summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-loop-ivcanon.c
blob: 67af0b374d6f7197085146f258ba24d1b5753f11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/* Induction variable canonicalization.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
   
This file is part of GCC.
   
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
   
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
   
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This pass detects the loops that iterate a constant number of times,
   adds a canonical induction variable (step -1, tested against 0) 
   and replaces the exit test.  This enables the less powerful rtl
   level analysis to use this information.

   This might spoil the code in some cases (by increasing register pressure).
   Note that in the case the new variable is not needed, ivopts will get rid
   of it, so it might only be a problem when there are no other linear induction
   variables.  In that case the created optimization possibilities are likely
   to pay up.

   Additionally in case we detect that it is beneficial to unroll the
   loop completely, we do it right here to expose the optimization
   possibilities to the following passes.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "ggc.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "flags.h"
#include "tree-inline.h"

/* Specifies types of loops that may be unrolled.  */

enum unroll_level
{
  UL_SINGLE_ITER,	/* Only loops that exit immediately in the first
			   iteration.  */
  UL_NO_GROWTH,		/* Only loops whose unrolling will not cause increase
			   of code size.  */
  UL_ALL		/* All suitable loops.  */
};

/* Adds a canonical induction variable to LOOP iterating NITER times.  EXIT
   is the exit edge whose condition is replaced.  */

static void
create_canonical_iv (struct loop *loop, edge exit, tree niter)
{
  edge in;
  tree cond, type, var;
  block_stmt_iterator incr_at;
  enum tree_code cmp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num);
      print_generic_expr (dump_file, niter, TDF_SLIM);
      fprintf (dump_file, " iterations.\n");
    }

  cond = last_stmt (exit->src);
  in = EDGE_SUCC (exit->src, 0);
  if (in == exit)
    in = EDGE_SUCC (exit->src, 1);

  /* Note that we do not need to worry about overflows, since
     type of niter is always unsigned and all comparisons are
     just for equality/nonequality -- i.e. everything works
     with a modulo arithmetics.  */

  type = TREE_TYPE (niter);
  niter = fold_build2 (PLUS_EXPR, type,
		       niter,
		       build_int_cst (type, 1));
  incr_at = bsi_last (in->src);
  create_iv (niter,
	     build_int_cst (type, -1),
	     NULL_TREE, loop,
	     &incr_at, false, NULL, &var);

  cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
  COND_EXPR_COND (cond) = build2 (cmp, boolean_type_node,
				  var,
				  build_int_cst (type, 0));
  update_stmt (cond);
}

/* Computes an estimated number of insns in LOOP, weighted by WEIGHTS.  */

unsigned
tree_num_loop_insns (struct loop *loop, eni_weights *weights)
{
  basic_block *body = get_loop_body (loop);
  block_stmt_iterator bsi;
  unsigned size = 1, i;

  for (i = 0; i < loop->num_nodes; i++)
    for (bsi = bsi_start (body[i]); !bsi_end_p (bsi); bsi_next (&bsi))
      size += estimate_num_insns (bsi_stmt (bsi), weights);
  free (body);

  return size;
}

/* Estimate number of insns of completely unrolled loop.  We assume
   that the size of the unrolled loop is decreased in the
   following way (the numbers of insns are based on what
   estimate_num_insns returns for appropriate statements):

   1) exit condition gets removed (2 insns)
   2) increment of the control variable gets removed (2 insns)
   3) All remaining statements are likely to get simplified
      due to constant propagation.  Hard to estimate; just
      as a heuristics we decrease the rest by 1/3.

   NINSNS is the number of insns in the loop before unrolling.
   NUNROLL is the number of times the loop is unrolled.  */

static unsigned HOST_WIDE_INT
estimated_unrolled_size (unsigned HOST_WIDE_INT ninsns,
			 unsigned HOST_WIDE_INT nunroll)
{
  HOST_WIDE_INT unr_insns = 2 * ((HOST_WIDE_INT) ninsns - 4) / 3;
  if (unr_insns <= 0)
    unr_insns = 1;
  unr_insns *= (nunroll + 1);

  return unr_insns;
}

/* Tries to unroll LOOP completely, i.e. NITER times.
   UL determines which loops we are allowed to unroll. 
   EXIT is the exit of the loop that should be eliminated.  */

static bool
try_unroll_loop_completely (struct loop *loop,
			    edge exit, tree niter,
			    enum unroll_level ul)
{
  unsigned HOST_WIDE_INT n_unroll, ninsns, max_unroll, unr_insns;
  tree cond;

  if (loop->inner)
    return false;

  if (!host_integerp (niter, 1))
    return false;
  n_unroll = tree_low_cst (niter, 1);

  max_unroll = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
  if (n_unroll > max_unroll)
    return false;

  if (n_unroll)
    {
      if (ul == UL_SINGLE_ITER)
	return false;

      ninsns = tree_num_loop_insns (loop, &eni_size_weights);

      if (n_unroll * ninsns
	  > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS))
	return false;

      unr_insns = estimated_unrolled_size (ninsns, n_unroll);
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Loop size: %d\n", (int) ninsns);
	  fprintf (dump_file, "  Estimated size after unrolling: %d\n",
		   (int) unr_insns);
	}

      if (ul == UL_NO_GROWTH
	  && unr_insns > ninsns)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Not unrolling loop %d.\n", loop->num);
	  return false;
	}
    }

  if (n_unroll)
    {
      sbitmap wont_exit;
      edge e;
      unsigned i;
      VEC (edge, heap) *to_remove = NULL;

      initialize_original_copy_tables ();
      wont_exit = sbitmap_alloc (n_unroll + 1);
      sbitmap_ones (wont_exit);
      RESET_BIT (wont_exit, 0);

      if (!tree_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
					       n_unroll, wont_exit,
					       exit, &to_remove,
					       DLTHE_FLAG_UPDATE_FREQ
					       | DLTHE_FLAG_COMPLETTE_PEEL))
	{
          free_original_copy_tables ();
	  free (wont_exit);
	  return false;
	}

      for (i = 0; VEC_iterate (edge, to_remove, i, e); i++)
	{
	  bool ok = remove_path (e);
	  gcc_assert (ok);
	}

      VEC_free (edge, heap, to_remove);
      free (wont_exit);
      free_original_copy_tables ();
    }

  cond = last_stmt (exit->src);
  COND_EXPR_COND (cond) = (exit->flags & EDGE_TRUE_VALUE) ? boolean_true_node
    : boolean_false_node;
  update_stmt (cond);
  update_ssa (TODO_update_ssa);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Unrolled loop %d completely.\n", loop->num);

  return true;
}

/* Adds a canonical induction variable to LOOP if suitable.
   CREATE_IV is true if we may create a new iv.  UL determines 
   which loops we are allowed to completely unroll.  If TRY_EVAL is true, we try
   to determine the number of iterations of a loop by direct evaluation. 
   Returns true if cfg is changed.  */

static bool
canonicalize_loop_induction_variables (struct loop *loop,
				       bool create_iv, enum unroll_level ul,
				       bool try_eval)
{
  edge exit = NULL;
  tree niter;

  niter = number_of_latch_executions (loop);
  if (TREE_CODE (niter) == INTEGER_CST)
    {
      exit = single_exit (loop);
      if (!just_once_each_iteration_p (loop, exit->src))
	return false;
    }
  else
    {
      /* If the loop has more than one exit, try checking all of them
	 for # of iterations determinable through scev.  */
      if (!single_exit (loop))
	niter = find_loop_niter (loop, &exit);

      /* Finally if everything else fails, try brute force evaluation.  */
      if (try_eval
	  && (chrec_contains_undetermined (niter)
	      || TREE_CODE (niter) != INTEGER_CST))
	niter = find_loop_niter_by_eval (loop, &exit);

      if (chrec_contains_undetermined (niter)
	  || TREE_CODE (niter) != INTEGER_CST)
	return false;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Loop %d iterates ", loop->num);
      print_generic_expr (dump_file, niter, TDF_SLIM);
      fprintf (dump_file, " times.\n");
    }

  if (try_unroll_loop_completely (loop, exit, niter, ul))
    return true;

  if (create_iv)
    create_canonical_iv (loop, exit, niter);

  return false;
}

/* The main entry point of the pass.  Adds canonical induction variables
   to the suitable loops.  */

unsigned int
canonicalize_induction_variables (void)
{
  loop_iterator li;
  struct loop *loop;
  bool changed = false;
  
  FOR_EACH_LOOP (li, loop, 0)
    {
      changed |= canonicalize_loop_induction_variables (loop,
							true, UL_SINGLE_ITER,
							true);
    }

  /* Clean up the information about numbers of iterations, since brute force
     evaluation could reveal new information.  */
  scev_reset ();

  if (changed)
    return TODO_cleanup_cfg;
  return 0;
}

/* Unroll LOOPS completely if they iterate just few times.  Unless
   MAY_INCREASE_SIZE is true, perform the unrolling only if the
   size of the code does not increase.  */

unsigned int
tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
{
  loop_iterator li;
  struct loop *loop;
  bool changed;
  enum unroll_level ul;

  do
    {
      changed = false;

      FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
	{
	  if (may_increase_size && maybe_hot_bb_p (loop->header)
	      /* Unroll outermost loops only if asked to do so or they do
		 not cause code growth.  */
	      && (unroll_outer
		  || loop_outer (loop_outer (loop))))
	    ul = UL_ALL;
	  else
	    ul = UL_NO_GROWTH;
	  changed |= canonicalize_loop_induction_variables
		       (loop, false, ul, !flag_tree_loop_ivcanon);
	}

      if (changed)
	{
	  /* This will take care of removing completely unrolled loops
	     from the loop structures so we can continue unrolling now
	     innermost loops.  */
	  if (cleanup_tree_cfg ())
	    update_ssa (TODO_update_ssa_only_virtuals);

	  /* Clean up the information about numbers of iterations, since
	     complete unrolling might have invalidated it.  */
	  scev_reset ();
	}
    }
  while (changed);

  return 0;
}

/* Checks whether LOOP is empty.  */

static bool
empty_loop_p (struct loop *loop)
{
  edge exit;
  struct tree_niter_desc niter;
  tree phi, def;
  basic_block *body;
  block_stmt_iterator bsi;
  unsigned i;
  tree stmt;

  /* If the loop has multiple exits, it is too hard for us to handle.
     Similarly, if the exit is not dominating, we cannot determine
     whether the loop is not infinite.  */
  exit = single_dom_exit (loop);
  if (!exit)
    return false;

  /* The loop must be finite.  */
  if (!number_of_iterations_exit (loop, exit, &niter, false))
    return false;

  /* Values of all loop exit phi nodes must be invariants.  */
  for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
    {
      if (!is_gimple_reg (PHI_RESULT (phi)))
	continue;

      def = PHI_ARG_DEF_FROM_EDGE (phi, exit);

      if (!expr_invariant_in_loop_p (loop, def))
	return false;
    }

  /* And there should be no memory modifying or from other reasons
     unremovable statements.  */
  body = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    {
      /* Irreducible region might be infinite.  */
      if (body[i]->flags & BB_IRREDUCIBLE_LOOP)
	{
	  free (body);
	  return false;
	}
	
      for (bsi = bsi_start (body[i]); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  stmt = bsi_stmt (bsi);
	  if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS)
	      || stmt_ann (stmt)->has_volatile_ops)
	    {
	      free (body);
	      return false;
	    }

	  /* Also, asm statements and calls may have side effects and we
	     cannot change the number of times they are executed.  */
	  switch (TREE_CODE (stmt))
	    {
	    case RETURN_EXPR:
	    case GIMPLE_MODIFY_STMT:
	      stmt = get_call_expr_in (stmt);
	      if (!stmt)
		break;

	    case CALL_EXPR:
	      if (TREE_SIDE_EFFECTS (stmt))
		{
		  free (body);
		  return false;
		}
	      break;

	    case ASM_EXPR:
	      /* We cannot remove volatile assembler.  */
	      if (ASM_VOLATILE_P (stmt))
		{
		  free (body);
		  return false;
		}
	      break;

	    default:
	      break;
	    }
	}
      }
  free (body);

  return true;
}

/* Remove LOOP by making it exit in the first iteration.  */

static void
remove_empty_loop (struct loop *loop)
{
  edge exit = single_dom_exit (loop), non_exit;
  tree cond_stmt = last_stmt (exit->src);
  tree do_exit;
  basic_block *body;
  unsigned n_before, freq_in, freq_h;
  gcov_type exit_count = exit->count;

  if (dump_file)
    fprintf (dump_file, "Removing empty loop %d\n", loop->num);

  non_exit = EDGE_SUCC (exit->src, 0);
  if (non_exit == exit)
    non_exit = EDGE_SUCC (exit->src, 1);

  if (exit->flags & EDGE_TRUE_VALUE)
    do_exit = boolean_true_node;
  else
    do_exit = boolean_false_node;

  COND_EXPR_COND (cond_stmt) = do_exit;
  update_stmt (cond_stmt);

  /* Let us set the probabilities of the edges coming from the exit block.  */
  exit->probability = REG_BR_PROB_BASE;
  non_exit->probability = 0;
  non_exit->count = 0;

  /* Update frequencies and counts.  Everything before
     the exit needs to be scaled FREQ_IN/FREQ_H times,
     where FREQ_IN is the frequency of the entry edge
     and FREQ_H is the frequency of the loop header.
     Everything after the exit has zero frequency.  */
  freq_h = loop->header->frequency;
  freq_in = EDGE_FREQUENCY (loop_preheader_edge (loop));
  if (freq_h != 0)
    {
      body = get_loop_body_in_dom_order (loop);
      for (n_before = 1; n_before <= loop->num_nodes; n_before++)
	if (body[n_before - 1] == exit->src)
	  break;
      scale_bbs_frequencies_int (body, n_before, freq_in, freq_h);
      scale_bbs_frequencies_int (body + n_before, loop->num_nodes - n_before,
				 0, 1);
      free (body);
    }

  /* Number of executions of exit is not changed, thus we need to restore
     the original value.  */
  exit->count = exit_count;
}

/* Removes LOOP if it is empty.  Returns true if LOOP is removed.  CHANGED
   is set to true if LOOP or any of its subloops is removed.  */

static bool
try_remove_empty_loop (struct loop *loop, bool *changed)
{
  bool nonempty_subloop = false;
  struct loop *sub;

  /* First, all subloops must be removed.  */
  for (sub = loop->inner; sub; sub = sub->next)
    nonempty_subloop |= !try_remove_empty_loop (sub, changed);

  if (nonempty_subloop || !empty_loop_p (loop))
    return false;

  remove_empty_loop (loop);
  *changed = true;
  return true;
}

/* Remove the empty loops.  */

unsigned int
remove_empty_loops (void)
{
  bool changed = false;
  struct loop *loop;

  for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
    try_remove_empty_loop (loop, &changed);

  if (changed)
    {
      scev_reset ();
      return TODO_cleanup_cfg;
    }
  return 0;
}