME)
	{
	  cached_lhs = cond;
	  cached_lhs = SSA_NAME_VALUE (cached_lhs);
	  if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
	    cached_lhs = NULL;
	}
      else
	cached_lhs = lookup_avail_expr (stmt, false);

      if (cached_lhs)
	{
	  edge taken_edge = find_taken_edge (e->dest, cached_lhs);
	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);

	  if (dest == e->dest)
	    return;

	  /* If we have a known destination for the conditional, then
	     we can perform this optimization, which saves at least one
	     conditional jump each time it applies since we get to
	     bypass the conditional at our original destination.  */
	  if (dest)
	    {
	      struct edge_info *edge_info;

	      update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
					       e->count, taken_edge);
	      if (e->aux)
		edge_info = e->aux;
	      else
		edge_info = allocate_edge_info (e);
	      edge_info->redirection_target = taken_edge;
	      bb_ann (e->dest)->incoming_edge_threaded = true;
	    }
	}
    }
}


/* Initialize local stacks for this optimizer and record equivalences
   upon entry to BB.  Equivalences can come from the edge traversed to
   reach BB or they may come from PHI nodes at the start of BB.  */

static void
dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			  basic_block bb)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);

  /* Push a marker on the stacks of local information so that we know how
     far to unwind when we finalize this block.  */
  VEC_safe_push (tree, heap, avail_exprs_stack, NULL_TREE);
  VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
  VEC_safe_push (tree, heap, nonzero_vars_stack, NULL_TREE);
  VEC_safe_push (tree, heap, vrp_variables_stack, NULL_TREE);

  record_equivalences_from_incoming_edge (bb);

  /* PHI nodes can create equivalences too.  */
  record_equivalences_from_phis (bb);
}

/* Given an expression EXPR (a relational expression or a statement), 
   initialize the hash table element pointed by by ELEMENT.  */

static void
initialize_hash_element (tree expr, tree lhs, struct expr_hash_elt *element)
{
  /* Hash table elements may be based on conditional expressions or statements.

     For the former case, we have no annotation and we want to hash the
     conditional expression.  In the latter case we have an annotation and
     we want to record the expression the statement evaluates.  */
  if (COMPARISON_CLASS_P (expr) || TREE_CODE (expr) == TRUTH_NOT_EXPR)
    {
      element->ann = NULL;
      element->rhs = expr;
    }
  else if (TREE_CODE (expr) == COND_EXPR)
    {
      element->ann = stmt_ann (expr);
      element->rhs = COND_EXPR_COND (expr);
    }
  else if (TREE_CODE (expr) == SWITCH_EXPR)
    {
      element->ann = stmt_ann (expr);
      element->rhs = SWITCH_COND (expr);
    }
  else if (TREE_CODE (expr) == RETURN_EXPR && TREE_OPERAND (expr, 0))
    {
      element->ann = stmt_ann (expr);
      element->rhs = TREE_OPERAND (TREE_OPERAND (expr, 0), 1);
    }
  else if (TREE_CODE (expr) == GOTO_EXPR)
    {
      element->ann = stmt_ann (expr);
      element->rhs = GOTO_DESTINATION (expr);
    }
  else
    {
      element->ann = stmt_ann (expr);
      element->rhs = TREE_OPERAND (expr, 1);
    }

  element->lhs = lhs;
  element->hash = avail_expr_hash (element);
}

/* Remove all the expressions in LOCALS from TABLE, stopping when there are
   LIMIT entries left in LOCALs.  */

static void
remove_local_expressions_from_table (void)
{
  /* Remove all the expressions made available in this block.  */
  while (VEC_length (tree, avail_exprs_stack) > 0)
    {
      struct expr_hash_elt element;
      tree expr = VEC_pop (tree, avail_exprs_stack);

      if (expr == NULL_TREE)
	break;

      initialize_hash_element (expr, NULL, &element);
      htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
    }
}

/* Use the SSA_NAMES in LOCALS to restore TABLE to its original
   state, stopping when there are LIMIT entries left in LOCALs.  */

static void
restore_nonzero_vars_to_original_value (void)
{
  while (VEC_length (tree, nonzero_vars_stack) > 0)
    {
      tree name = VEC_pop (tree, nonzero_vars_stack);

      if (name == NULL)
	break;

      bitmap_clear_bit (nonzero_vars, SSA_NAME_VERSION (name));
    }
}

/* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
   CONST_AND_COPIES to its original state, stopping when we hit a
   NULL marker.  */

static void
restore_vars_to_original_value (void)
{
  while (VEC_length (tree, const_and_copies_stack) > 0)
    {
      tree prev_value, dest;

      dest = VEC_pop (tree, const_and_copies_stack);

      if (dest == NULL)
	break;

      prev_value = VEC_pop (tree, const_and_copies_stack);
      SSA_NAME_VALUE (dest) =  prev_value;
    }
}

/* We have finished processing the dominator children of BB, perform
   any finalization actions in preparation for leaving this node in
   the dominator tree.  */

static void
dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb)
{
  tree last;

  /* If we are at a leaf node in the dominator tree, see if we can thread
     the edge from BB through its successor.

     Do this before we remove entries from our equivalence tables.  */
  if (single_succ_p (bb)
      && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
      && (get_immediate_dominator (CDI_DOMINATORS, single_succ (bb)) != bb
	  || phi_nodes (single_succ (bb))))
	
    {
      thread_across_edge (walk_data, single_succ_edge (bb));
    }
  else if ((last = last_stmt (bb))
	   && TREE_CODE (last) == GOTO_EXPR
	   && TREE_CODE (TREE_OPERAND (last, 0)) == SSA_NAME)
    {
      edge_iterator ei;
      edge e;

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  thread_across_edge (walk_data, e);
	}
    }
  else if ((last = last_stmt (bb))
	   && TREE_CODE (last) == COND_EXPR
	   && (COMPARISON_CLASS_P (COND_EXPR_COND (last))
	       || TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
	   && EDGE_COUNT (bb->succs) == 2
	   && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
	   && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
    {
      edge true_edge, false_edge;

      extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

      /* If the THEN arm is the end of a dominator tree or has PHI nodes,
	 then try to thread through its edge.  */
      if (get_immediate_dominator (CDI_DOMINATORS, true_edge->dest) != bb
	  || phi_nodes (true_edge->dest))
	{
	  struct edge_info *edge_info;
	  unsigned int i;

	  /* Push a marker onto the available expression stack so that we
	     unwind any expressions related to the TRUE arm before processing
	     the false arm below.  */
	  VEC_safe_push (tree, heap, avail_exprs_stack, NULL_TREE);
	  VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);

	  edge_info = true_edge->aux;

	  /* If we have info associated with this edge, record it into
	     our equivalency tables.  */
	  if (edge_info)
	    {
	      tree *cond_equivalences = edge_info->cond_equivalences;
	      tree lhs = edge_info->lhs;
	      tree rhs = edge_info->rhs;

	      /* If we have a simple NAME = VALUE equivalency record it.  */
	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		record_const_or_copy (lhs, rhs);

	      /* If we have 0 = COND or 1 = COND equivalences, record them
		 into our expression hash tables.  */
	      if (cond_equivalences)
		for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
		  {
		    tree expr = cond_equivalences[i];
		    tree value = cond_equivalences[i + 1];

		    record_cond (expr, value);
		  }
	    }

	  /* Now thread the edge.  */
	  thread_across_edge (walk_data, true_edge);

	  /* And restore the various tables to their state before
	     we threaded this edge.  */
	  remove_local_expressions_from_table ();
	  restore_vars_to_original_value ();
	}

      /* Similarly for the ELSE arm.  */
      if (get_immediate_dominator (CDI_DOMINATORS, false_edge->dest) != bb
	  || phi_nodes (false_edge->dest))
	{
	  struct edge_info *edge_info;
	  unsigned int i;

	  edge_info = false_edge->aux;

	  /* If we have info associated with this edge, record it into
	     our equivalency tables.  */
	  if (edge_info)
	    {
	      tree *cond_equivalences = edge_info->cond_equivalences;
	      tree lhs = edge_info->lhs;
	      tree rhs = edge_info->rhs;

	      /* If we have a simple NAME = VALUE equivalency record it.  */
	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		record_const_or_copy (lhs, rhs);

	      /* If we have 0 = COND or 1 = COND equivalences, record them
		 into our expression hash tables.  */
	      if (cond_equivalences)
		for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
		  {
		    tree expr = cond_equivalences[i];
		    tree value = cond_equivalences[i + 1];

		    record_cond (expr, value);
		  }
	    }

	  thread_across_edge (walk_data, false_edge);

	  /* No need to remove local expressions from our tables
	     or restore vars to their original value as that will
	     be done immediately below.  */
	}
    }

  remove_local_expressions_from_table ();
  restore_nonzero_vars_to_original_value ();
  restore_vars_to_original_value ();

  /* Remove VRP records associated with this basic block.  They are no
     longer valid.

     To be efficient, we note which variables have had their values
     constrained in this block.  So walk over each variable in the
     VRP_VARIABLEs array.  */
  while (VEC_length (tree, vrp_variables_stack) > 0)
    {
      tree var = VEC_pop (tree, vrp_variables_stack);
      struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
      void **slot;

      /* Each variable has a stack of value range records.  We want to
	 invalidate those associated with our basic block.  So we walk
	 the array backwards popping off records associated with our
	 block.  Once we hit a record not associated with our block
	 we are done.  */
      varray_type var_vrp_records;

      if (var == NULL)
	break;

      vrp_hash_elt.var = var;
      vrp_hash_elt.records = NULL;

      slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);

      vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
      var_vrp_records = vrp_hash_elt_p->records;

      while (VARRAY_ACTIVE_SIZE (var_vrp_records) > 0)
	{
	  struct vrp_element *element
	    = (struct vrp_element *)VARRAY_TOP_GENERIC_PTR (var_vrp_records);

	  if (element->bb != bb)
	    break;
  
	  VARRAY_POP (var_vrp_records);
	}
    }

  /* If we queued any statements to rescan in this block, then
     go ahead and rescan them now.  */
  while (VEC_length (tree, stmts_to_rescan) > 0)
    {
      tree stmt = VEC_last (tree, stmts_to_rescan);
      basic_block stmt_bb = bb_for_stmt (stmt);

      if (stmt_bb != bb)
	break;

      VEC_pop (tree, stmts_to_rescan);
      mark_new_vars_to_rename (stmt);
    }
}

/* PHI nodes can create equivalences too.

   Ignoring any alternatives which are the same as the result, if
   all the alternatives are equal, then the PHI node creates an
   equivalence.

   Additionally, if all the PHI alternatives are known to have a nonzero
   value, then the result of this PHI is known to have a nonzero value,
   even if we do not know its exact value.  */

static void
record_equivalences_from_phis (basic_block bb)
{
  tree phi;

  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
    {
      tree lhs = PHI_RESULT (phi);
      tree rhs = NULL;
      int i;

      for (i = 0; i < PHI_NUM_ARGS (phi); i++)
	{
	  tree t = PHI_ARG_DEF (phi, i);

	  /* Ignore alternatives which are the same as our LHS.  Since
	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
	     can simply compare pointers.  */
	  if (lhs == t)
	    continue;

	  /* If we have not processed an alternative yet, then set
	     RHS to this alternative.  */
	  if (rhs == NULL)
	    rhs = t;
	  /* If we have processed an alternative (stored in RHS), then
	     see if it is equal to this one.  If it isn't, then stop
	     the search.  */
	  else if (! operand_equal_for_phi_arg_p (rhs, t))
	    break;
	}

      /* If we had no interesting alternatives, then all the RHS alternatives
	 must have been the same as LHS.  */
      if (!rhs)
	rhs = lhs;

      /* If we managed to iterate through each PHI alternative without
	 breaking out of the loop, then we have a PHI which may create
	 a useful equivalence.  We do not need to record unwind data for
	 this, since this is a true assignment and not an equivalence
	 inferred from a comparison.  All uses of this ssa name are dominated
	 by this assignment, so unwinding just costs time and space.  */
      if (i == PHI_NUM_ARGS (phi)
	  && may_propagate_copy (lhs, rhs))
	SSA_NAME_VALUE (lhs) = rhs;

      /* Now see if we know anything about the nonzero property for the
	 result of this PHI.  */
      for (i = 0; i < PHI_NUM_ARGS (phi); i++)
	{
	  if (!PHI_ARG_NONZERO (phi, i))
	    break;
	}

      if (i == PHI_NUM_ARGS (phi))
	bitmap_set_bit (nonzero_vars, SSA_NAME_VERSION (PHI_RESULT (phi)));
    }
}

/* Ignoring loop backedges, if BB has precisely one incoming edge then
   return that edge.  Otherwise return NULL.  */
static edge
single_incoming_edge_ignoring_loop_edges (basic_block bb)
{
  edge retval = NULL;
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      /* A loop back edge can be identified by the destination of
	 the edge dominating the source of the edge.  */
      if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
	continue;

      /* If we have already seen a non-loop edge, then we must have
	 multiple incoming non-loop edges and thus we return NULL.  */
      if (retval)
	return NULL;

      /* This is the first non-loop incoming edge we have found.  Record
	 it.  */
      retval = e;
    }

  return retval;
}

/* Record any equivalences created by the incoming edge to BB.  If BB
   has more than one incoming edge, then no equivalence is created.  */

static void
record_equivalences_from_incoming_edge (basic_block bb)
{
  edge e;
  basic_block parent;
  struct edge_info *edge_info;

  /* If our parent block ended with a control statement, then we may be
     able to record some equivalences based on which outgoing edge from
     the parent was followed.  */
  parent = get_immediate_dominator (CDI_DOMINATORS, bb);

  e = single_incoming_edge_ignoring_loop_edges (bb);

  /* If we had a single incoming edge from our parent block, then enter
     any data associated with the edge into our tables.  */
  if (e && e->src == parent)
    {
      unsigned int i;

      edge_info = e->aux;

      if (edge_info)
	{
	  tree lhs = edge_info->lhs;
	  tree rhs = edge_info->rhs;
	  tree *cond_equivalences = edge_info->cond_equivalences;

	  if (lhs)
	    record_equality (lhs, rhs);

	  if (cond_equivalences)
	    {
	      bool recorded_range = false;
	      for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
		{
		  tree expr = cond_equivalences[i];
		  tree value = cond_equivalences[i + 1];

		  record_cond (expr, value);

		  /* For the first true equivalence, record range
		     information.  We only do this for the first
		     true equivalence as it should dominate any
		     later true equivalences.  */
		  if (! recorded_range 
		      && COMPARISON_CLASS_P (expr)
		      && value == boolean_true_node
		      && TREE_CONSTANT (TREE_OPERAND (expr, 1)))
		    {
		      record_range (expr, bb);
		      recorded_range = true;
		    }
		}
	    }
	}
    }
}

/* Dump SSA statistics on FILE.  */

void
dump_dominator_optimization_stats (FILE *file)
{
  long n_exprs;

  fprintf (file, "Total number of statements:                   %6ld\n\n",
	   opt_stats.num_stmts);
  fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
           opt_stats.num_exprs_considered);

  n_exprs = opt_stats.num_exprs_considered;
  if (n_exprs == 0)
    n_exprs = 1;

  fprintf (file, "    Redundant expressions eliminated:         %6ld (%.0f%%)\n",
	   opt_stats.num_re, PERCENT (opt_stats.num_re,
				      n_exprs));
  fprintf (file, "    Constants propagated:                     %6ld\n",
	   opt_stats.num_const_prop);
  fprintf (file, "    Copies propagated:                        %6ld\n",
	   opt_stats.num_copy_prop);

  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    avail_exprs: ");
  htab_statistics (file, avail_exprs);
}


/* Dump SSA statistics on stderr.  */

void
debug_dominator_optimization_stats (void)
{
  dump_dominator_optimization_stats (stderr);
}


/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, htab_t htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab_size (htab),
	   (long) htab_elements (htab),
	   htab_collisions (htab));
}

/* Record the fact that VAR has a nonzero value, though we may not know
   its exact value.  Note that if VAR is already known to have a nonzero
   value, then we do nothing.  */

static void
record_var_is_nonzero (tree var)
{
  int indx = SSA_NAME_VERSION (var);

  if (bitmap_bit_p (nonzero_vars, indx))
    return;

  /* Mark it in the global table.  */
  bitmap_set_bit (nonzero_vars, indx);

  /* Record this SSA_NAME so that we can reset the global table
     when we leave this block.  */
  VEC_safe_push (tree, heap, nonzero_vars_stack, var);
}

/* Enter a statement into the true/false expression hash table indicating
   that the condition COND has the value VALUE.  */

static void
record_cond (tree cond, tree value)
{
  struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
  void **slot;

  initialize_hash_element (cond, value, element);

  slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
				   element->hash, INSERT);
  if (*slot == NULL)
    {
      *slot = (void *) element;
      VEC_safe_push (tree, heap, avail_exprs_stack, cond);
    }
  else
    free (element);
}

/* Build a new conditional using NEW_CODE, OP0 and OP1 and store
   the new conditional into *p, then store a boolean_true_node
   into *(p + 1).  */
   
static void
build_and_record_new_cond (enum tree_code new_code, tree op0, tree op1, tree *p)
{
  *p = build2 (new_code, boolean_type_node, op0, op1);
  p++;
  *p = boolean_true_node;
}

/* Record that COND is true and INVERTED is false into the edge information
   structure.  Also record that any conditions dominated by COND are true
   as well.

   For example, if a < b is true, then a <= b must also be true.  */

static void
record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
{
  tree op0, op1;

  if (!COMPARISON_CLASS_P (cond))
    return;

  op0 = TREE_OPERAND (cond, 0);
  op1 = TREE_OPERAND (cond, 1);

  switch (TREE_CODE (cond))
    {
    case LT_EXPR:
    case GT_EXPR:
      edge_info->max_cond_equivalences = 12;
      edge_info->cond_equivalences = xmalloc (12 * sizeof (tree));
      build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
				  ? LE_EXPR : GE_EXPR),
				 op0, op1, &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[8]);
      build_and_record_new_cond (LTGT_EXPR, op0, op1,
				 &edge_info->cond_equivalences[10]);
      break;

    case GE_EXPR:
    case LE_EXPR:
      edge_info->max_cond_equivalences = 6;
      edge_info->cond_equivalences = xmalloc (6 * sizeof (tree));
      build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				 &edge_info->cond_equivalences[4]);
      break;

    case EQ_EXPR:
      edge_info->max_cond_equivalences = 10;
      edge_info->cond_equivalences = xmalloc (10 * sizeof (tree));
      build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				 &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (LE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      build_and_record_new_cond (GE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[8]);
      break;

    case UNORDERED_EXPR:
      edge_info->max_cond_equivalences = 16;
      edge_info->cond_equivalences = xmalloc (16 * sizeof (tree));
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (UNLE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      build_and_record_new_cond (UNGE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[8]);
      build_and_record_new_cond (UNEQ_EXPR, op0, op1,
				 &edge_info->cond_equivalences[10]);
      build_and_record_new_cond (UNLT_EXPR, op0, op1,
				 &edge_info->cond_equivalences[12]);
      build_and_record_new_cond (UNGT_EXPR, op0, op1,
				 &edge_info->cond_equivalences[14]);
      break;

    case UNLT_EXPR:
    case UNGT_EXPR:
      edge_info->max_cond_equivalences = 8;
      edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
      build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
				  ? UNLE_EXPR : UNGE_EXPR),
				 op0, op1, &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      break;

    case UNEQ_EXPR:
      edge_info->max_cond_equivalences = 8;
      edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
      build_and_record_new_cond (UNLE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (UNGE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      break;

    case LTGT_EXPR:
      edge_info->max_cond_equivalences = 8;
      edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
      build_and_record_new_cond (NE_EXPR, op0, op1,
				 &edge_info->cond_equivalences[4]);
      build_and_record_new_cond (ORDERED_EXPR, op0, op1,
				 &edge_info->cond_equivalences[6]);
      break;

    default:
      edge_info->max_cond_equivalences = 4;
      edge_info->cond_equivalences = xmalloc (4 * sizeof (tree));
      break;
    }

  /* Now store the original true and false conditions into the first
     two slots.  */
  edge_info->cond_equivalences[0] = cond;
  edge_info->cond_equivalences[1] = boolean_true_node;
  edge_info->cond_equivalences[2] = inverted;
  edge_info->cond_equivalences[3] = boolean_false_node;
}

/* A helper function for record_const_or_copy and record_equality.
   Do the work of recording the value and undo info.  */

static void
record_const_or_copy_1 (tree x, tree y, tree prev_x)
{
  SSA_NAME_VALUE (x) = y;

  VEC_reserve (tree, heap, const_and_copies_stack, 2);
  VEC_quick_push (tree, const_and_copies_stack, prev_x);
  VEC_quick_push (tree, const_and_copies_stack, x);
}


/* Return the loop depth of the basic block of the defining statement of X.
   This number should not be treated as absolutely correct because the loop
   information may not be completely up-to-date when dom runs.  However, it
   will be relatively correct, and as more passes are taught to keep loop info
   up to date, the result will become more and more accurate.  */

int
loop_depth_of_name (tree x)
{
  tree defstmt;
  basic_block defbb;

  /* If it's not an SSA_NAME, we have no clue where the definition is.  */
  if (TREE_CODE (x) != SSA_NAME)
    return 0;

  /* Otherwise return the loop depth of the defining statement's bb.
     Note that there may not actually be a bb for this statement, if the
     ssa_name is live on entry.  */
  defstmt = SSA_NAME_DEF_STMT (x);
  defbb = bb_for_stmt (defstmt);
  if (!defbb)
    return 0;

  return defbb->loop_depth;
}


/* Record that X is equal to Y in const_and_copies.  Record undo
   information in the block-local vector.  */

static void
record_const_or_copy (tree x, tree y)
{
  tree prev_x = SSA_NAME_VALUE (x);

  if (TREE_CODE (y) == SSA_NAME)
    {
      tree tmp = SSA_NAME_VALUE (y);
      if (tmp)
	y = tmp;
    }

  record_const_or_copy_1 (x, y, prev_x);
}

/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
   This constrains the cases in which we may treat this as assignment.  */

static void
record_equality (tree x, tree y)
{
  tree prev_x = NULL, prev_y = NULL;

  if (TREE_CODE (x) == SSA_NAME)
    prev_x = SSA_NAME_VALUE (x);
  if (TREE_CODE (y) == SSA_NAME)
    prev_y = SSA_NAME_VALUE (y);

  /* If one of the previous values is invariant, or invariant in more loops
     (by depth), then use that.
     Otherwise it doesn't matter which value we choose, just so
     long as we canonicalize on one value.  */
  if (TREE_INVARIANT (y))
    ;
  else if (TREE_INVARIANT (x) || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
    prev_x = x, x = y, y = prev_x, prev_x = prev_y;
  else if (prev_x && TREE_INVARIANT (prev_x))
    x = y, y = prev_x, prev_x = prev_y;
  else if (prev_y && TREE_CODE (prev_y) != VALUE_HANDLE)
    y = prev_y;

  /* After the swapping, we must have one SSA_NAME.  */
  if (TREE_CODE (x) != SSA_NAME)
    return;

  /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
     variable compared against zero.  If we're honoring signed zeros,
     then we cannot record this value unless we know that the value is
     nonzero.  */
  if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
      && (TREE_CODE (y) != REAL_CST
	  || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
    return;

  record_const_or_copy_1 (x, y, prev_x);
}

/* Return true, if it is ok to do folding of an associative expression.
   EXP is the tree for the associative expression.  */ 

static inline bool
unsafe_associative_fp_binop (tree exp)
{
  enum tree_code code = TREE_CODE (exp);
  return !(!flag_unsafe_math_optimizations
           && (code == MULT_EXPR || code == PLUS_EXPR
	       || code == MINUS_EXPR)
           && FLOAT_TYPE_P (TREE_TYPE (exp)));
}

/* Returns true when STMT is a simple iv increment.  It detects the
   following situation:
   
   i_1 = phi (..., i_2)
   i_2 = i_1 +/- ...  */

static bool
simple_iv_increment_p (tree stmt)
{
  tree lhs, rhs, preinc, phi;
  unsigned i;

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  lhs = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  rhs = TREE_OPERAND (stmt, 1);

  if (TREE_CODE (rhs) != PLUS_EXPR
      && TREE_CODE (rhs) != MINUS_EXPR)
    return false;

  preinc = TREE_OPERAND (rhs, 0);
  if (TREE_CODE (preinc) != SSA_NAME)
    return false;

  phi = SSA_NAME_DEF_STMT (preinc);
  if (TREE_CODE (phi) != PHI_NODE)
    return false;

  for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
    if (PHI_ARG_DEF (phi, i) == lhs)
      return true;

  return false;
}

/* STMT is a MODIFY_EXPR for which we were unable to find RHS in the
   hash tables.  Try to simplify the RHS using whatever equivalences
   we may have recorded.

   If we are able to simplify the RHS, then lookup the simplified form in
   the hash table and return the result.  Otherwise return NULL.  */

static tree
simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *walk_data,
				    tree stmt, int insert)
{
  tree rhs = TREE_OPERAND (stmt, 1);
  enum tree_code rhs_code = TREE_CODE (rhs);
  tree result = NULL;

  /* If we have lhs = ~x, look and see if we earlier had x = ~y.
     In which case we can change this statement to be lhs = y.
     Which can then be copy propagated. 

     Similarly for negation.  */
  if ((rhs_code == BIT_NOT_EXPR || rhs_code == NEGATE_EXPR)
      && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
    {
      /* Get the definition statement for our RHS.  */
      tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));

      /* See if the RHS_DEF_STMT has the same form as our statement.  */
      if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR
	  && TREE_CODE (TREE_OPERAND (rhs_def_stmt, 1)) == rhs_code)
	{
	  tree rhs_def_operand;

	  rhs_def_operand = TREE_OPERAND (TREE_OPERAND (rhs_def_stmt, 1), 0);

	  /* Verify that RHS_DEF_OPERAND is a suitable SSA variable.  */
	  if (TREE_CODE (rhs_def_operand) == SSA_NAME
	      && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
	    result = update_rhs_and_lookup_avail_expr (stmt,
						       rhs_def_operand,
						       insert);
	}
    }

  /* If we have z = (x OP C1), see if we earlier had x = y OP C2.
     If OP is associative, create and fold (y OP C2) OP C1 which
     should result in (y OP C3), use that as the RHS for the
     assignment.  Add minus to this, as we handle it specially below.  */
  if ((associative_tree_code (rhs_code) || rhs_code == MINUS_EXPR)
      && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
      && is_gimple_min_invariant (TREE_OPERAND (rhs, 1)))
    {
      tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));

      /* If the statement defines an induction variable, do not propagate
	 its value, so that we do not create overlapping life ranges.  */
      if (simple_iv_increment_p (rhs_def_stmt))
	goto dont_fold_assoc;

      /* See if the RHS_DEF_STMT has the same form as our statement.  */
      if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR)
	{
	  tree rhs_def_rhs = TREE_OPERAND (rhs_def_stmt, 1);
	  enum tree_code rhs_def_code = TREE_CODE (rhs_def_rhs);

	  if ((rhs_code == rhs_def_code && unsafe_associative_fp_binop (rhs))
	      || (rhs_code == PLUS_EXPR && rhs_def_code == MINUS_EXPR)
	      || (rhs_code == MINUS_EXPR && rhs_def_code == PLUS_EXPR))
	    {
	      tree def_stmt_op0 = TREE_OPERAND (rhs_def_rhs, 0);
	      tree def_stmt_op1 = TREE_OPERAND (rhs_def_rhs, 1);

	      if (TREE_CODE (def_stmt_op0) == SSA_NAME
		  && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_stmt_op0)
		  && is_gimple_min_invariant (def_stmt_op1))
		{
		  tree outer_const = TREE_OPERAND (rhs, 1);
		  tree type = TREE_TYPE (TREE_OPERAND (stmt, 0));
		  tree t;

		  /* If we care about correct floating point results, then
		     don't fold x + c1 - c2.  Note that we need to take both
		     the codes and the signs to figure this out.  */
		  if (FLOAT_TYPE_P (type)
		      && !flag_unsafe_math_optimizations
		      && (rhs_def_code == PLUS_EXPR
			  || rhs_def_code == MINUS_EXPR))
		    {
		      bool neg = false;

		      neg ^= (rhs_code == MINUS_EXPR);
		      neg ^= (rhs_def_code == MINUS_EXPR);
		      neg ^= real_isneg (TREE_REAL_CST_PTR (outer_const));
		      neg ^= real_isneg (TREE_REAL_CST_PTR (def_stmt_op1));

		      if (neg)
			goto dont_fold_assoc;
		    }

		  /* Ho hum.  So fold will only operate on the outermost
		     thingy that we give it, so we have to build the new
		     expression in two pieces.  This requires that we handle
		     combinations of plus and minus.  */
		  if (rhs_def_code != rhs_code)
		    {
		      if (rhs_def_code == MINUS_EXPR)
		        t = build (MINUS_EXPR, type, outer_const, def_stmt_op1);
		      else
		        t = build (MINUS_EXPR, type, def_stmt_op1, outer_const);
		      rhs_code = PLUS_EXPR;
		    }
		  else if (rhs_def_code == MINUS_EXPR)
		    t = build (PLUS_EXPR, type, def_stmt_op1, outer_const);
		  else
		    t = build (rhs_def_code, type, def_stmt_op1, outer_const);
		  t = local_fold (t);
		  t = build (rhs_code, type, def_stmt_op0, t);
		  t = local_fold (t);

		  /* If the result is a suitable looking gimple expression,
		     then use it instead of the original for STMT.  */
		  if (TREE_CODE (t) == SSA_NAME
		      || (UNARY_CLASS_P (t)
			  && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
		      || ((BINARY_CLASS_P (t) || COMPARISON_CLASS_P (t))
			  && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
			  && is_gimple_val (TREE_OPERAND (t, 1))))
		    result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
		}
	    }
	}
 dont_fold_assoc:;
    }

  /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
     and BIT_AND_EXPR respectively if the first operand is greater
     than zero and the second operand is an exact power of two.  */
  if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
      && integer_pow2p (TREE_OPERAND (rhs, 1)))
    {
      tree val;
      tree op = TREE_OPERAND (rhs, 0);

      if (TYPE_UNSIGNED (TREE_TYPE (op)))
	{
	  val = integer_one_node;
	}
      else
	{
	  tree dummy_cond = walk_data->global_data;

	  if (! dummy_cond)
	    {
	      dummy_cond = build (GT_EXPR, boolean_type_node,
				  op, integer_zero_node);
	      dummy_cond = build (COND_EXPR, void_type_node,
				  dummy_cond, NULL, NULL);
	      walk_data->global_data = dummy_cond;
	    }
          else
	    {
	      TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GT_EXPR);
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
		= integer_zero_node;
	    }
	  val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
	}

      if (val && integer_onep (val))
	{
	  tree t;
	  tree op0 = TREE_OPERAND (rhs, 0);
	  tree op1 = TREE_OPERAND (rhs, 1);

	  if (rhs_code == TRUNC_DIV_EXPR)
	    t = build (RSHIFT_EXPR, TREE_TYPE (op0), op0,
		       build_int_cst (NULL_TREE, tree_log2 (op1)));
	  else
	    t = build (BIT_AND_EXPR, TREE_TYPE (op0), op0,
		       local_fold (build (MINUS_EXPR, TREE_TYPE (op1),
					  op1, integer_one_node)));

	  result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
	}
    }

  /* Transform ABS (X) into X or -X as appropriate.  */
  if (rhs_code == ABS_EXPR
      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
    {
      tree val;
      tree op = TREE_OPERAND (rhs, 0);
      tree type = TREE_TYPE (op);

      if (TYPE_UNSIGNED (type))
	{
	  val = integer_zero_node;
	}
      else
	{
	  tree dummy_cond = walk_data->global_data;

	  if (! dummy_cond)
	    {
	      dummy_cond = build (LE_EXPR, boolean_type_node,
				  op, integer_zero_node);
	      dummy_cond = build (COND_EXPR, void_type_node,
				  dummy_cond, NULL, NULL);
	      walk_data->global_data = dummy_cond;
	    }
	  else
	    {
	      TREE_SET_CODE (COND_EXPR_COND (dummy_cond), LE_EXPR);
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
		= build_int_cst (type, 0);
	    }
	  val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);

	  if (!val)
	    {
	      TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GE_EXPR);
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
	      TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
		= build_int_cst (type, 0);

	      val = simplify_cond_and_lookup_avail_expr (dummy_cond,
							 NULL, false);

	      if (val)
		{
		  if (integer_zerop (val))
		    val = integer_one_node;
		  else if (integer_onep (val))
		    val = integer_zero_node;
		}
	    }
	}

      if (val
	  && (integer_onep (val) || integer_zerop (val)))
	{
	  tree t;

	  if (integer_onep (val))
	    t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
	  else
	    t = op;

	  result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
	}
    }

  /* Optimize *"foo" into 'f'.  This is done here rather than
     in fold to avoid problems with stuff like &*"foo".  */
  if (TREE_CODE (rhs) == INDIRECT_REF || TREE_CODE (rhs) == ARRAY_REF)
    {
      tree t = fold_read_from_constant_string (rhs);

      if (t)
        result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
    }

  return result;
}

/* COND is a condition of the form:

     x == const or x != const

   Look back to x's defining statement and see if x is defined as

     x = (type) y;

   If const is unchanged if we convert it to type, then we can build
   the equivalent expression:


      y == const or y != const

   Which may allow further optimizations.

   Return the equivalent comparison or NULL if no such equivalent comparison
   was found.  */

static tree
find_equivalent_equality_comparison (tree cond)
{
  tree op0 = TREE_OPERAND (cond, 0);
  tree op1 = TREE_OPERAND (cond, 1);
  tree def_stmt = SSA_NAME_DEF_STMT (op0);

  /* OP0 might have been a parameter, so first make sure it
     was defined by a MODIFY_EXPR.  */
  if (def_stmt && TREE_CODE (def_stmt) == MODIFY_EXPR)
    {
      tree def_rhs = TREE_OPERAND (def_stmt, 1);

      /* Now make sure the RHS of the MODIFY_EXPR is a typecast.  */
      if ((TREE_CODE (def_rhs) == NOP_EXPR
	   || TREE_CODE (def_rhs) == CONVERT_EXPR)
	  && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME)
	{
	  tree def_rhs_inner = TREE_OPERAND (def_rhs, 0);
	  tree def_rhs_inner_type = TREE_TYPE (def_rhs_inner);
	  tree new;

	  if (TYPE_PRECISION (def_rhs_inner_type)
	      > TYPE_PRECISION (TREE_TYPE (def_rhs)))
	    return NULL;

	  /* What we want to prove is that if we convert OP1 to
	     the type of the object inside the NOP_EXPR that the
	     result is still equivalent to SRC. 

	     If that is true, the build and return new equivalent
	     condition which uses the source of the typecast and the
	     new constant (which has only changed its type).  */
	  new = build1 (TREE_CODE (def_rhs), def_rhs_inner_type, op1);
	  new = local_fold (new);
	  if (is_gimple_val (new) && tree_int_cst_equal (new, op1))
	    return build (TREE_CODE (cond), TREE_TYPE (cond),
			  def_rhs_inner, new);
	}
    }
  return NULL;
}

/* STMT is a COND_EXPR for which we could not trivially determine its
   result.  This routine attempts to find equivalent forms of the
   condition which we may be able to optimize better.  It also 
   uses simple value range propagation to optimize conditionals.  */

static tree
simplify_cond_and_lookup_avail_expr (tree stmt,
				     stmt_ann_t ann,
				     int insert)
{
  tree cond = COND_EXPR_COND (stmt);

  if (COMPARISON_CLASS_P (cond))
    {
      tree op0 = TREE_OPERAND (cond, 0);
      tree op1 = TREE_OPERAND (cond, 1);

      if (TREE_CODE (op0) == SSA_NAME && is_gimple_min_invariant (op1))
	{
	  int limit;
	  tree low, high, cond_low, cond_high;
	  int lowequal, highequal, swapped, no_overlap, subset, cond_inverted;
	  varray_type vrp_records;
	  struct vrp_element *element;
	  struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
	  void **slot;

	  /* First see if we have test of an SSA_NAME against a constant
	     where the SSA_NAME is defined by an earlier typecast which
	     is irrelevant when performing tests against the given
	     constant.  */
	  if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
	    {
	      tree new_cond = find_equivalent_equality_comparison (cond);

	      if (new_cond)
		{
		  /* Update the statement to use the new equivalent
		     condition.  */
		  COND_EXPR_COND (stmt) = new_cond;

		  /* If this is not a real stmt, ann will be NULL and we
		     avoid processing the operands.  */
		  if (ann)
		    mark_stmt_modified (stmt);

		  /* Lookup the condition and return its known value if it
		     exists.  */
		  new_cond = lookup_avail_expr (stmt, insert);
		  if (new_cond)
		    return new_cond;

		  /* The operands have changed, so update op0 and op1.  */
		  op0 = TREE_OPERAND (cond, 0);
		  op1 = TREE_OPERAND (cond, 1);
		}
	    }

	  /* Consult the value range records for this variable (if they exist)
	     to see if we can eliminate or simplify this conditional. 

	     Note two tests are necessary to determine no records exist.
	     First we have to see if the virtual array exists, if it 
	     exists, then we have to check its active size. 

	     Also note the vast majority of conditionals are not testing
	     a variable which has had its range constrained by an earlier
	     conditional.  So this filter avoids a lot of unnecessary work.  */
	  vrp_hash_elt.var = op0;
	  vrp_hash_elt.records = NULL;
          slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
          if (slot == NULL)
	    return NULL;

	  vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
	  vrp_records = vrp_hash_elt_p->records;
	  if (vrp_records == NULL)
	    return NULL;

	  limit = VARRAY_ACTIVE_SIZE (vrp_records);

	  /* If we have no value range records for this variable, or we are
	     unable to extract a range for this condition, then there is
	     nothing to do.  */
	  if (limit == 0
	      || ! extract_range_from_cond (cond, &cond_high,
					    &cond_low, &cond_inverted))
	    return NULL;

	  /* We really want to avoid unnecessary computations of range
	     info.  So all ranges are computed lazily; this avoids a
	     lot of unnecessary work.  i.e., we record the conditional,
	     but do not process how it constrains the variable's 
	     potential values until we know that processing the condition
	     could be helpful.

	     However, we do not want to have to walk a potentially long
	     list of ranges, nor do we want to compute a variable's
	     range more than once for a given path.

	     Luckily, each time we encounter a conditional that can not
	     be otherwise optimized we will end up here and we will
	     compute the necessary range information for the variable
	     used in this condition.

	     Thus you can conclude that there will never be more than one
	     conditional associated with a variable which has not been
	     processed.  So we never need to merge more than one new
	     conditional into the current range. 

	     These properties also help us avoid unnecessary work.  */
	   element
	     = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records, limit - 1);

	  if (element->high && element->low)
	    {
	      /* The last element has been processed, so there is no range
		 merging to do, we can simply use the high/low values
		 recorded in the last element.  */
	      low = element->low;
	      high = element->high;
	    }
	  else
	    {
	      tree tmp_high, tmp_low;
	      int dummy;

	      /* The last element has not been processed.  Process it now.
		 record_range should ensure for cond inverted is not set.
		 This call can only fail if cond is x < min or x > max,
		 which fold should have optimized into false.
		 If that doesn't happen, just pretend all values are
		 in the range.  */
	      if (! extract_range_from_cond (element->cond, &tmp_high,
					     &tmp_low, &dummy))
		gcc_unreachable ();
	      else
		gcc_assert (dummy == 0);

	      /* If this is the only element, then no merging is necessary, 
		 the high/low values from extract_range_from_cond are all
		 we need.  */
	      if (limit == 1)
		{
		  low = tmp_low;
		  high = tmp_high;
		}
	      else
		{
		  /* Get the high/low value from the previous element.  */
		  struct vrp_element *prev
		    = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records,
								limit - 2);
		  low = prev->low;
		  high = prev->high;

		  /* Merge in this element's range with the range from the
		     previous element.

		     The low value for the merged range is the maximum of
		     the previous low value and the low value of this record.

		     Similarly the high value for the merged range is the
		     minimum of the previous high value and the high value of
		     this record.  */
		  low = (low && tree_int_cst_compare (low, tmp_low) == 1
			 ? low : tmp_low);
		  high = (high && tree_int_cst_compare (high, tmp_high) == -1
			  ? high : tmp_high);
		}

	      /* And record the computed range.  */
	      element->low = low;
	      element->high = high;

	    }

	  /* After we have constrained this variable's potential values,
	     we try to determine the result of the given conditional.

	     To simplify later tests, first determine if the current
	     low value is the same low value as the conditional.
	     Similarly for the current high value and the high value
	     for the conditional.  */
	  lowequal = tree_int_cst_equal (low, cond_low);
	  highequal = tree_int_cst_equal (high, cond_high);

	  if (lowequal && highequal)
	    return (cond_inverted ? boolean_false_node : boolean_true_node);

	  /* To simplify the overlap/subset tests below we may want
	     to swap the two ranges so that the larger of the two
	     ranges occurs "first".  */
	  swapped = 0;
	  if (tree_int_cst_compare (low, cond_low) == 1
	      || (lowequal 
		  && tree_int_cst_compare (cond_high, high) == 1))
	    {
	      tree temp;

	      swapped = 1;
	      temp = low;
	      low = cond_low;
	      cond_low = temp;
	      temp = high;
	      high = cond_high;
	      cond_high = temp;
	    }

	  /* Now determine if there is no overlap in the ranges
	     or if the second range is a subset of the first range.  */
	  no_overlap = tree_int_cst_lt (high, cond_low);
	  subset = tree_int_cst_compare (cond_high, high) != 1;

	  /* If there was no overlap in the ranges, then this conditional
	     always has a false value (unless we had to invert this
	     conditional, in which case it always has a true value).  */
	  if (no_overlap)
	    return (cond_inverted ? boolean_true_node : boolean_false_node);

	  /* If the current range is a subset of the condition's range,
	     then this conditional always has a true value (unless we
	     had to invert this conditional, in which case it always
	     has a true value).  */
	  if (subset && swapped)
	    return (cond_inverted ? boolean_false_node : boolean_true_node);

	  /* We were unable to determine the result of the conditional.
	     However, we may be able to simplify the conditional.  First
	     merge the ranges in the same manner as range merging above.  */
	  low = tree_int_cst_compare (low, cond_low) == 1 ? low : cond_low;
	  high = tree_int_cst_compare (high, cond_high) == -1 ? high : cond_high;
	  
	  /* If the range has converged to a single point, then turn this
	     into an equality comparison.  */
	  if (TREE_CODE (cond) != EQ_EXPR
	      && TREE_CODE (cond) != NE_EXPR
	      && tree_int_cst_equal (low, high))
	    {
	      TREE_SET_CODE (cond, EQ_EXPR);
	      TREE_OPERAND (cond, 1) = high;
	    }
	}
    }
  return 0;
}

/* STMT is a SWITCH_EXPR for which we could not trivially determine its
   result.  This routine attempts to find equivalent forms of the
   condition which we may be able to optimize better.  */

static tree
simplify_switch_and_lookup_avail_expr (tree stmt, int insert)
{
  tree cond = SWITCH_COND (stmt);
  tree def, to, ti;

  /* The optimization that we really care about is removing unnecessary
     casts.  That will let us do much better in propagating the inferred
     constant at the switch target.  */
  if (TREE_CODE (cond) == SSA_NAME)
    {
      def = SSA_NAME_DEF_STMT (cond);
      if (TREE_CODE (def) == MODIFY_EXPR)
	{
	  def = TREE_OPERAND (def, 1);
	  if (TREE_CODE (def) == NOP_EXPR)
	    {
	      int need_precision;
	      bool fail;

	      def = TREE_OPERAND (def, 0);

#ifdef ENABLE_CHECKING
	      /* ??? Why was Jeff testing this?  We are gimple...  */
	      gcc_assert (is_gimple_val (def));
#endif

	      to = TREE_TYPE (cond);
	      ti = TREE_TYPE (def);

	      /* If we have an extension that preserves value, then we
		 can copy the source value into the switch.  */

	      need_precision = TYPE_PRECISION (ti);
	      fail = false;
	      if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
		fail = true;
	      else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
		need_precision += 1;
	      if (TYPE_PRECISION (to) < need_precision)
		fail = true;

	      if (!fail)
		{
		  SWITCH_COND (stmt) = def;
		  mark_stmt_modified (stmt);

		  return lookup_avail_expr (stmt, insert);
		}
	    }
	}
    }

  return 0;
}


/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).  

   NONZERO_VARS is the set SSA_NAMES known to have a nonzero value,
   even if we don't know their precise value.

   Propagate values from CONST_AND_COPIES and NONZERO_VARS into the PHI
   nodes of the successors of BB.  */

static void
cprop_into_successor_phis (basic_block bb, bitmap nonzero_vars)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      tree phi;
      int indx;

      /* If this is an abnormal edge, then we do not want to copy propagate
	 into the PHI alternative associated with this edge.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      phi = phi_nodes (e->dest);
      if (! phi)
	continue;

      indx = e->dest_idx;
      for ( ; phi; phi = PHI_CHAIN (phi))
	{
	  tree new;
	  use_operand_p orig_p;
	  tree orig;

	  /* The alternative may be associated with a constant, so verify
	     it is an SSA_NAME before doing anything with it.  */
	  orig_p = PHI_ARG_DEF_PTR (phi, indx);
	  orig = USE_FROM_PTR (orig_p);
	  if (TREE_CODE (orig) != SSA_NAME)
	    continue;

	  /* If the alternative is known to have a nonzero value, record
	     that fact in the PHI node itself for future use.  */
	  if (bitmap_bit_p (nonzero_vars, SSA_NAME_VERSION (orig)))
	    PHI_ARG_NONZERO (phi, indx) = true;

	  /* If we have *ORIG_P in our constant/copy table, then replace
	     ORIG_P with its value in our constant/copy table.  */
	  new = SSA_NAME_VALUE (orig);
	  if (new
	      && new != orig
	      && (TREE_CODE (new) == SSA_NAME
		  || is_gimple_min_invariant (new))
	      && may_propagate_copy (orig, new))
	    propagate_value (orig_p, new);
	}
    }
}

/* We have finished optimizing BB, record any information implied by
   taking a specific outgoing edge from BB.  */

static void
record_edge_info (basic_block bb)
{
  block_stmt_iterator bsi = bsi_last (bb);
  struct edge_info *edge_info;

  if (! bsi_end_p (bsi))
    {
      tree stmt = bsi_stmt (bsi);

      if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
	{
	  tree cond = SWITCH_COND (stmt);

	  if (TREE_CODE (cond) == SSA_NAME)
	    {
	      tree labels = SWITCH_LABELS (stmt);
	      int i, n_labels = TREE_VEC_LENGTH (labels);
	      tree *info = xcalloc (n_basic_blocks, sizeof (tree));
	      edge e;
	      edge_iterator ei;

	      for (i = 0; i < n_labels; i++)
		{
		  tree label = TREE_VEC_ELT (labels, i);
		  basic_block target_bb = label_to_block (CASE_LABEL (label));

		  if (CASE_HIGH (label)
		      || !CASE_LOW (label)
		      || info[target_bb->index])
		    info[target_bb->index] = error_mark_node;
		  else
		    info[target_bb->index] = label;
		}

	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  basic_block target_bb = e->dest;
		  tree node = info[target_bb->index];

		  if (node != NULL && node != error_mark_node)
		    {
		      tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
		      edge_info = allocate_edge_info (e);
		      edge_info->lhs = cond;
		      edge_info->rhs = x;
		    }
		}
	      free (info);
	    }
	}

      /* A COND_EXPR may create equivalences too.  */
      if (stmt && TREE_CODE (stmt) == COND_EXPR)
	{
	  tree cond = COND_EXPR_COND (stmt);
	  edge true_edge;
	  edge false_edge;

	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

	  /* If the conditional is a single variable 'X', record 'X = 1'
	     for the true edge and 'X = 0' on the false edge.  */
	  if (SSA_VAR_P (cond))
	    {
	      struct edge_info *edge_info;

	      edge_info = allocate_edge_info (true_edge);
	      edge_info->lhs = cond;
	      edge_info->rhs = constant_boolean_node (1, TREE_TYPE (cond));

	      edge_info = allocate_edge_info (false_edge);
	      edge_info->lhs = cond;
	      edge_info->rhs = constant_boolean_node (0, TREE_TYPE (cond));
	    }
	  /* Equality tests may create one or two equivalences.  */
	  else if (COMPARISON_CLASS_P (cond))
	    {
	      tree op0 = TREE_OPERAND (cond, 0);
	      tree op1 = TREE_OPERAND (cond, 1);

	      /* Special case comparing booleans against a constant as we
		 know the value of OP0 on both arms of the branch.  i.e., we
		 can record an equivalence for OP0 rather than COND.  */
	      if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
		  && TREE_CODE (op0) == SSA_NAME
		  && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
		  && is_gimple_min_invariant (op1))
		{
		  if (TREE_CODE (cond) == EQ_EXPR)
		    {
		      edge_info = allocate_edge_info (true_edge);
		      edge_info->lhs = op0;
		      edge_info->rhs = (integer_zerop (op1)
					    ? boolean_false_node
					    : boolean_true_node);

		      edge_info = allocate_edge_info (false_edge);
		      edge_info->lhs = op0;
		      edge_info->rhs = (integer_zerop (op1)
					    ? boolean_true_node
					    : boolean_false_node);
		    }
		  else
		    {
		      edge_info = allocate_edge_info (true_edge);
		      edge_info->lhs = op0;
		      edge_info->rhs = (integer_zerop (op1)
					    ? boolean_true_node
					    : boolean_false_node);

		      edge_info = allocate_edge_info (false_edge);
		      edge_info->lhs = op0;
		      edge_info->rhs = (integer_zerop (op1)
					    ? boolean_false_node
					    : boolean_true_node);
		    }
		}

	      else if (is_gimple_min_invariant (op0)
		       && (TREE_CODE (op1) == SSA_NAME
			   || is_gimple_min_invariant (op1)))
		{
		  tree inverted = invert_truthvalue (cond);
		  struct edge_info *edge_info;

		  edge_info = allocate_edge_info (true_edge);
		  record_conditions (edge_info, cond, inverted);

		  if (TREE_CODE (cond) == EQ_EXPR)
		    {
		      edge_info->lhs = op1;
		      edge_info->rhs = op0;
		    }

		  edge_info = allocate_edge_info (false_edge);
		  record_conditions (edge_info, inverted, cond);

		  if (TREE_CODE (cond) == NE_EXPR)
		    {
		      edge_info->lhs = op1;
		      edge_info->rhs = op0;
		    }
		}

	      else if (TREE_CODE (op0) == SSA_NAME
		       && (is_gimple_min_invariant (op1)
			   || TREE_CODE (op1) == SSA_NAME))
		{
		  tree inverted = invert_truthvalue (cond);
		  struct edge_info *edge_info;

		  edge_info = allocate_edge_info (true_edge);
		  record_conditions (edge_info, cond, inverted);

		  if (TREE_CODE (cond) == EQ_EXPR)
		    {
		      edge_info->lhs = op0;
		      edge_info->rhs = op1;
		    }

		  edge_info = allocate_edge_info (false_edge);
		  record_conditions (edge_info, inverted, cond);

		  if (TREE_CODE (cond) == NE_EXPR)
		    {
		      edge_info->lhs = op0;
		      edge_info->rhs = op1;
		    }
		}
	    }

	  /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
	}
    }
}

/* Propagate information from BB to its outgoing edges.

   This can include equivalency information implied by control statements
   at the end of BB and const/copy propagation into PHIs in BB's
   successor blocks.  */

static void
propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			     basic_block bb)
{
  record_edge_info (bb);
  cprop_into_successor_phis (bb, nonzero_vars);
}

/* Search for redundant computations in STMT.  If any are found, then
   replace them with the variable holding the result of the computation.

   If safe, record this expression into the available expression hash
   table.  */

static bool
eliminate_redundant_computations (struct dom_walk_data *walk_data,
				  tree stmt, stmt_ann_t ann)
{
  v_may_def_optype v_may_defs = V_MAY_DEF_OPS (ann);
  tree *expr_p, def = NULL_TREE;
  bool insert = true;
  tree cached_lhs;
  bool retval = false;

  if (TREE_CODE (stmt) == MODIFY_EXPR)
    def = TREE_OPERAND (stmt, 0);

  /* Certain expressions on the RHS can be optimized away, but can not
     themselves be entered into the hash tables.  */
  if (ann->makes_aliased_stores
      || ! def
      || TREE_CODE (def) != SSA_NAME
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
      || NUM_V_MAY_DEFS (v_may_defs) != 0
      /* Do not record equivalences for increments of ivs.  This would create
	 overlapping live ranges for a very questionable gain.  */
      || simple_iv_increment_p (stmt))
    insert = false;

  /* Check if the expression has been computed before.  */
  cached_lhs = lookup_avail_expr (stmt, insert);

  /* If this is an assignment and the RHS was not in the hash table,
     then try to simplify the RHS and lookup the new RHS in the
     hash table.  */
  if (! cached_lhs && TREE_CODE (stmt) == MODIFY_EXPR)
    cached_lhs = simplify_rhs_and_lookup_avail_expr (walk_data, stmt, insert);
  /* Similarly if this is a COND_EXPR and we did not find its
     expression in the hash table, simplify the condition and
     try again.  */
  else if (! cached_lhs && TREE_CODE (stmt) == COND_EXPR)
    cached_lhs = simplify_cond_and_lookup_avail_expr (stmt, ann, insert);
  /* Similarly for a SWITCH_EXPR.  */
  else if (!cached_lhs && TREE_CODE (stmt) == SWITCH_EXPR)
    cached_lhs = simplify_switch_and_lookup_avail_expr (stmt, insert);

  opt_stats.num_exprs_considered++;

  /* Get a pointer to the expression we are trying to optimize.  */
  if (TREE_CODE (stmt) == COND_EXPR)
    expr_p = &COND_EXPR_COND (stmt);
  else if (TREE_CODE (stmt) == SWITCH_EXPR)
    expr_p = &SWITCH_COND (stmt);
  else if (TREE_CODE (stmt) == RETURN_EXPR && TREE_OPERAND (stmt, 0))
    expr_p = &TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
  else
    expr_p = &TREE_OPERAND (stmt, 1);

  /* It is safe to ignore types here since we have already done
     type checking in the hashing and equality routines.  In fact
     type checking here merely gets in the way of constant
     propagation.  Also, make sure that it is safe to propagate
     CACHED_LHS into *EXPR_P.  */
  if (cached_lhs
      && (TREE_CODE (cached_lhs) != SSA_NAME
	  || may_propagate_copy (*expr_p, cached_lhs)))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced redundant expr '");
	  print_generic_expr (dump_file, *expr_p, dump_flags);
	  fprintf (dump_file, "' with '");
	  print_generic_expr (dump_file, cached_lhs, dump_flags);
	   fprintf (dump_file, "'\n");
	}

      opt_stats.num_re++;

#if defined ENABLE_CHECKING
      gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
		  || is_gimple_min_invariant (cached_lhs));
#endif

      if (TREE_CODE (cached_lhs) == ADDR_EXPR
	  || (POINTER_TYPE_P (TREE_TYPE (*expr_p))
	      && is_gimple_min_invariant (cached_lhs)))
	retval = true;

      propagate_tree_value (expr_p, cached_lhs);
      mark_stmt_modified (stmt);
    }
  return retval;
}

/* STMT, a MODIFY_EXPR, may create certain equivalences, in either
   the available expressions table or the const_and_copies table.
   Detect and record those equivalences.  */

static void
record_equivalences_from_stmt (tree stmt,
			       int may_optimize_p,
			       stmt_ann_t ann)
{
  tree lhs = TREE_OPERAND (stmt, 0);
  enum tree_code lhs_code = TREE_CODE (lhs);
  int i;

  if (lhs_code == SSA_NAME)
    {
      tree rhs = TREE_OPERAND (stmt, 1);

      /* Strip away any useless type conversions.  */
      STRIP_USELESS_TYPE_CONVERSION (rhs);

      /* If the RHS of the assignment is a constant or another variable that
	 may be propagated, register it in the CONST_AND_COPIES table.  We
	 do not need to record unwind data for this, since this is a true
	 assignment and not an equivalence inferred from a comparison.  All
	 uses of this ssa name are dominated by this assignment, so unwinding
	 just costs time and space.  */
      if (may_optimize_p
	  && (TREE_CODE (rhs) == SSA_NAME
	      || is_gimple_min_invariant (rhs)))
	SSA_NAME_VALUE (lhs) = rhs;

      if (expr_computes_nonzero (rhs))
	record_var_is_nonzero (lhs);
    }

  /* Look at both sides for pointer dereferences.  If we find one, then
     the pointer must be nonnull and we can enter that equivalence into
     the hash tables.  */
  if (flag_delete_null_pointer_checks)
    for (i = 0; i < 2; i++)
      {
	tree t = TREE_OPERAND (stmt, i);

	/* Strip away any COMPONENT_REFs.  */
	while (TREE_CODE (t) == COMPONENT_REF)
	  t = TREE_OPERAND (t, 0);

	/* Now see if this is a pointer dereference.  */
	if (INDIRECT_REF_P (t))
          {
	    tree op = TREE_OPERAND (t, 0);

	    /* If the pointer is a SSA variable, then enter new
	       equivalences into the hash table.  */
	    while (TREE_CODE (op) == SSA_NAME)
	      {
		tree def = SSA_NAME_DEF_STMT (op);

		record_var_is_nonzero (op);

		/* And walk up the USE-DEF chains noting other SSA_NAMEs
		   which are known to have a nonzero value.  */
		if (def
		    && TREE_CODE (def) == MODIFY_EXPR
		    && TREE_CODE (TREE_OPERAND (def, 1)) == NOP_EXPR)
		  op = TREE_OPERAND (TREE_OPERAND (def, 1), 0);
		else
		  break;
	      }
	  }
      }

  /* A memory store, even an aliased store, creates a useful
     equivalence.  By exchanging the LHS and RHS, creating suitable
     vops and recording the result in the available expression table,
     we may be able to expose more redundant loads.  */
  if (!ann->has_volatile_ops
      && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
	  || is_gimple_min_invariant (TREE_OPERAND (stmt, 1)))
      && !is_gimple_reg (lhs))
    {
      tree rhs = TREE_OPERAND (stmt, 1);
      tree new;

      /* FIXME: If the LHS of the assignment is a bitfield and the RHS
         is a constant, we need to adjust the constant to fit into the
         type of the LHS.  If the LHS is a bitfield and the RHS is not
	 a constant, then we can not record any equivalences for this
	 statement since we would need to represent the widening or
	 narrowing of RHS.  This fixes gcc.c-torture/execute/921016-1.c
	 and should not be necessary if GCC represented bitfields
	 properly.  */
      if (lhs_code == COMPONENT_REF
	  && DECL_BIT_FIELD (TREE_OPERAND (lhs, 1)))
	{
	  if (TREE_CONSTANT (rhs))
	    rhs = widen_bitfield (rhs, TREE_OPERAND (lhs, 1), lhs);
	  else
	    rhs = NULL;

	  /* If the value overflowed, then we can not use this equivalence.  */
	  if (rhs && ! is_gimple_min_invariant (rhs))
	    rhs = NULL;
	}

      if (rhs)
	{
	  /* Build a new statement with the RHS and LHS exchanged.  */
	  new = build (MODIFY_EXPR, TREE_TYPE (stmt), rhs, lhs);

	  create_ssa_artficial_load_stmt (&(ann->operands), new);

	  /* Finally enter the statement into the available expression
	     table.  */
	  lookup_avail_expr (new, true);
	}
    }
}

/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
   CONST_AND_COPIES.  */

static bool
cprop_operand (tree stmt, use_operand_p op_p)
{
  bool may_have_exposed_new_symbols = false;
  tree val;
  tree op = USE_FROM_PTR (op_p);

  /* If the operand has a known constant value or it is known to be a
     copy of some other variable, use the value or copy stored in
     CONST_AND_COPIES.  */
  val = SSA_NAME_VALUE (op);
  if (val && val != op && TREE_CODE (val) != VALUE_HANDLE)
    {
      tree op_type, val_type;

      /* Do not change the base variable in the virtual operand
	 tables.  That would make it impossible to reconstruct
	 the renamed virtual operand if we later modify this
	 statement.  Also only allow the new value to be an SSA_NAME
	 for propagation into virtual operands.  */
      if (!is_gimple_reg (op)
	  && (TREE_CODE (val) != SSA_NAME
	      || is_gimple_reg (val)
	      || get_virtual_var (val) != get_virtual_var (op)))
	return false;

      /* Do not replace hard register operands in asm statements.  */
      if (TREE_CODE (stmt) == ASM_EXPR
	  && !may_propagate_copy_into_asm (op))
	return false;

      /* Get the toplevel type of each operand.  */
      op_type = TREE_TYPE (op);
      val_type = TREE_TYPE (val);

      /* While both types are pointers, get the type of the object
	 pointed to.  */
      while (POINTER_TYPE_P (op_type) && POINTER_TYPE_P (val_type))
	{
	  op_type = TREE_TYPE (op_type);
	  val_type = TREE_TYPE (val_type);
	}

      /* Make sure underlying types match before propagating a constant by
	 converting the constant to the proper type.  Note that convert may
	 return a non-gimple expression, in which case we ignore this
	 propagation opportunity.  */
      if (TREE_CODE (val) != SSA_NAME)
	{
	  if (!lang_hooks.types_compatible_p (op_type, val_type))
	    {
	      val = fold_convert (TREE_TYPE (op), val);
	      if (!is_gimple_min_invariant (val))
		return false;
	    }
	}

      /* Certain operands are not allowed to be copy propagated due
	 to their interaction with exception handling and some GCC
	 extensions.  */
      else if (!may_propagate_copy (op, val))
	return false;
      
      /* Do not propagate copies if the propagated value is at a deeper loop
	 depth than the propagatee.  Otherwise, this may move loop variant
	 variables outside of their loops and prevent coalescing
	 opportunities.  If the value was loop invariant, it will be hoisted
	 by LICM and exposed for copy propagation.  */
      if (loop_depth_of_name (val) > loop_depth_of_name (op))
	return false;

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced '");
	  print_generic_expr (dump_file, op, dump_flags);
	  fprintf (dump_file, "' with %s '",
		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
	  print_generic_expr (dump_file, val, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      /* If VAL is an ADDR_EXPR or a constant of pointer type, note
	 that we may have exposed a new symbol for SSA renaming.  */
      if (TREE_CODE (val) == ADDR_EXPR
	  || (POINTER_TYPE_P (TREE_TYPE (op))
	      && is_gimple_min_invariant (val)))
	may_have_exposed_new_symbols = true;

      if (TREE_CODE (val) != SSA_NAME)
	opt_stats.num_const_prop++;
      else
	opt_stats.num_copy_prop++;

      propagate_value (op_p, val);

      /* And note that we modified this statement.  This is now
	 safe, even if we changed virtual operands since we will
	 rescan the statement and rewrite its operands again.  */
      mark_stmt_modified (stmt);
    }
  return may_have_exposed_new_symbols;
}

/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).  

   Propagate values from CONST_AND_COPIES into the uses, vuses and
   v_may_def_ops of STMT.  */

static bool
cprop_into_stmt (tree stmt)
{
  bool may_have_exposed_new_symbols = false;
  use_operand_p op_p;
  ssa_op_iter iter;
  tree rhs;

  FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
    {
      if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
	may_have_exposed_new_symbols |= cprop_operand (stmt, op_p);
    }

  if (may_have_exposed_new_symbols)
    {
      rhs = get_rhs (stmt);
      if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
	recompute_tree_invarant_for_addr_expr (rhs);
    }

  return may_have_exposed_new_symbols;
}


/* Optimize the statement pointed by iterator SI.
   
   We try to perform some simplistic global redundancy elimination and
   constant propagation:

   1- To detect global redundancy, we keep track of expressions that have
      been computed in this block and its dominators.  If we find that the
      same expression is computed more than once, we eliminate repeated
      computations by using the target of the first one.

   2- Constant values and copy assignments.  This is used to do very
      simplistic constant and copy propagation.  When a constant or copy
      assignment is found, we map the value on the RHS of the assignment to
      the variable in the LHS in the CONST_AND_COPIES table.  */

static void
optimize_stmt (struct dom_walk_data *walk_data, basic_block bb,
	       block_stmt_iterator si)
{
  stmt_ann_t ann;
  tree stmt;
  bool may_optimize_p;
  bool may_have_exposed_new_symbols = false;

  stmt = bsi_stmt (si);

  update_stmt_if_modified (stmt);
  ann = stmt_ann (stmt);
  opt_stats.num_stmts++;
  may_have_exposed_new_symbols = false;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Optimizing statement ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
    }

  /* Const/copy propagate into USES, VUSES and the RHS of V_MAY_DEFs.  */
  may_have_exposed_new_symbols = cprop_into_stmt (stmt);

  /* If the statement has been modified with constant replacements,
     fold its RHS before checking for redundant computations.  */
  if (ann->modified)
    {
      /* Try to fold the statement making sure that STMT is kept
	 up to date.  */
      if (fold_stmt (bsi_stmt_ptr (si)))
	{
	  stmt = bsi_stmt (si);
	  ann = stmt_ann (stmt);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "  Folded to: ");
	      print_generic_stmt (dump_file, stmt, TDF_SLIM);
	    }
	}

      /* Constant/copy propagation above may change the set of 
	 virtual operands associated with this statement.  Folding
	 may remove the need for some virtual operands.

	 Indicate we will need to rescan and rewrite the statement.  */
      may_have_exposed_new_symbols = true;
    }

  /* Check for redundant computations.  Do this optimization only
     for assignments that have no volatile ops and conditionals.  */
  may_optimize_p = (!ann->has_volatile_ops
		    && ((TREE_CODE (stmt) == RETURN_EXPR
			 && TREE_OPERAND (stmt, 0)
			 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
			 && ! (TREE_SIDE_EFFECTS
			       (TREE_OPERAND (TREE_OPERAND (stmt, 0), 1))))
			|| (TREE_CODE (stmt) == MODIFY_EXPR
			    && ! TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
			|| TREE_CODE (stmt) == COND_EXPR
			|| TREE_CODE (stmt) == SWITCH_EXPR));

  if (may_optimize_p)
    may_have_exposed_new_symbols
      |= eliminate_redundant_computations (walk_data, stmt, ann);

  /* Record any additional equivalences created by this statement.  */
  if (TREE_CODE (stmt) == MODIFY_EXPR)
    record_equivalences_from_stmt (stmt,
				   may_optimize_p,
				   ann);

  /* If STMT is a COND_EXPR and it was modified, then we may know
     where it goes.  If that is the case, then mark the CFG as altered.

     This will cause us to later call remove_unreachable_blocks and
     cleanup_tree_cfg when it is safe to do so.  It is not safe to 
     clean things up here since removal of edges and such can trigger
     the removal of PHI nodes, which in turn can release SSA_NAMEs to
     the manager.

     That's all fine and good, except that once SSA_NAMEs are released
     to the manager, we must not call create_ssa_name until all references
     to released SSA_NAMEs have been eliminated.

     All references to the deleted SSA_NAMEs can not be eliminated until
     we remove unreachable blocks.

     We can not remove unreachable blocks until after we have completed
     any queued jump threading.

     We can not complete any queued jump threads until we have taken
     appropriate variables out of SSA form.  Taking variables out of
     SSA form can call create_ssa_name and thus we lose.

     Ultimately I suspect we're going to need to change the interface
     into the SSA_NAME manager.  */

  if (ann->modified)
    {
      tree val = NULL;

      if (TREE_CODE (stmt) == COND_EXPR)
	val = COND_EXPR_COND (stmt);
      else if (TREE_CODE (stmt) == SWITCH_EXPR)
	val = SWITCH_COND (stmt);

      if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
	cfg_altered = true;

      /* If we simplified a statement in such a way as to be shown that it
	 cannot trap, update the eh information and the cfg to match.  */
      if (maybe_clean_eh_stmt (stmt))
	{
	  bitmap_set_bit (need_eh_cleanup, bb->index);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
	}
    }

  if (may_have_exposed_new_symbols)
    VEC_safe_push (tree, heap, stmts_to_rescan, bsi_stmt (si));
}

/* Replace the RHS of STMT with NEW_RHS.  If RHS can be found in the
   available expression hashtable, then return the LHS from the hash
   table.

   If INSERT is true, then we also update the available expression
   hash table to account for the changes made to STMT.  */

static tree
update_rhs_and_lookup_avail_expr (tree stmt, tree new_rhs, bool insert)
{
  tree cached_lhs = NULL;

  /* Remove the old entry from the hash table.  */
  if (insert)
    {
      struct expr_hash_elt element;

      initialize_hash_element (stmt, NULL, &element);
      htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
    }

  /* Now update the RHS of the assignment.  */
  TREE_OPERAND (stmt, 1) = new_rhs;

  /* Now lookup the updated statement in the hash table.  */
  cached_lhs = lookup_avail_expr (stmt, insert);

  /* We have now called lookup_avail_expr twice with two different
     versions of this same statement, once in optimize_stmt, once here.

     We know the call in optimize_stmt did not find an existing entry
     in the hash table, so a new entry was created.  At the same time
     this statement was pushed onto the AVAIL_EXPRS_STACK vector. 

     If this call failed to find an existing entry on the hash table,
     then the new version of this statement was entered into the
     hash table.  And this statement was pushed onto BLOCK_AVAIL_EXPR
     for the second time.  So there are two copies on BLOCK_AVAIL_EXPRs

     If this call succeeded, we still have one copy of this statement
     on the BLOCK_AVAIL_EXPRs vector.

     For both cases, we need to pop the most recent entry off the
     BLOCK_AVAIL_EXPRs vector.  For the case where we never found this
     statement in the hash tables, that will leave precisely one
     copy of this statement on BLOCK_AVAIL_EXPRs.  For the case where
     we found a copy of this statement in the second hash table lookup
     we want _no_ copies of this statement in BLOCK_AVAIL_EXPRs.  */
  if (insert)
    VEC_pop (tree, avail_exprs_stack);

  /* And make sure we record the fact that we modified this
     statement.  */
  mark_stmt_modified (stmt);

  return cached_lhs;
}

/* Search for an existing instance of STMT in the AVAIL_EXPRS table.  If
   found, return its LHS. Otherwise insert STMT in the table and return
   NULL_TREE.

   Also, when an expression is first inserted in the AVAIL_EXPRS table, it
   is also added to the stack pointed by BLOCK_AVAIL_EXPRS_P, so that they
   can be removed when we finish processing this block and its children.

   NOTE: This function assumes that STMT is a MODIFY_EXPR node that
   contains no CALL_EXPR on its RHS and makes no volatile nor
   aliased references.  */

static tree
lookup_avail_expr (tree stmt, bool insert)
{
  void **slot;
  tree lhs;
  tree temp;
  struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));

  lhs = TREE_CODE (stmt) == MODIFY_EXPR ? TREE_OPERAND (stmt, 0) : NULL;

  initialize_hash_element (stmt, lhs, element);

  /* Don't bother remembering constant assignments and copy operations.
     Constants and copy operations are handled by the constant/copy propagator
     in optimize_stmt.  */
  if (TREE_CODE (element->rhs) == SSA_NAME
      || is_gimple_min_invariant (element->rhs))
    {
      free (element);
      return NULL_TREE;
    }

  /* If this is an equality test against zero, see if we have recorded a
     nonzero value for the variable in question.  */
  if ((TREE_CODE (element->rhs) == EQ_EXPR
       || TREE_CODE  (element->rhs) == NE_EXPR)
      && TREE_CODE (TREE_OPERAND (element->rhs, 0)) == SSA_NAME
      && integer_zerop (TREE_OPERAND (element->rhs, 1)))
    {
      int indx = SSA_NAME_VERSION (TREE_OPERAND (element->rhs, 0));

      if (bitmap_bit_p (nonzero_vars, indx))
	{
	  tree t = element->rhs;
	  free (element);

	  if (TREE_CODE (t) == EQ_EXPR)
	    return boolean_false_node;
	  else
	    return boolean_true_node;
	}
    }

  /* Finally try to find the expression in the main expression hash table.  */
  slot = htab_find_slot_with_hash (avail_exprs, element, element->hash,
				   (insert ? INSERT : NO_INSERT));
  if (slot == NULL)
    {
      free (element);
      return NULL_TREE;
    }

  if (*slot == NULL)
    {
      *slot = (void *) element;
      VEC_safe_push (tree, heap, avail_exprs_stack,
		     stmt ? stmt : element->rhs);
      return NULL_TREE;
    }

  /* Extract the LHS of the assignment so that it can be used as the current
     definition of another variable.  */
  lhs = ((struct expr_hash_elt *)*slot)->lhs;

  /* See if the LHS appears in the CONST_AND_COPIES table.  If it does, then
     use the value from the const_and_copies table.  */
  if (TREE_CODE (lhs) == SSA_NAME)
    {
      temp = SSA_NAME_VALUE (lhs);
      if (temp && TREE_CODE (temp) != VALUE_HANDLE)
	lhs = temp;
    }

  free (element);
  return lhs;
}

/* Given a condition COND, record into HI_P, LO_P and INVERTED_P the
   range of values that result in the conditional having a true value.

   Return true if we are successful in extracting a range from COND and
   false if we are unsuccessful.  */

static bool
extract_range_from_cond (tree cond, tree *hi_p, tree *lo_p, int *inverted_p)
{
  tree op1 = TREE_OPERAND (cond, 1);
  tree high, low, type;
  int inverted;

  type = TREE_TYPE (op1);

  /* Experiments have shown that it's rarely, if ever useful to
     record ranges for enumerations.  Presumably this is due to
     the fact that they're rarely used directly.  They are typically
     cast into an integer type and used that way.  */
  if (TREE_CODE (type) != INTEGER_TYPE
      /* We don't know how to deal with types with variable bounds.  */
      || TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST
      || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST)
    return 0;

  switch (TREE_CODE (cond))
    {
    case EQ_EXPR:
      high = low = op1;
      inverted = 0;
      break;

    case NE_EXPR:
      high = low = op1;
      inverted = 1;
      break;

    case GE_EXPR:
      low = op1;
      high = TYPE_MAX_VALUE (type);
      inverted = 0;
      break;

    case GT_EXPR:
      high = TYPE_MAX_VALUE (type);
      if (!tree_int_cst_lt (op1, high))
	return 0;
      low = int_const_binop (PLUS_EXPR, op1, integer_one_node, 1);
      inverted = 0;
      break;

    case LE_EXPR:
      high = op1;
      low = TYPE_MIN_VALUE (type);
      inverted = 0;
      break;

    case LT_EXPR:
      low = TYPE_MIN_VALUE (type);
      if (!tree_int_cst_lt (low, op1))
	return 0;
      high = int_const_binop (MINUS_EXPR, op1, integer_one_node, 1);
      inverted = 0;
      break;

    default:
      return 0;
    }

  *hi_p = high;
  *lo_p = low;
  *inverted_p = inverted;
  return 1;
}

/* Record a range created by COND for basic block BB.  */

static void
record_range (tree cond, basic_block bb)
{
  enum tree_code code = TREE_CODE (cond);

  /* We explicitly ignore NE_EXPRs and all the unordered comparisons.
     They rarely allow for meaningful range optimizations and significantly
     complicate the implementation.  */
  if ((code == LT_EXPR || code == LE_EXPR || code == GT_EXPR
       || code == GE_EXPR || code == EQ_EXPR)
      && TREE_CODE (TREE_TYPE (TREE_OPERAND (cond, 1))) == INTEGER_TYPE)
    {
      struct vrp_hash_elt *vrp_hash_elt;
      struct vrp_element *element;
      varray_type *vrp_records_p;
      void **slot;


      vrp_hash_elt = xmalloc (sizeof (struct vrp_hash_elt));
      vrp_hash_elt->var = TREE_OPERAND (cond, 0);
      vrp_hash_elt->records = NULL;
      slot = htab_find_slot (vrp_data, vrp_hash_elt, INSERT);

      if (*slot == NULL)
	*slot = (void *) vrp_hash_elt;
      else
	free (vrp_hash_elt);

      vrp_hash_elt = (struct vrp_hash_elt *) *slot;
      vrp_records_p = &vrp_hash_elt->records;

      element = ggc_alloc (sizeof (struct vrp_element));
      element->low = NULL;
      element->high = NULL;
      element->cond = cond;
      element->bb = bb;

      if (*vrp_records_p == NULL)
	VARRAY_GENERIC_PTR_INIT (*vrp_records_p, 2, "vrp records");
      
      VARRAY_PUSH_GENERIC_PTR (*vrp_records_p, element);
      VEC_safe_push (tree, heap, vrp_variables_stack, TREE_OPERAND (cond, 0));
    }
}

/* Hashing and equality functions for VRP_DATA.

   Since this hash table is addressed by SSA_NAMEs, we can hash on
   their version number and equality can be determined with a 
   pointer comparison.  */

static hashval_t
vrp_hash (const void *p)
{
  tree var = ((struct vrp_hash_elt *)p)->var;

  return SSA_NAME_VERSION (var);
}

static int
vrp_eq (const void *p1, const void *p2)
{
  tree var1 = ((struct vrp_hash_elt *)p1)->var;
  tree var2 = ((struct vrp_hash_elt *)p2)->var;

  return var1 == var2;
}

/* Hashing and equality functions for AVAIL_EXPRS.  The table stores
   MODIFY_EXPR statements.  We compute a value number for expressions using
   the code of the expression and the SSA numbers of its operands.  */

static hashval_t
avail_expr_hash (const void *p)
{
  stmt_ann_t ann = ((struct expr_hash_elt *)p)->ann;
  tree rhs = ((struct expr_hash_elt *)p)->rhs;
  hashval_t val = 0;
  size_t i;
  vuse_optype vuses;

  /* iterative_hash_expr knows how to deal with any expression and
     deals with commutative operators as well, so just use it instead
     of duplicating such complexities here.  */
  val = iterative_hash_expr (rhs, val);

  /* If the hash table entry is not associated with a statement, then we
     can just hash the expression and not worry about virtual operands
     and such.  */
  if (!ann)
    return val;

  /* Add the SSA version numbers of every vuse operand.  This is important
     because compound variables like arrays are not renamed in the
     operands.  Rather, the rename is done on the virtual variable
     representing all the elements of the array.  */
  vuses = VUSE_OPS (ann);
  for (i = 0; i < NUM_VUSES (vuses); i++)
    val = iterative_hash_expr (VUSE_OP (vuses, i), val);

  return val;
}

static hashval_t
real_avail_expr_hash (const void *p)
{
  return ((const struct expr_hash_elt *)p)->hash;
}

static int
avail_expr_eq (const void *p1, const void *p2)
{
  stmt_ann_t ann1 = ((struct expr_hash_elt *)p1)->ann;
  tree rhs1 = ((struct expr_hash_elt *)p1)->rhs;
  stmt_ann_t ann2 = ((struct expr_hash_elt *)p2)->ann;
  tree rhs2 = ((struct expr_hash_elt *)p2)->rhs;

  /* If they are the same physical expression, return true.  */
  if (rhs1 == rhs2 && ann1 == ann2)
    return true;

  /* If their codes are not equal, then quit now.  */
  if (TREE_CODE (rhs1) != TREE_CODE (rhs2))
    return false;

  /* In case of a collision, both RHS have to be identical and have the
     same VUSE operands.  */
  if ((TREE_TYPE (rhs1) == TREE_TYPE (rhs2)
       || lang_hooks.types_compatible_p (TREE_TYPE (rhs1), TREE_TYPE (rhs2)))
      && operand_equal_p (rhs1, rhs2, OEP_PURE_SAME))
    {
      vuse_optype ops1 = NULL;
      vuse_optype ops2 = NULL;
      size_t num_ops1 = 0;
      size_t num_ops2 = 0;
      size_t i;

      if (ann1)
	{
	  ops1 = VUSE_OPS (ann1);
	  num_ops1 = NUM_VUSES (ops1);
	}

      if (ann2)
	{
	  ops2 = VUSE_OPS (ann2);
	  num_ops2 = NUM_VUSES (ops2);
	}

      /* If the number of virtual uses is different, then we consider
	 them not equal.  */
      if (num_ops1 != num_ops2)
	return false;

      for (i = 0; i < num_ops1; i++)
	if (VUSE_OP (ops1, i) != VUSE_OP (ops2, i))
	  return false;

      gcc_assert (((struct expr_hash_elt *)p1)->hash
		  == ((struct expr_hash_elt *)p2)->hash);
      return true;
    }

  return false;
}