summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dse.c
blob: d8f7089786a64718235043e30f33bcde43c9100c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
/* Dead and redundant store elimination
   Copyright (C) 2004-2019 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "domwalk.h"
#include "tree-cfgcleanup.h"
#include "params.h"
#include "alias.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-dse.h"

/* This file implements dead store elimination.

   A dead store is a store into a memory location which will later be
   overwritten by another store without any intervening loads.  In this
   case the earlier store can be deleted or trimmed if the store
   was partially dead.

   A redundant store is a store into a memory location which stores
   the exact same value as a prior store to the same memory location.
   While this can often be handled by dead store elimination, removing
   the redundant store is often better than removing or trimming the
   dead store.

   In our SSA + virtual operand world we use immediate uses of virtual
   operands to detect these cases.  If a store's virtual definition
   is used precisely once by a later store to the same location which
   post dominates the first store, then the first store is dead.  If
   the data stored is the same, then the second store is redundant.

   The single use of the store's virtual definition ensures that
   there are no intervening aliased loads and the requirement that
   the second load post dominate the first ensures that if the earlier
   store executes, then the later stores will execute before the function
   exits.

   It may help to think of this as first moving the earlier store to
   the point immediately before the later store.  Again, the single
   use of the virtual definition and the post-dominance relationship
   ensure that such movement would be safe.  Clearly if there are
   back to back stores, then the second is makes the first dead.  If
   the second store stores the same value, then the second store is
   redundant.

   Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
   may also help in understanding this code since it discusses the
   relationship between dead store and redundant load elimination.  In
   fact, they are the same transformation applied to different views of
   the CFG.  */

void delete_dead_or_redundant_assignment (gimple_stmt_iterator *, const char *);
static void delete_dead_or_redundant_call (gimple_stmt_iterator *, const char *);

/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;

/* STMT is a statement that may write into memory.  Analyze it and
   initialize WRITE to describe how STMT affects memory.

   Return TRUE if the the statement was analyzed, FALSE otherwise.

   It is always safe to return FALSE.  But typically better optimziation
   can be achieved by analyzing more statements.  */

static bool
initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
{
  /* It's advantageous to handle certain mem* functions.  */
  if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
    {
      switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
	{
	case BUILT_IN_MEMCPY:
	case BUILT_IN_MEMMOVE:
	case BUILT_IN_MEMSET:
	case BUILT_IN_MEMCPY_CHK:
	case BUILT_IN_MEMMOVE_CHK:
	case BUILT_IN_MEMSET_CHK:
	case BUILT_IN_STRNCPY:
	case BUILT_IN_STRNCPY_CHK:
	  {
	    tree size = gimple_call_arg (stmt, 2);
	    tree ptr = gimple_call_arg (stmt, 0);
	    ao_ref_init_from_ptr_and_size (write, ptr, size);
	    return true;
	  }

	/* A calloc call can never be dead, but it can make
	   subsequent stores redundant if they store 0 into
	   the same memory locations.  */
	case BUILT_IN_CALLOC:
	  {
	    tree nelem = gimple_call_arg (stmt, 0);
	    tree selem = gimple_call_arg (stmt, 1);
	    tree lhs;
	    if (TREE_CODE (nelem) == INTEGER_CST
		&& TREE_CODE (selem) == INTEGER_CST
		&& (lhs = gimple_call_lhs (stmt)) != NULL_TREE)
	      {
		tree size = fold_build2 (MULT_EXPR, TREE_TYPE (nelem),
					 nelem, selem);
		ao_ref_init_from_ptr_and_size (write, lhs, size);
		return true;
	      }
	  }

	default:
	  break;
	}
    }
  else if (is_gimple_assign (stmt))
    {
      ao_ref_init (write, gimple_assign_lhs (stmt));
      return true;
    }
  return false;
}

/* Given REF from the the alias oracle, return TRUE if it is a valid
   memory reference for dead store elimination, false otherwise.

   In particular, the reference must have a known base, known maximum
   size, start at a byte offset and have a size that is one or more
   bytes.  */

static bool
valid_ao_ref_for_dse (ao_ref *ref)
{
  return (ao_ref_base (ref)
	  && known_size_p (ref->max_size)
	  && maybe_ne (ref->size, 0)
	  && known_eq (ref->max_size, ref->size)
	  && known_ge (ref->offset, 0)
	  && multiple_p (ref->offset, BITS_PER_UNIT)
	  && multiple_p (ref->size, BITS_PER_UNIT));
}

/* Try to normalize COPY (an ao_ref) relative to REF.  Essentially when we are
   done COPY will only refer bytes found within REF.  Return true if COPY
   is known to intersect at least one byte of REF.  */

static bool
normalize_ref (ao_ref *copy, ao_ref *ref)
{
  if (!ordered_p (copy->offset, ref->offset))
    return false;

  /* If COPY starts before REF, then reset the beginning of
     COPY to match REF and decrease the size of COPY by the
     number of bytes removed from COPY.  */
  if (maybe_lt (copy->offset, ref->offset))
    {
      poly_int64 diff = ref->offset - copy->offset;
      if (maybe_le (copy->size, diff))
	return false;
      copy->size -= diff;
      copy->offset = ref->offset;
    }

  poly_int64 diff = copy->offset - ref->offset;
  if (maybe_le (ref->size, diff))
    return false;

  /* If COPY extends beyond REF, chop off its size appropriately.  */
  poly_int64 limit = ref->size - diff;
  if (!ordered_p (limit, copy->size))
    return false;

  if (maybe_gt (copy->size, limit))
    copy->size = limit;
  return true;
}

/* Clear any bytes written by STMT from the bitmap LIVE_BYTES.  The base
   address written by STMT must match the one found in REF, which must
   have its base address previously initialized.

   This routine must be conservative.  If we don't know the offset or
   actual size written, assume nothing was written.  */

static void
clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
{
  ao_ref write;
  if (!initialize_ao_ref_for_dse (stmt, &write))
    return;

  /* Verify we have the same base memory address, the write
     has a known size and overlaps with REF.  */
  HOST_WIDE_INT start, size;
  if (valid_ao_ref_for_dse (&write)
      && operand_equal_p (write.base, ref->base, OEP_ADDRESS_OF)
      && known_eq (write.size, write.max_size)
      && normalize_ref (&write, ref)
      && (write.offset - ref->offset).is_constant (&start)
      && write.size.is_constant (&size))
    bitmap_clear_range (live_bytes, start / BITS_PER_UNIT,
			size / BITS_PER_UNIT);
}

/* REF is a memory write.  Extract relevant information from it and
   initialize the LIVE_BYTES bitmap.  If successful, return TRUE.
   Otherwise return FALSE.  */

static bool
setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
{
  HOST_WIDE_INT const_size;
  if (valid_ao_ref_for_dse (ref)
      && ref->size.is_constant (&const_size)
      && (const_size / BITS_PER_UNIT
	  <= PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)))
    {
      bitmap_clear (live_bytes);
      bitmap_set_range (live_bytes, 0, const_size / BITS_PER_UNIT);
      return true;
    }
  return false;
}

/* Compute the number of elements that we can trim from the head and
   tail of ORIG resulting in a bitmap that is a superset of LIVE.

   Store the number of elements trimmed from the head and tail in
   TRIM_HEAD and TRIM_TAIL.

   STMT is the statement being trimmed and is used for debugging dump
   output only.  */

static void
compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
	       gimple *stmt)
{
  /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
     extends through ref->size.  So we know that in the original bitmap
     bits 0..ref->size were true.  We don't actually need the bitmap, just
     the REF to compute the trims.  */

  /* Now identify how much, if any of the tail we can chop off.  */
  HOST_WIDE_INT const_size;
  int last_live = bitmap_last_set_bit (live);
  if (ref->size.is_constant (&const_size))
    {
      int last_orig = (const_size / BITS_PER_UNIT) - 1;
      /* We can leave inconvenient amounts on the tail as
	 residual handling in mem* and str* functions is usually
	 reasonably efficient.  */
      *trim_tail = last_orig - last_live;

      /* But don't trim away out of bounds accesses, as this defeats
	 proper warnings.

	 We could have a type with no TYPE_SIZE_UNIT or we could have a VLA
	 where TYPE_SIZE_UNIT is not a constant.  */
      if (*trim_tail
	  && TYPE_SIZE_UNIT (TREE_TYPE (ref->base))
	  && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref->base))) == INTEGER_CST
	  && compare_tree_int (TYPE_SIZE_UNIT (TREE_TYPE (ref->base)),
			       last_orig) <= 0)
	*trim_tail = 0;
    }
  else
    *trim_tail = 0;

  /* Identify how much, if any of the head we can chop off.  */
  int first_orig = 0;
  int first_live = bitmap_first_set_bit (live);
  *trim_head = first_live - first_orig;

  /* If more than a word remains, then make sure to keep the
     starting point at least word aligned.  */
  if (last_live - first_live > UNITS_PER_WORD)
    *trim_head &= ~(UNITS_PER_WORD - 1);

  if ((*trim_head || *trim_tail)
      && dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Trimming statement (head = %d, tail = %d): ",
	       *trim_head, *trim_tail);
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }
}

/* STMT initializes an object from COMPLEX_CST where one or more of the
   bytes written may be dead stores.  REF is a representation of the
   memory written.  LIVE is the bitmap of stores that are actually live.

   Attempt to rewrite STMT so that only the real or imaginary part of
   the object is actually stored.  */

static void
maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
  int trim_head, trim_tail;
  compute_trims (ref, live, &trim_head, &trim_tail, stmt);

  /* The amount of data trimmed from the head or tail must be at
     least half the size of the object to ensure we're trimming
     the entire real or imaginary half.  By writing things this
     way we avoid more O(n) bitmap operations.  */
  if (known_ge (trim_tail * 2 * BITS_PER_UNIT, ref->size))
    {
      /* TREE_REALPART is live */
      tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
      tree y = gimple_assign_lhs (stmt);
      y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
      gimple_assign_set_lhs (stmt, y);
      gimple_assign_set_rhs1 (stmt, x);
    }
  else if (known_ge (trim_head * 2 * BITS_PER_UNIT, ref->size))
    {
      /* TREE_IMAGPART is live */
      tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
      tree y = gimple_assign_lhs (stmt);
      y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
      gimple_assign_set_lhs (stmt, y);
      gimple_assign_set_rhs1 (stmt, x);
    }

  /* Other cases indicate parts of both the real and imag subobjects
     are live.  We do not try to optimize those cases.  */
}

/* STMT initializes an object using a CONSTRUCTOR where one or more of the
   bytes written are dead stores.  ORIG is the bitmap of bytes stored by
   STMT.  LIVE is the bitmap of stores that are actually live.

   Attempt to rewrite STMT so that only the real or imaginary part of
   the object is actually stored.

   The most common case for getting here is a CONSTRUCTOR with no elements
   being used to zero initialize an object.  We do not try to handle other
   cases as those would force us to fully cover the object with the
   CONSTRUCTOR node except for the components that are dead.  */

static void
maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
  tree ctor = gimple_assign_rhs1 (stmt);

  /* This is the only case we currently handle.  It actually seems to
     catch most cases of actual interest.  */
  gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);

  int head_trim = 0;
  int tail_trim = 0;
  compute_trims (ref, live, &head_trim, &tail_trim, stmt);

  /* Now we want to replace the constructor initializer
     with memset (object + head_trim, 0, size - head_trim - tail_trim).  */
  if (head_trim || tail_trim)
    {
      /* We want &lhs for the MEM_REF expression.  */
      tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));

      if (! is_gimple_min_invariant (lhs_addr))
	return;

      /* The number of bytes for the new constructor.  */
      poly_int64 ref_bytes = exact_div (ref->size, BITS_PER_UNIT);
      poly_int64 count = ref_bytes - head_trim - tail_trim;

      /* And the new type for the CONSTRUCTOR.  Essentially it's just
	 a char array large enough to cover the non-trimmed parts of
	 the original CONSTRUCTOR.  Note we want explicit bounds here
	 so that we know how many bytes to clear when expanding the
	 CONSTRUCTOR.  */
      tree type = build_array_type_nelts (char_type_node, count);

      /* Build a suitable alias type rather than using alias set zero
	 to avoid pessimizing.  */
      tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));

      /* Build a MEM_REF representing the whole accessed area, starting
	 at the first byte not trimmed.  */
      tree exp = fold_build2 (MEM_REF, type, lhs_addr,
			      build_int_cst (alias_type, head_trim));

      /* Now update STMT with a new RHS and LHS.  */
      gimple_assign_set_lhs (stmt, exp);
      gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
    }
}

/* STMT is a memcpy, memmove or memset.  Decrement the number of bytes
   copied/set by DECREMENT.  */
static void
decrement_count (gimple *stmt, int decrement)
{
  tree *countp = gimple_call_arg_ptr (stmt, 2);
  gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
  *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
						    - decrement));

}

static void
increment_start_addr (gimple *stmt, tree *where, int increment)
{
  if (TREE_CODE (*where) == SSA_NAME)
    {
      tree tem = make_ssa_name (TREE_TYPE (*where));
      gassign *newop
        = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
			       build_int_cst (sizetype, increment));
      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
      gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
      *where = tem;
      update_stmt (gsi_stmt (gsi));
      return;
    }

  *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
                                             *where,
                                             build_int_cst (ptr_type_node,
                                                            increment)));
}

/* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
   (ORIG & ~NEW) and need not be stored.  Try to rewrite STMT to reduce
   the amount of data it actually writes.

   Right now we only support trimming from the head or the tail of the
   memory region.  In theory we could split the mem* call, but it's
   likely of marginal value.  */

static void
maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
{
  switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
    {
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMMOVE:
    case BUILT_IN_STRNCPY:
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_STRNCPY_CHK:
      {
	int head_trim, tail_trim;
	compute_trims (ref, live, &head_trim, &tail_trim, stmt);

	/* Tail trimming is easy, we can just reduce the count.  */
        if (tail_trim)
	  decrement_count (stmt, tail_trim);

	/* Head trimming requires adjusting all the arguments.  */
        if (head_trim)
          {
	    tree *dst = gimple_call_arg_ptr (stmt, 0);
	    increment_start_addr (stmt, dst, head_trim);
	    tree *src = gimple_call_arg_ptr (stmt, 1);
	    increment_start_addr (stmt, src, head_trim);
	    decrement_count (stmt, head_trim);
	  }
        break;
      }

    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET_CHK:
      {
	int head_trim, tail_trim;
	compute_trims (ref, live, &head_trim, &tail_trim, stmt);

	/* Tail trimming is easy, we can just reduce the count.  */
        if (tail_trim)
	  decrement_count (stmt, tail_trim);

	/* Head trimming requires adjusting all the arguments.  */
        if (head_trim)
          {
	    tree *dst = gimple_call_arg_ptr (stmt, 0);
	    increment_start_addr (stmt, dst, head_trim);
	    decrement_count (stmt, head_trim);
	  }
	break;
      }

      default:
	break;
    }
}

/* STMT is a memory write where one or more bytes written are dead
   stores.  ORIG is the bitmap of bytes stored by STMT.  LIVE is the
   bitmap of stores that are actually live.

   Attempt to rewrite STMT so that it writes fewer memory locations.  Right
   now we only support trimming at the start or end of the memory region.
   It's not clear how much there is to be gained by trimming from the middle
   of the region.  */

static void
maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
  if (is_gimple_assign (stmt)
      && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
    {
      switch (gimple_assign_rhs_code (stmt))
	{
	case CONSTRUCTOR:
	  maybe_trim_constructor_store (ref, live, stmt);
	  break;
	case COMPLEX_CST:
	  maybe_trim_complex_store (ref, live, stmt);
	  break;
	default:
	  break;
	}
    }
}

/* Return TRUE if USE_REF reads bytes from LIVE where live is
   derived from REF, a write reference.

   While this routine may modify USE_REF, it's passed by value, not
   location.  So callers do not see those modifications.  */

static bool
live_bytes_read (ao_ref use_ref, ao_ref *ref, sbitmap live)
{
  /* We have already verified that USE_REF and REF hit the same object.
     Now verify that there's actually an overlap between USE_REF and REF.  */
  HOST_WIDE_INT start, size;
  if (normalize_ref (&use_ref, ref)
      && (use_ref.offset - ref->offset).is_constant (&start)
      && use_ref.size.is_constant (&size))
    {
      /* If USE_REF covers all of REF, then it will hit one or more
	 live bytes.   This avoids useless iteration over the bitmap
	 below.  */
      if (start == 0 && known_eq (size, ref->size))
	return true;

      /* Now check if any of the remaining bits in use_ref are set in LIVE.  */
      return bitmap_bit_in_range_p (live, start / BITS_PER_UNIT,
				    (start + size - 1) / BITS_PER_UNIT);
    }
  return true;
}

/* Callback for dse_classify_store calling for_each_index.  Verify that
   indices are invariant in the loop with backedge PHI in basic-block DATA.  */

static bool
check_name (tree, tree *idx, void *data)
{
  basic_block phi_bb = (basic_block) data;
  if (TREE_CODE (*idx) == SSA_NAME
      && !SSA_NAME_IS_DEFAULT_DEF (*idx)
      && dominated_by_p (CDI_DOMINATORS, gimple_bb (SSA_NAME_DEF_STMT (*idx)),
			 phi_bb))
    return false;
  return true;
}

/* STMT stores the value 0 into one or more memory locations
   (via memset, empty constructor, calloc call, etc).

   See if there is a subsequent store of the value 0 to one
   or more of the same memory location(s).  If so, the subsequent
   store is redundant and can be removed.

   The subsequent stores could be via memset, empty constructors,
   simple MEM stores, etc.  */

static void
dse_optimize_redundant_stores (gimple *stmt)
{
  int cnt = 0;

  /* We could do something fairly complex and look through PHIs
     like DSE_CLASSIFY_STORE, but it doesn't seem to be worth
     the effort.

     Look at all the immediate uses of the VDEF (which are obviously
     dominated by STMT).   See if one or more stores 0 into the same
     memory locations a STMT, if so remove the immediate use statements.  */
  tree defvar = gimple_vdef (stmt);
  imm_use_iterator ui;
  gimple *use_stmt;
  FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
    {
      /* Limit stmt walking.  */
      if (++cnt > PARAM_VALUE (PARAM_DSE_MAX_ALIAS_QUERIES_PER_STORE))
	BREAK_FROM_IMM_USE_STMT (ui);

      /* If USE_STMT stores 0 into one or more of the same locations
	 as STMT and STMT would kill USE_STMT, then we can just remove
	 USE_STMT.  */
      tree fndecl;
      if ((is_gimple_assign (use_stmt)
	   && gimple_vdef (use_stmt)
	   && (gimple_assign_single_p (use_stmt)
	       && initializer_zerop (gimple_assign_rhs1 (use_stmt))))
	  || (gimple_call_builtin_p (use_stmt, BUILT_IN_NORMAL)
	      && (fndecl = gimple_call_fndecl (use_stmt)) != NULL
	      && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
	      && integer_zerop (gimple_call_arg (use_stmt, 1))))
	{
	  ao_ref write;

	  if (!initialize_ao_ref_for_dse (use_stmt, &write))
	    BREAK_FROM_IMM_USE_STMT (ui)

	  if (valid_ao_ref_for_dse (&write)
	      && stmt_kills_ref_p (stmt, &write))
	    {
	      gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
	      if (is_gimple_assign (use_stmt))
		delete_dead_or_redundant_assignment (&gsi, "redundant");
	      else if (is_gimple_call (use_stmt))
		delete_dead_or_redundant_call (&gsi, "redundant");
	      else
		gcc_unreachable ();
	    }
	}
    }
}

/* A helper of dse_optimize_stmt.
   Given a GIMPLE_ASSIGN in STMT that writes to REF, classify it
   according to downstream uses and defs.  Sets *BY_CLOBBER_P to true
   if only clobber statements influenced the classification result.
   Returns the classification.  */

dse_store_status
dse_classify_store (ao_ref *ref, gimple *stmt,
		    bool byte_tracking_enabled, sbitmap live_bytes,
		    bool *by_clobber_p, tree stop_at_vuse)
{
  gimple *temp;
  int cnt = 0;
  auto_bitmap visited;

  if (by_clobber_p)
    *by_clobber_p = true;

  /* Find the first dominated statement that clobbers (part of) the
     memory stmt stores to with no intermediate statement that may use
     part of the memory stmt stores.  That is, find a store that may
     prove stmt to be a dead store.  */
  temp = stmt;
  do
    {
      gimple *use_stmt;
      imm_use_iterator ui;
      bool fail = false;
      tree defvar;

      if (gimple_code (temp) == GIMPLE_PHI)
	{
	  /* If we visit this PHI by following a backedge then we have to
	     make sure ref->ref only refers to SSA names that are invariant
	     with respect to the loop represented by this PHI node.  */
	  if (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt),
			      gimple_bb (temp))
	      && !for_each_index (ref->ref ? &ref->ref : &ref->base,
				  check_name, gimple_bb (temp)))
	    return DSE_STORE_LIVE;
	  defvar = PHI_RESULT (temp);
	  bitmap_set_bit (visited, SSA_NAME_VERSION (defvar));
	}
      else
	defvar = gimple_vdef (temp);

      /* If we're instructed to stop walking at region boundary, do so.  */
      if (defvar == stop_at_vuse)
	return DSE_STORE_LIVE;

      auto_vec<gimple *, 10> defs;
      gimple *phi_def = NULL;
      FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
	{
	  /* Limit stmt walking.  */
	  if (++cnt > PARAM_VALUE (PARAM_DSE_MAX_ALIAS_QUERIES_PER_STORE))
	    {
	      fail = true;
	      BREAK_FROM_IMM_USE_STMT (ui);
	    }

	  /* We have visited ourselves already so ignore STMT for the
	     purpose of chaining.  */
	  if (use_stmt == stmt)
	    ;
	  /* In simple cases we can look through PHI nodes, but we
	     have to be careful with loops and with memory references
	     containing operands that are also operands of PHI nodes.
	     See gcc.c-torture/execute/20051110-*.c.  */
	  else if (gimple_code (use_stmt) == GIMPLE_PHI)
	    {
	      /* If we already visited this PHI ignore it for further
		 processing.  */
	      if (!bitmap_bit_p (visited,
				 SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
		{
		  defs.safe_push (use_stmt);
		  phi_def = use_stmt;
		}
	    }
	  /* If the statement is a use the store is not dead.  */
	  else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
	    {
	      /* Handle common cases where we can easily build an ao_ref
		 structure for USE_STMT and in doing so we find that the
		 references hit non-live bytes and thus can be ignored.  */
	      if (byte_tracking_enabled
		  && is_gimple_assign (use_stmt))
		{
		  ao_ref use_ref;
		  ao_ref_init (&use_ref, gimple_assign_rhs1 (use_stmt));
		  if (valid_ao_ref_for_dse (&use_ref)
		      && use_ref.base == ref->base
		      && known_eq (use_ref.size, use_ref.max_size)
		      && !live_bytes_read (use_ref, ref, live_bytes))
		    {
		      /* If this is a store, remember it as we possibly
			 need to walk the defs uses.  */
		      if (gimple_vdef (use_stmt))
			defs.safe_push (use_stmt);
		      continue;
		    }
		}

	      fail = true;
	      BREAK_FROM_IMM_USE_STMT (ui);
	    }
	  /* If this is a store, remember it as we possibly need to walk the
	     defs uses.  */
	  else if (gimple_vdef (use_stmt))
	    defs.safe_push (use_stmt);
	}

      if (fail)
	{
	  /* STMT might be partially dead and we may be able to reduce
	     how many memory locations it stores into.  */
	  if (byte_tracking_enabled && !gimple_clobber_p (stmt))
	    return DSE_STORE_MAYBE_PARTIAL_DEAD;
	  return DSE_STORE_LIVE;
	}

      /* If we didn't find any definition this means the store is dead
         if it isn't a store to global reachable memory.  In this case
	 just pretend the stmt makes itself dead.  Otherwise fail.  */
      if (defs.is_empty ())
	{
	  if (ref_may_alias_global_p (ref))
	    return DSE_STORE_LIVE;

	  if (by_clobber_p)
	    *by_clobber_p = false;
	  return DSE_STORE_DEAD;
	}

      /* Process defs and remove those we need not process further.  */
      for (unsigned i = 0; i < defs.length ();)
	{
	  gimple *def = defs[i];
	  gimple *use_stmt;
	  use_operand_p use_p;
	  /* If the path to check starts with a kill we do not need to
	     process it further.
	     ???  With byte tracking we need only kill the bytes currently
	     live.  */
	  if (stmt_kills_ref_p (def, ref))
	    {
	      if (by_clobber_p && !gimple_clobber_p (def))
		*by_clobber_p = false;
	      defs.unordered_remove (i);
	    }
	  /* In addition to kills we can remove defs whose only use
	     is another def in defs.  That can only ever be PHIs of which
	     we track a single for simplicity reasons (we fail for multiple
	     PHIs anyways).  We can also ignore defs that feed only into
	     already visited PHIs.  */
	  else if (gimple_code (def) != GIMPLE_PHI
		   && single_imm_use (gimple_vdef (def), &use_p, &use_stmt)
		   && (use_stmt == phi_def
		       || (gimple_code (use_stmt) == GIMPLE_PHI
			   && bitmap_bit_p (visited,
					    SSA_NAME_VERSION
					      (PHI_RESULT (use_stmt))))))
	    defs.unordered_remove (i);
	  else
	    ++i;
	}

      /* If all defs kill the ref we are done.  */
      if (defs.is_empty ())
	return DSE_STORE_DEAD;
      /* If more than one def survives fail.  */
      if (defs.length () > 1)
	{
	  /* STMT might be partially dead and we may be able to reduce
	     how many memory locations it stores into.  */
	  if (byte_tracking_enabled && !gimple_clobber_p (stmt))
	    return DSE_STORE_MAYBE_PARTIAL_DEAD;
	  return DSE_STORE_LIVE;
	}
      temp = defs[0];

      /* Track partial kills.  */
      if (byte_tracking_enabled)
	{
	  clear_bytes_written_by (live_bytes, temp, ref);
	  if (bitmap_empty_p (live_bytes))
	    {
	      if (by_clobber_p && !gimple_clobber_p (temp))
		*by_clobber_p = false;
	      return DSE_STORE_DEAD;
	    }
	}
    }
  /* Continue walking until there are no more live bytes.  */
  while (1);
}


class dse_dom_walker : public dom_walker
{
public:
  dse_dom_walker (cdi_direction direction)
    : dom_walker (direction),
    m_live_bytes (PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)),
    m_byte_tracking_enabled (false) {}

  virtual edge before_dom_children (basic_block);

private:
  auto_sbitmap m_live_bytes;
  bool m_byte_tracking_enabled;
  void dse_optimize_stmt (gimple_stmt_iterator *);
};

/* Delete a dead call at GSI, which is mem* call of some kind.  */
static void
delete_dead_or_redundant_call (gimple_stmt_iterator *gsi, const char *type)
{
  gimple *stmt = gsi_stmt (*gsi);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Deleted %s call: ", type);
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }

  tree lhs = gimple_call_lhs (stmt);
  if (lhs)
    {
      tree ptr = gimple_call_arg (stmt, 0);
      gimple *new_stmt = gimple_build_assign (lhs, ptr);
      unlink_stmt_vdef (stmt);
      if (gsi_replace (gsi, new_stmt, true))
        bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
    }
  else
    {
      /* Then we need to fix the operand of the consuming stmt.  */
      unlink_stmt_vdef (stmt);

      /* Remove the dead store.  */
      if (gsi_remove (gsi, true))
	bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
      release_defs (stmt);
    }
}

/* Delete a dead store at GSI, which is a gimple assignment. */

void
delete_dead_or_redundant_assignment (gimple_stmt_iterator *gsi, const char *type)
{
  gimple *stmt = gsi_stmt (*gsi);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Deleted %s store: ", type);
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }

  /* Then we need to fix the operand of the consuming stmt.  */
  unlink_stmt_vdef (stmt);

  /* Remove the dead store.  */
  basic_block bb = gimple_bb (stmt);
  if (gsi_remove (gsi, true))
    bitmap_set_bit (need_eh_cleanup, bb->index);

  /* And release any SSA_NAMEs set in this statement back to the
     SSA_NAME manager.  */
  release_defs (stmt);
}

/* Attempt to eliminate dead stores in the statement referenced by BSI.

   A dead store is a store into a memory location which will later be
   overwritten by another store without any intervening loads.  In this
   case the earlier store can be deleted.

   In our SSA + virtual operand world we use immediate uses of virtual
   operands to detect dead stores.  If a store's virtual definition
   is used precisely once by a later store to the same location which
   post dominates the first store, then the first store is dead.  */

void
dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);

  /* If this statement has no virtual defs, then there is nothing
     to do.  */
  if (!gimple_vdef (stmt))
    return;

  /* Don't return early on *this_2(D) ={v} {CLOBBER}.  */
  if (gimple_has_volatile_ops (stmt)
      && (!gimple_clobber_p (stmt)
	  || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
    return;

  ao_ref ref;
  if (!initialize_ao_ref_for_dse (stmt, &ref))
    return;

  /* We know we have virtual definitions.  We can handle assignments and
     some builtin calls.  */
  if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
    {
      tree fndecl = gimple_call_fndecl (stmt);
      switch (DECL_FUNCTION_CODE (fndecl))
	{
	case BUILT_IN_MEMCPY:
	case BUILT_IN_MEMMOVE:
	case BUILT_IN_STRNCPY:
	case BUILT_IN_MEMSET:
	case BUILT_IN_MEMCPY_CHK:
	case BUILT_IN_MEMMOVE_CHK:
	case BUILT_IN_STRNCPY_CHK:
	case BUILT_IN_MEMSET_CHK:
	  {
	    /* Occasionally calls with an explicit length of zero
	       show up in the IL.  It's pointless to do analysis
	       on them, they're trivially dead.  */
	    tree size = gimple_call_arg (stmt, 2);
	    if (integer_zerop (size))
	      {
		delete_dead_or_redundant_call (gsi, "dead");
		return;
	      }

	    /* If this is a memset call that initializes an object
	       to zero, it may be redundant with an earlier memset
	       or empty CONSTRUCTOR of a larger object.  */
	    if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
		 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
		&& integer_zerop (gimple_call_arg (stmt, 1)))
	      dse_optimize_redundant_stores (stmt);

	    enum dse_store_status store_status;
	    m_byte_tracking_enabled
	      = setup_live_bytes_from_ref (&ref, m_live_bytes);
	    store_status = dse_classify_store (&ref, stmt,
					       m_byte_tracking_enabled,
					       m_live_bytes);
	    if (store_status == DSE_STORE_LIVE)
	      return;

	    if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
	      {
		maybe_trim_memstar_call (&ref, m_live_bytes, stmt);
		return;
	      }

	    if (store_status == DSE_STORE_DEAD)
	      delete_dead_or_redundant_call (gsi, "dead");
	    return;
	  }

	case BUILT_IN_CALLOC:
	  /* We already know the arguments are integer constants.  */
	  dse_optimize_redundant_stores (stmt);
	  return;

	default:
	  return;
	}
    }

  if (is_gimple_assign (stmt))
    {
      bool by_clobber_p = false;

      /* Check if this statement stores zero to a memory location,
	 and if there is a subsequent store of zero to the same
	 memory location.  If so, remove the subsequent store.  */
      if (gimple_assign_single_p (stmt)
	  && initializer_zerop (gimple_assign_rhs1 (stmt)))
	dse_optimize_redundant_stores (stmt);

      /* Self-assignments are zombies.  */
      if (operand_equal_p (gimple_assign_rhs1 (stmt),
			   gimple_assign_lhs (stmt), 0))
	;
      else
	{
	  m_byte_tracking_enabled
	    = setup_live_bytes_from_ref (&ref, m_live_bytes);
	  enum dse_store_status store_status;
	  store_status = dse_classify_store (&ref, stmt,
					     m_byte_tracking_enabled,
					     m_live_bytes, &by_clobber_p);
	  if (store_status == DSE_STORE_LIVE)
	    return;

	  if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
	    {
	      maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
	      return;
	    }
	}

      /* Now we know that use_stmt kills the LHS of stmt.  */

      /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
	 another clobber stmt.  */
      if (gimple_clobber_p (stmt)
	  && !by_clobber_p)
	return;

      delete_dead_or_redundant_assignment (gsi, "dead");
    }
}

edge
dse_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
    {
      dse_optimize_stmt (&gsi);
      if (gsi_end_p (gsi))
	gsi = gsi_last_bb (bb);
      else
	gsi_prev (&gsi);
    }
  return NULL;
}

namespace {

const pass_data pass_data_dse =
{
  GIMPLE_PASS, /* type */
  "dse", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_DSE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_dse : public gimple_opt_pass
{
public:
  pass_dse (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_dse, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_dse (m_ctxt); }
  virtual bool gate (function *) { return flag_tree_dse != 0; }
  virtual unsigned int execute (function *);

}; // class pass_dse

unsigned int
pass_dse::execute (function *fun)
{
  need_eh_cleanup = BITMAP_ALLOC (NULL);

  renumber_gimple_stmt_uids ();

  /* We might consider making this a property of each pass so that it
     can be [re]computed on an as-needed basis.  Particularly since
     this pass could be seen as an extension of DCE which needs post
     dominators.  */
  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);

  /* Dead store elimination is fundamentally a walk of the post-dominator
     tree and a backwards walk of statements within each block.  */
  dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);

  /* Removal of stores may make some EH edges dead.  Purge such edges from
     the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      cleanup_tree_cfg ();
    }

  BITMAP_FREE (need_eh_cleanup);

  /* For now, just wipe the post-dominator information.  */
  free_dominance_info (CDI_POST_DOMINATORS);
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_dse (gcc::context *ctxt)
{
  return new pass_dse (ctxt);
}