1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
|
/* Functions to determine/estimate number of iterations of a loop.
Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "tree-pass.h"
#include "ggc.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "flags.h"
#include "tree-inline.h"
#define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
/* Just to shorten the ugly names. */
#define EXEC_BINARY nondestructive_fold_binary_to_constant
#define EXEC_UNARY nondestructive_fold_unary_to_constant
/*
Analysis of number of iterations of an affine exit test.
*/
/* Returns true if ARG is either NULL_TREE or constant zero. */
bool
zero_p (tree arg)
{
if (!arg)
return true;
return integer_zerop (arg);
}
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
static tree
inverse (tree x, tree mask)
{
tree type = TREE_TYPE (x);
tree ctr = EXEC_BINARY (RSHIFT_EXPR, type, mask, integer_one_node);
tree rslt = convert (type, integer_one_node);
while (integer_nonzerop (ctr))
{
rslt = EXEC_BINARY (MULT_EXPR, type, rslt, x);
rslt = EXEC_BINARY (BIT_AND_EXPR, type, rslt, mask);
x = EXEC_BINARY (MULT_EXPR, type, x, x);
x = EXEC_BINARY (BIT_AND_EXPR, type, x, mask);
ctr = EXEC_BINARY (RSHIFT_EXPR, type, ctr, integer_one_node);
}
return rslt;
}
/* Returns unsigned variant of TYPE. */
tree
unsigned_type_for (tree type)
{
return make_unsigned_type (TYPE_PRECISION (type));
}
/* Returns signed variant of TYPE. */
static tree
signed_type_for (tree type)
{
return make_signed_type (TYPE_PRECISION (type));
}
/* Determine the number of iterations according to condition (for staying
inside loop) which compares two induction variables using comparison
operator CODE. The induction variable on left side of the comparison
has base BASE0 and step STEP0. the right-hand side one has base
BASE1 and step STEP1. Both induction variables must have type TYPE,
which must be an integer or pointer type. STEP0 and STEP1 must be
constants (or NULL_TREE, which is interpreted as constant zero).
The results (number of iterations and assumptions as described in
comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
In case we are unable to determine number of iterations, contents of
this structure is unchanged. */
void
number_of_iterations_cond (tree type, tree base0, tree step0,
enum tree_code code, tree base1, tree step1,
struct tree_niter_desc *niter)
{
tree step, delta, mmin, mmax;
tree may_xform, bound, s, d, tmp;
bool was_sharp = false;
tree assumption;
tree assumptions = boolean_true_node;
tree noloop_assumptions = boolean_false_node;
tree niter_type, signed_niter_type;
/* The meaning of these assumptions is this:
if !assumptions
then the rest of information does not have to be valid
if noloop_assumptions then the loop does not have to roll
(but it is only conservative approximation, i.e. it only says that
if !noloop_assumptions, then the loop does not end before the computed
number of iterations) */
/* Make < comparison from > ones. */
if (code == GE_EXPR
|| code == GT_EXPR)
{
SWAP (base0, base1);
SWAP (step0, step1);
code = swap_tree_comparison (code);
}
/* We can handle the case when neither of the sides of the comparison is
invariant, provided that the test is NE_EXPR. This rarely occurs in
practice, but it is simple enough to manage. */
if (!zero_p (step0) && !zero_p (step1))
{
if (code != NE_EXPR)
return;
step0 = EXEC_BINARY (MINUS_EXPR, type, step0, step1);
step1 = NULL_TREE;
}
/* If the result is a constant, the loop is weird. More precise handling
would be possible, but the situation is not common enough to waste time
on it. */
if (zero_p (step0) && zero_p (step1))
return;
/* Ignore loops of while (i-- < 10) type. */
if (code != NE_EXPR)
{
if (step0 && !tree_expr_nonnegative_p (step0))
return;
if (!zero_p (step1) && tree_expr_nonnegative_p (step1))
return;
}
if (POINTER_TYPE_P (type))
{
/* We assume pointer arithmetic never overflows. */
mmin = mmax = NULL_TREE;
}
else
{
mmin = TYPE_MIN_VALUE (type);
mmax = TYPE_MAX_VALUE (type);
}
/* Some more condition normalization. We must record some assumptions
due to overflows. */
if (code == LT_EXPR)
{
/* We want to take care only of <=; this is easy,
as in cases the overflow would make the transformation unsafe the loop
does not roll. Seemingly it would make more sense to want to take
care of <, as NE is more simmilar to it, but the problem is that here
the transformation would be more difficult due to possibly infinite
loops. */
if (zero_p (step0))
{
if (mmax)
assumption = fold (build (EQ_EXPR, boolean_type_node, base0, mmax));
else
assumption = boolean_false_node;
if (integer_nonzerop (assumption))
goto zero_iter;
base0 = fold (build (PLUS_EXPR, type, base0,
convert (type, integer_one_node)));
}
else
{
if (mmin)
assumption = fold (build (EQ_EXPR, boolean_type_node, base1, mmin));
else
assumption = boolean_false_node;
if (integer_nonzerop (assumption))
goto zero_iter;
base1 = fold (build (MINUS_EXPR, type, base1,
convert (type, integer_one_node)));
}
noloop_assumptions = assumption;
code = LE_EXPR;
/* It will be useful to be able to tell the difference once more in
<= -> != reduction. */
was_sharp = true;
}
/* Take care of trivially infinite loops. */
if (code != NE_EXPR)
{
if (zero_p (step0)
&& mmin
&& operand_equal_p (base0, mmin, 0))
return;
if (zero_p (step1)
&& mmax
&& operand_equal_p (base1, mmax, 0))
return;
}
/* If we can we want to take care of NE conditions instead of size
comparisons, as they are much more friendly (most importantly
this takes care of special handling of loops with step 1). We can
do it if we first check that upper bound is greater or equal to
lower bound, their difference is constant c modulo step and that
there is not an overflow. */
if (code != NE_EXPR)
{
if (zero_p (step0))
step = EXEC_UNARY (NEGATE_EXPR, type, step1);
else
step = step0;
delta = build (MINUS_EXPR, type, base1, base0);
delta = fold (build (FLOOR_MOD_EXPR, type, delta, step));
may_xform = boolean_false_node;
if (TREE_CODE (delta) == INTEGER_CST)
{
tmp = EXEC_BINARY (MINUS_EXPR, type, step,
convert (type, integer_one_node));
if (was_sharp
&& operand_equal_p (delta, tmp, 0))
{
/* A special case. We have transformed condition of type
for (i = 0; i < 4; i += 4)
into
for (i = 0; i <= 3; i += 4)
obviously if the test for overflow during that transformation
passed, we cannot overflow here. Most importantly any
loop with sharp end condition and step 1 falls into this
cathegory, so handling this case specially is definitely
worth the troubles. */
may_xform = boolean_true_node;
}
else if (zero_p (step0))
{
if (!mmin)
may_xform = boolean_true_node;
else
{
bound = EXEC_BINARY (PLUS_EXPR, type, mmin, step);
bound = EXEC_BINARY (MINUS_EXPR, type, bound, delta);
may_xform = fold (build (LE_EXPR, boolean_type_node,
bound, base0));
}
}
else
{
if (!mmax)
may_xform = boolean_true_node;
else
{
bound = EXEC_BINARY (MINUS_EXPR, type, mmax, step);
bound = EXEC_BINARY (PLUS_EXPR, type, bound, delta);
may_xform = fold (build (LE_EXPR, boolean_type_node,
base1, bound));
}
}
}
if (!integer_zerop (may_xform))
{
/* We perform the transformation always provided that it is not
completely senseless. This is OK, as we would need this assumption
to determine the number of iterations anyway. */
if (!integer_nonzerop (may_xform))
assumptions = may_xform;
if (zero_p (step0))
{
base0 = build (PLUS_EXPR, type, base0, delta);
base0 = fold (build (MINUS_EXPR, type, base0, step));
}
else
{
base1 = build (MINUS_EXPR, type, base1, delta);
base1 = fold (build (PLUS_EXPR, type, base1, step));
}
assumption = fold (build (GT_EXPR, boolean_type_node, base0, base1));
noloop_assumptions = fold (build (TRUTH_OR_EXPR, boolean_type_node,
noloop_assumptions, assumption));
code = NE_EXPR;
}
}
/* Count the number of iterations. */
niter_type = unsigned_type_for (type);
signed_niter_type = signed_type_for (type);
if (code == NE_EXPR)
{
/* Everything we do here is just arithmetics modulo size of mode. This
makes us able to do more involved computations of number of iterations
than in other cases. First transform the condition into shape
s * i <> c, with s positive. */
base1 = fold (build (MINUS_EXPR, type, base1, base0));
base0 = NULL_TREE;
if (!zero_p (step1))
step0 = EXEC_UNARY (NEGATE_EXPR, type, step1);
step1 = NULL_TREE;
if (!tree_expr_nonnegative_p (convert (signed_niter_type, step0)))
{
step0 = EXEC_UNARY (NEGATE_EXPR, type, step0);
base1 = fold (build1 (NEGATE_EXPR, type, base1));
}
base1 = convert (niter_type, base1);
step0 = convert (niter_type, step0);
/* Let nsd (s, size of mode) = d. If d does not divide c, the loop
is infinite. Otherwise, the number of iterations is
(inverse(s/d) * (c/d)) mod (size of mode/d). */
s = step0;
d = integer_one_node;
bound = convert (niter_type, build_int_cst (NULL_TREE, -1));
while (1)
{
tmp = EXEC_BINARY (BIT_AND_EXPR, niter_type, s,
convert (niter_type, integer_one_node));
if (integer_nonzerop (tmp))
break;
s = EXEC_BINARY (RSHIFT_EXPR, niter_type, s,
convert (niter_type, integer_one_node));
d = EXEC_BINARY (LSHIFT_EXPR, niter_type, d,
convert (niter_type, integer_one_node));
bound = EXEC_BINARY (RSHIFT_EXPR, niter_type, bound,
convert (niter_type, integer_one_node));
}
assumption = fold (build2 (FLOOR_MOD_EXPR, niter_type, base1, d));
assumption = fold (build2 (EQ_EXPR, boolean_type_node,
assumption,
build_int_cst (niter_type, 0)));
assumptions = fold (build2 (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption));
tmp = fold (build (EXACT_DIV_EXPR, niter_type, base1, d));
tmp = fold (build (MULT_EXPR, niter_type, tmp, inverse (s, bound)));
niter->niter = fold (build (BIT_AND_EXPR, niter_type, tmp, bound));
}
else
{
if (zero_p (step1))
/* Condition in shape a + s * i <= b
We must know that b + s does not overflow and a <= b + s and then we
can compute number of iterations as (b + s - a) / s. (It might
seem that we in fact could be more clever about testing the b + s
overflow condition using some information about b - a mod s,
but it was already taken into account during LE -> NE transform). */
{
if (mmax)
{
bound = EXEC_BINARY (MINUS_EXPR, type, mmax, step0);
assumption = fold (build (LE_EXPR, boolean_type_node,
base1, bound));
assumptions = fold (build (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption));
}
step = step0;
tmp = fold (build (PLUS_EXPR, type, base1, step0));
assumption = fold (build (GT_EXPR, boolean_type_node, base0, tmp));
delta = fold (build (PLUS_EXPR, type, base1, step));
delta = fold (build (MINUS_EXPR, type, delta, base0));
delta = convert (niter_type, delta);
}
else
{
/* Condition in shape a <= b - s * i
We must know that a - s does not overflow and a - s <= b and then
we can again compute number of iterations as (b - (a - s)) / s. */
if (mmin)
{
bound = EXEC_BINARY (MINUS_EXPR, type, mmin, step1);
assumption = fold (build (LE_EXPR, boolean_type_node,
bound, base0));
assumptions = fold (build (TRUTH_AND_EXPR, boolean_type_node,
assumptions, assumption));
}
step = fold (build1 (NEGATE_EXPR, type, step1));
tmp = fold (build (PLUS_EXPR, type, base0, step1));
assumption = fold (build (GT_EXPR, boolean_type_node, tmp, base1));
delta = fold (build (MINUS_EXPR, type, base0, step));
delta = fold (build (MINUS_EXPR, type, base1, delta));
delta = convert (niter_type, delta);
}
noloop_assumptions = fold (build (TRUTH_OR_EXPR, boolean_type_node,
noloop_assumptions, assumption));
delta = fold (build (FLOOR_DIV_EXPR, niter_type, delta,
convert (niter_type, step)));
niter->niter = delta;
}
niter->assumptions = assumptions;
niter->may_be_zero = noloop_assumptions;
return;
zero_iter:
niter->assumptions = boolean_true_node;
niter->may_be_zero = boolean_true_node;
niter->niter = convert (type, integer_zero_node);
return;
}
/* Tries to simplify EXPR using the evolutions of the loop invariants
in the superloops of LOOP. Returns the simplified expression
(or EXPR unchanged, if no simplification was possible). */
static tree
simplify_using_outer_evolutions (struct loop *loop, tree expr)
{
enum tree_code code = TREE_CODE (expr);
bool changed;
tree e, e0, e1, e2;
if (is_gimple_min_invariant (expr))
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = build (code, boolean_type_node, e0, e1, e2);
else
expr = build (code, boolean_type_node, e0, e1);
expr = fold (expr);
}
return expr;
}
e = instantiate_parameters (loop, expr);
if (is_gimple_min_invariant (e))
return e;
return expr;
}
/* Tries to simplify EXPR using the condition COND. Returns the simplified
expression (or EXPR unchanged, if no simplification was possible).*/
static tree
tree_simplify_using_condition (tree cond, tree expr)
{
bool changed;
tree e, e0, e1, e2, notcond;
enum tree_code code = TREE_CODE (expr);
if (code == INTEGER_CST)
return expr;
if (code == TRUTH_OR_EXPR
|| code == TRUTH_AND_EXPR
|| code == COND_EXPR)
{
changed = false;
e0 = tree_simplify_using_condition (cond, TREE_OPERAND (expr, 0));
if (TREE_OPERAND (expr, 0) != e0)
changed = true;
e1 = tree_simplify_using_condition (cond, TREE_OPERAND (expr, 1));
if (TREE_OPERAND (expr, 1) != e1)
changed = true;
if (code == COND_EXPR)
{
e2 = tree_simplify_using_condition (cond, TREE_OPERAND (expr, 2));
if (TREE_OPERAND (expr, 2) != e2)
changed = true;
}
else
e2 = NULL_TREE;
if (changed)
{
if (code == COND_EXPR)
expr = build (code, boolean_type_node, e0, e1, e2);
else
expr = build (code, boolean_type_node, e0, e1);
expr = fold (expr);
}
return expr;
}
/* Check whether COND ==> EXPR. */
notcond = invert_truthvalue (cond);
e = fold (build (TRUTH_OR_EXPR, boolean_type_node,
notcond, expr));
if (integer_nonzerop (e))
return e;
/* Check whether COND ==> not EXPR. */
e = fold (build (TRUTH_AND_EXPR, boolean_type_node,
cond, expr));
if (integer_zerop (e))
return e;
return expr;
}
/* Tries to simplify EXPR using the conditions on entry to LOOP.
Record the conditions used for simplification to CONDS_USED.
Returns the simplified expression (or EXPR unchanged, if no
simplification was possible).*/
static tree
simplify_using_initial_conditions (struct loop *loop, tree expr,
tree *conds_used)
{
edge e;
basic_block bb;
tree exp, cond;
if (TREE_CODE (expr) == INTEGER_CST)
return expr;
for (bb = loop->header;
bb != ENTRY_BLOCK_PTR;
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
e = bb->pred;
if (e->pred_next)
continue;
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
cond = COND_EXPR_COND (last_stmt (e->src));
if (e->flags & EDGE_FALSE_VALUE)
cond = invert_truthvalue (cond);
exp = tree_simplify_using_condition (cond, expr);
if (exp != expr)
*conds_used = fold (build (TRUTH_AND_EXPR,
boolean_type_node,
*conds_used,
cond));
expr = exp;
}
return expr;
}
/* Stores description of number of iterations of LOOP derived from
EXIT (an exit edge of the LOOP) in NITER. Returns true if some
useful information could be derived (and fields of NITER has
meaning described in comments at struct tree_niter_desc
declaration), false otherwise. */
bool
number_of_iterations_exit (struct loop *loop, edge exit,
struct tree_niter_desc *niter)
{
tree stmt, cond, type;
tree op0, base0, step0;
tree op1, base1, step1;
enum tree_code code;
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
return false;
niter->assumptions = boolean_false_node;
stmt = last_stmt (exit->src);
if (!stmt || TREE_CODE (stmt) != COND_EXPR)
return false;
/* We want the condition for staying inside loop. */
cond = COND_EXPR_COND (stmt);
if (exit->flags & EDGE_TRUE_VALUE)
cond = invert_truthvalue (cond);
code = TREE_CODE (cond);
switch (code)
{
case GT_EXPR:
case GE_EXPR:
case NE_EXPR:
case LT_EXPR:
case LE_EXPR:
break;
default:
return false;
}
op0 = TREE_OPERAND (cond, 0);
op1 = TREE_OPERAND (cond, 1);
type = TREE_TYPE (op0);
if (TREE_CODE (type) != INTEGER_TYPE
&& !POINTER_TYPE_P (type))
return false;
if (!simple_iv (loop, stmt, op0, &base0, &step0))
return false;
if (!simple_iv (loop, stmt, op1, &base1, &step1))
return false;
niter->niter = NULL_TREE;
number_of_iterations_cond (type, base0, step0, code, base1, step1,
niter);
if (!niter->niter)
return false;
niter->assumptions = simplify_using_outer_evolutions (loop,
niter->assumptions);
niter->may_be_zero = simplify_using_outer_evolutions (loop,
niter->may_be_zero);
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
niter->additional_info = boolean_true_node;
niter->assumptions
= simplify_using_initial_conditions (loop,
niter->assumptions,
&niter->additional_info);
niter->may_be_zero
= simplify_using_initial_conditions (loop,
niter->may_be_zero,
&niter->additional_info);
return integer_onep (niter->assumptions);
}
/*
Analysis of a number of iterations of a loop by a brute-force evaluation.
*/
/* Bound on the number of iterations we try to evaluate. */
#define MAX_ITERATIONS_TO_TRACK \
((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
/* Returns the loop phi node of LOOP such that ssa name X is derived from its
result by a chain of operations such that all but exactly one of their
operands are constants. */
static tree
chain_of_csts_start (struct loop *loop, tree x)
{
tree stmt = SSA_NAME_DEF_STMT (x);
basic_block bb = bb_for_stmt (stmt);
use_optype uses;
if (!bb
|| !flow_bb_inside_loop_p (loop, bb))
return NULL_TREE;
if (TREE_CODE (stmt) == PHI_NODE)
{
if (bb == loop->header)
return stmt;
return NULL_TREE;
}
if (TREE_CODE (stmt) != MODIFY_EXPR)
return NULL_TREE;
get_stmt_operands (stmt);
if (NUM_VUSES (STMT_VUSE_OPS (stmt)) > 0)
return NULL_TREE;
if (NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt)) > 0)
return NULL_TREE;
if (NUM_V_MUST_DEFS (STMT_V_MUST_DEF_OPS (stmt)) > 0)
return NULL_TREE;
if (NUM_DEFS (STMT_DEF_OPS (stmt)) > 1)
return NULL_TREE;
uses = STMT_USE_OPS (stmt);
if (NUM_USES (uses) != 1)
return NULL_TREE;
return chain_of_csts_start (loop, USE_OP (uses, 0));
}
/* Determines whether the expression X is derived from a result of a phi node
in header of LOOP such that
* the derivation of X consists only from operations with constants
* the initial value of the phi node is constant
* the value of the phi node in the next iteration can be derived from the
value in the current iteration by a chain of operations with constants.
If such phi node exists, it is returned. If X is a constant, X is returned
unchanged. Otherwise NULL_TREE is returned. */
static tree
get_base_for (struct loop *loop, tree x)
{
tree phi, init, next;
if (is_gimple_min_invariant (x))
return x;
phi = chain_of_csts_start (loop, x);
if (!phi)
return NULL_TREE;
init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
if (TREE_CODE (next) != SSA_NAME)
return NULL_TREE;
if (!is_gimple_min_invariant (init))
return NULL_TREE;
if (chain_of_csts_start (loop, next) != phi)
return NULL_TREE;
return phi;
}
/* Given an expression X, then
* if BASE is NULL_TREE, X must be a constant and we return X.
* otherwise X is a SSA name, whose value in the considered loop is derived
by a chain of operations with constant from a result of a phi node in
the header of the loop. Then we return value of X when the value of the
result of this phi node is given by the constant BASE. */
static tree
get_val_for (tree x, tree base)
{
tree stmt, nx, val;
use_optype uses;
use_operand_p op;
if (!x)
return base;
stmt = SSA_NAME_DEF_STMT (x);
if (TREE_CODE (stmt) == PHI_NODE)
return base;
uses = STMT_USE_OPS (stmt);
op = USE_OP_PTR (uses, 0);
nx = USE_FROM_PTR (op);
val = get_val_for (nx, base);
SET_USE (op, val);
val = fold (TREE_OPERAND (stmt, 1));
SET_USE (op, nx);
return val;
}
/* Tries to count the number of iterations of LOOP till it exits by EXIT
by brute force -- i.e. by determining the value of the operands of the
condition at EXIT in first few iterations of the loop (assuming that
these values are constant) and determining the first one in that the
condition is not satisfied. Returns the constant giving the number
of the iterations of LOOP if successful, chrec_dont_know otherwise. */
tree
loop_niter_by_eval (struct loop *loop, edge exit)
{
tree cond, cnd, acnd;
tree op[2], val[2], next[2], aval[2], phi[2];
unsigned i, j;
enum tree_code cmp;
cond = last_stmt (exit->src);
if (!cond || TREE_CODE (cond) != COND_EXPR)
return chrec_dont_know;
cnd = COND_EXPR_COND (cond);
if (exit->flags & EDGE_TRUE_VALUE)
cnd = invert_truthvalue (cnd);
cmp = TREE_CODE (cnd);
switch (cmp)
{
case EQ_EXPR:
case NE_EXPR:
case GT_EXPR:
case GE_EXPR:
case LT_EXPR:
case LE_EXPR:
for (j = 0; j < 2; j++)
op[j] = TREE_OPERAND (cnd, j);
break;
default:
return chrec_dont_know;
}
for (j = 0; j < 2; j++)
{
phi[j] = get_base_for (loop, op[j]);
if (!phi[j])
return chrec_dont_know;
}
for (j = 0; j < 2; j++)
{
if (TREE_CODE (phi[j]) == PHI_NODE)
{
val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop));
next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop));
}
else
{
val[j] = phi[j];
next[j] = NULL_TREE;
op[j] = NULL_TREE;
}
}
for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
{
for (j = 0; j < 2; j++)
aval[j] = get_val_for (op[j], val[j]);
acnd = fold (build (cmp, boolean_type_node, aval[0], aval[1]));
if (integer_zerop (acnd))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Proved that loop %d iterates %d times using brute force.\n",
loop->num, i);
return build_int_cst (unsigned_type_node, i);
}
for (j = 0; j < 2; j++)
val[j] = get_val_for (next[j], val[j]);
}
return chrec_dont_know;
}
/* Finds the exit of the LOOP by that the loop exits after a constant
number of iterations and stores the exit edge to *EXIT. The constant
giving the number of iterations of LOOP is returned. The number of
iterations is determined using loop_niter_by_eval (i.e. by brute force
evaluation). If we are unable to find the exit for that loop_niter_by_eval
determines the number of iterations, chrec_dont_know is returned. */
tree
find_loop_niter_by_eval (struct loop *loop, edge *exit)
{
unsigned n_exits, i;
edge *exits = get_loop_exit_edges (loop, &n_exits);
edge ex;
tree niter = NULL_TREE, aniter;
*exit = NULL;
for (i = 0; i < n_exits; i++)
{
ex = exits[i];
if (!just_once_each_iteration_p (loop, ex->src))
continue;
aniter = loop_niter_by_eval (loop, ex);
if (chrec_contains_undetermined (aniter)
|| TREE_CODE (aniter) != INTEGER_CST)
continue;
if (niter
&& !integer_nonzerop (fold (build (LT_EXPR, boolean_type_node,
aniter, niter))))
continue;
niter = aniter;
*exit = ex;
}
free (exits);
return niter ? niter : chrec_dont_know;
}
/*
Analysis of upper bounds on number of iterations of a loop.
*/
/* The structure describing a bound on number of iterations of a loop. */
struct nb_iter_bound
{
tree bound; /* The expression whose value is an upper bound on the
number of executions of anything after ... */
tree at_stmt; /* ... this statement during one execution of loop. */
tree additional; /* A conjunction of conditions the operands of BOUND
satisfy. The additional information about the value
of the bound may be derived from it. */
struct nb_iter_bound *next;
/* The next bound in a list. */
};
/* Records that AT_STMT is executed at most BOUND times in LOOP. The
additional condition ADDITIONAL is recorded with the bound. */
static void
record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt)
{
struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Statements after ");
print_generic_expr (dump_file, at_stmt, TDF_SLIM);
fprintf (dump_file, " are executed at most ");
print_generic_expr (dump_file, bound, TDF_SLIM);
fprintf (dump_file, " times in loop %d.\n", loop->num);
}
elt->bound = bound;
elt->at_stmt = at_stmt;
elt->additional = additional;
elt->next = loop->bounds;
loop->bounds = elt;
}
/* Records estimates on numbers of iterations of LOOP. */
static void
estimate_numbers_of_iterations_loop (struct loop *loop)
{
edge *exits;
tree niter, type;
unsigned i, n_exits;
struct tree_niter_desc niter_desc;
exits = get_loop_exit_edges (loop, &n_exits);
for (i = 0; i < n_exits; i++)
{
if (!number_of_iterations_exit (loop, exits[i], &niter_desc))
continue;
niter = niter_desc.niter;
type = TREE_TYPE (niter);
if (!integer_zerop (niter_desc.may_be_zero)
&& !integer_nonzerop (niter_desc.may_be_zero))
niter = build (COND_EXPR, type, niter_desc.may_be_zero,
convert (type, integer_zero_node),
niter);
record_estimate (loop, niter,
niter_desc.additional_info,
last_stmt (exits[i]->src));
}
free (exits);
/* TODO Here we could use other possibilities, like bounds of arrays accessed
in the loop. */
}
/* Records estimates on numbers of iterations of LOOPS. */
void
estimate_numbers_of_iterations (struct loops *loops)
{
unsigned i;
struct loop *loop;
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (loop)
estimate_numbers_of_iterations_loop (loop);
}
}
/* If A > B, returns -1. If A == B, returns 0. If A < B, returns 1.
If neither of these relations can be proved, returns 2. */
static int
compare_trees (tree a, tree b)
{
tree typea = TREE_TYPE (a), typeb = TREE_TYPE (b);
tree type;
if (TYPE_PRECISION (typea) > TYPE_PRECISION (typeb))
type = typea;
else
type = typeb;
a = convert (type, a);
b = convert (type, b);
if (integer_nonzerop (fold (build (EQ_EXPR, boolean_type_node, a, b))))
return 0;
if (integer_nonzerop (fold (build (LT_EXPR, boolean_type_node, a, b))))
return 1;
if (integer_nonzerop (fold (build (GT_EXPR, boolean_type_node, a, b))))
return -1;
return 2;
}
/* Returns the largest value obtainable by casting something in INNER type to
OUTER type. */
tree
upper_bound_in_type (tree outer, tree inner)
{
unsigned HOST_WIDE_INT lo, hi;
unsigned bits = TYPE_PRECISION (inner);
if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
{
/* Zero extending in these cases. */
if (bits <= HOST_BITS_PER_WIDE_INT)
{
hi = 0;
lo = (~(unsigned HOST_WIDE_INT) 0)
>> (HOST_BITS_PER_WIDE_INT - bits);
}
else
{
hi = (~(unsigned HOST_WIDE_INT) 0)
>> (2 * HOST_BITS_PER_WIDE_INT - bits);
lo = ~(unsigned HOST_WIDE_INT) 0;
}
}
else
{
/* Sign extending in these cases. */
if (bits <= HOST_BITS_PER_WIDE_INT)
{
hi = 0;
lo = (~(unsigned HOST_WIDE_INT) 0)
>> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
}
else
{
hi = (~(unsigned HOST_WIDE_INT) 0)
>> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
lo = ~(unsigned HOST_WIDE_INT) 0;
}
}
return convert (outer,
convert (inner,
build_int_cst_wide (NULL_TREE, lo, hi)));
}
/* Returns the smallest value obtainable by casting something in INNER type to
OUTER type. */
tree
lower_bound_in_type (tree outer, tree inner)
{
unsigned HOST_WIDE_INT lo, hi;
unsigned bits = TYPE_PRECISION (inner);
if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
lo = hi = 0;
else if (bits <= HOST_BITS_PER_WIDE_INT)
{
hi = ~(unsigned HOST_WIDE_INT) 0;
lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
}
else
{
hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
lo = 0;
}
return convert (outer,
convert (inner,
build_int_cst_wide (NULL_TREE, lo, hi)));
}
/* Returns true if statement S1 dominates statement S2. */
static bool
stmt_dominates_stmt_p (tree s1, tree s2)
{
basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2);
if (!bb1
|| s1 == s2)
return true;
if (bb1 == bb2)
{
block_stmt_iterator bsi;
for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi))
if (bsi_stmt (bsi) == s1)
return true;
return false;
}
return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
}
/* Checks whether it is correct to count the induction variable BASE + STEP * I
at AT_STMT in wider TYPE, using the fact that statement OF is executed at
most BOUND times in the loop. If it is possible, return the value of step
of the induction variable in the TYPE, otherwise return NULL_TREE.
ADDITIONAL is the additional condition recorded for operands of the bound.
This is useful in the following case, created by loop header copying:
i = 0;
if (n > 0)
do
{
something;
} while (++i < n)
If the n > 0 condition is taken into account, the number of iterations of the
loop can be expressed as n - 1. If the type of n is signed, the ADDITIONAL
assumption "n > 0" says us that the value of the number of iterations is at
most MAX_TYPE - 1 (without this assumption, it might overflow). */
static tree
can_count_iv_in_wider_type_bound (tree type, tree base, tree step,
tree at_stmt,
tree bound,
tree additional,
tree of)
{
tree inner_type = TREE_TYPE (base), b, bplusstep, new_step, new_step_abs;
tree valid_niter, extreme, unsigned_type, delta, bound_type;
tree cond;
b = convert (type, base);
bplusstep = convert (type,
fold (build (PLUS_EXPR, inner_type, base, step)));
new_step = fold (build (MINUS_EXPR, type, bplusstep, b));
if (TREE_CODE (new_step) != INTEGER_CST)
return NULL_TREE;
switch (compare_trees (bplusstep, b))
{
case -1:
extreme = upper_bound_in_type (type, inner_type);
delta = fold (build (MINUS_EXPR, type, extreme, b));
new_step_abs = new_step;
break;
case 1:
extreme = lower_bound_in_type (type, inner_type);
new_step_abs = fold (build (NEGATE_EXPR, type, new_step));
delta = fold (build (MINUS_EXPR, type, b, extreme));
break;
case 0:
return new_step;
default:
return NULL_TREE;
}
unsigned_type = unsigned_type_for (type);
delta = convert (unsigned_type, delta);
new_step_abs = convert (unsigned_type, new_step_abs);
valid_niter = fold (build (FLOOR_DIV_EXPR, unsigned_type,
delta, new_step_abs));
bound_type = TREE_TYPE (bound);
if (TYPE_PRECISION (type) > TYPE_PRECISION (bound_type))
bound = convert (unsigned_type, bound);
else
valid_niter = convert (bound_type, valid_niter);
if (at_stmt && stmt_dominates_stmt_p (of, at_stmt))
{
/* After the statement OF we know that anything is executed at most
BOUND times. */
cond = build (GE_EXPR, boolean_type_node, valid_niter, bound);
}
else
{
/* Before the statement OF we know that anything is executed at most
BOUND + 1 times. */
cond = build (GT_EXPR, boolean_type_node, valid_niter, bound);
}
cond = fold (cond);
if (integer_nonzerop (cond))
return new_step;
/* Try taking additional conditions into account. */
cond = build (TRUTH_OR_EXPR, boolean_type_node,
invert_truthvalue (additional),
cond);
cond = fold (cond);
if (integer_nonzerop (cond))
return new_step;
return NULL_TREE;
}
/* Checks whether it is correct to count the induction variable BASE + STEP * I
at AT_STMT in wider TYPE, using the bounds on numbers of iterations of a
LOOP. If it is possible, return the value of step of the induction variable
in the TYPE, otherwise return NULL_TREE. */
tree
can_count_iv_in_wider_type (struct loop *loop, tree type, tree base, tree step,
tree at_stmt)
{
struct nb_iter_bound *bound;
tree new_step;
for (bound = loop->bounds; bound; bound = bound->next)
{
new_step = can_count_iv_in_wider_type_bound (type, base, step,
at_stmt,
bound->bound,
bound->additional,
bound->at_stmt);
if (new_step)
return new_step;
}
return NULL_TREE;
}
/* Frees the information on upper bounds on numbers of iterations of LOOP. */
static void
free_numbers_of_iterations_estimates_loop (struct loop *loop)
{
struct nb_iter_bound *bound, *next;
for (bound = loop->bounds; bound; bound = next)
{
next = bound->next;
free (bound);
}
loop->bounds = NULL;
}
/* Frees the information on upper bounds on numbers of iterations of LOOPS. */
void
free_numbers_of_iterations_estimates (struct loops *loops)
{
unsigned i;
struct loop *loop;
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (loop)
free_numbers_of_iterations_estimates_loop (loop);
}
}
|