summaryrefslogtreecommitdiff
path: root/gcc/tree.c
blob: 62d9d78671a9ed42e14c15e94a2833173531903c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
/* Language-independent node constructors for parse phase of GNU compiler.
   Copyright (C) 1987-2021 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file contains the low level primitives for operating on tree nodes,
   including allocation, list operations, interning of identifiers,
   construction of data type nodes and statement nodes,
   and construction of type conversion nodes.  It also contains
   tables index by tree code that describe how to take apart
   nodes of that code.

   It is intended to be language-independent but can occasionally
   calls language-dependent routines.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "flags.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "attribs.h"
#include "toplev.h" /* get_random_seed */
#include "output.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-iterator.h"
#include "internal-fn.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "tree-dfa.h"
#include "langhooks-def.h"
#include "tree-diagnostic.h"
#include "except.h"
#include "builtins.h"
#include "print-tree.h"
#include "ipa-utils.h"
#include "selftest.h"
#include "stringpool.h"
#include "attribs.h"
#include "rtl.h"
#include "regs.h"
#include "tree-vector-builder.h"
#include "gimple-fold.h"
#include "escaped_string.h"
#include "gimple-range.h"

/* Tree code classes.  */

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
#define END_OF_BASE_TREE_CODES tcc_exceptional,

const enum tree_code_class tree_code_type[] = {
#include "all-tree.def"
};

#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES

/* Table indexed by tree code giving number of expression
   operands beyond the fixed part of the node structure.
   Not used for types or decls.  */

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
#define END_OF_BASE_TREE_CODES 0,

const unsigned char tree_code_length[] = {
#include "all-tree.def"
};

#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES

/* Names of tree components.
   Used for printing out the tree and error messages.  */
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
#define END_OF_BASE_TREE_CODES "@dummy",

static const char *const tree_code_name[] = {
#include "all-tree.def"
};

#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES

/* Each tree code class has an associated string representation.
   These must correspond to the tree_code_class entries.  */

const char *const tree_code_class_strings[] =
{
  "exceptional",
  "constant",
  "type",
  "declaration",
  "reference",
  "comparison",
  "unary",
  "binary",
  "statement",
  "vl_exp",
  "expression"
};

/* obstack.[ch] explicitly declined to prototype this.  */
extern int _obstack_allocated_p (struct obstack *h, void *obj);

/* Statistics-gathering stuff.  */

static uint64_t tree_code_counts[MAX_TREE_CODES];
uint64_t tree_node_counts[(int) all_kinds];
uint64_t tree_node_sizes[(int) all_kinds];

/* Keep in sync with tree.h:enum tree_node_kind.  */
static const char * const tree_node_kind_names[] = {
  "decls",
  "types",
  "blocks",
  "stmts",
  "refs",
  "exprs",
  "constants",
  "identifiers",
  "vecs",
  "binfos",
  "ssa names",
  "constructors",
  "random kinds",
  "lang_decl kinds",
  "lang_type kinds",
  "omp clauses",
};

/* Unique id for next decl created.  */
static GTY(()) int next_decl_uid;
/* Unique id for next type created.  */
static GTY(()) unsigned next_type_uid = 1;
/* Unique id for next debug decl created.  Use negative numbers,
   to catch erroneous uses.  */
static GTY(()) int next_debug_decl_uid;

/* Since we cannot rehash a type after it is in the table, we have to
   keep the hash code.  */

struct GTY((for_user)) type_hash {
  unsigned long hash;
  tree type;
};

/* Initial size of the hash table (rounded to next prime).  */
#define TYPE_HASH_INITIAL_SIZE 1000

struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
{
  static hashval_t hash (type_hash *t) { return t->hash; }
  static bool equal (type_hash *a, type_hash *b);

  static int
  keep_cache_entry (type_hash *&t)
  {
    return ggc_marked_p (t->type);
  }
};

/* Now here is the hash table.  When recording a type, it is added to
   the slot whose index is the hash code.  Note that the hash table is
   used for several kinds of types (function types, array types and
   array index range types, for now).  While all these live in the
   same table, they are completely independent, and the hash code is
   computed differently for each of these.  */

static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;

/* Hash table and temporary node for larger integer const values.  */
static GTY (()) tree int_cst_node;

struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
{
  static hashval_t hash (tree t);
  static bool equal (tree x, tree y);
};

static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;

/* Class and variable for making sure that there is a single POLY_INT_CST
   for a given value.  */
struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
{
  typedef std::pair<tree, const poly_wide_int *> compare_type;
  static hashval_t hash (tree t);
  static bool equal (tree x, const compare_type &y);
};

static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;

/* Hash table for optimization flags and target option flags.  Use the same
   hash table for both sets of options.  Nodes for building the current
   optimization and target option nodes.  The assumption is most of the time
   the options created will already be in the hash table, so we avoid
   allocating and freeing up a node repeatably.  */
static GTY (()) tree cl_optimization_node;
static GTY (()) tree cl_target_option_node;

struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
{
  static hashval_t hash (tree t);
  static bool equal (tree x, tree y);
};

static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;

/* General tree->tree mapping  structure for use in hash tables.  */


static GTY ((cache))
     hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;

static GTY ((cache))
     hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;

struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
{
  static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }

  static bool
  equal (tree_vec_map *a, tree_vec_map *b)
  {
    return a->base.from == b->base.from;
  }

  static int
  keep_cache_entry (tree_vec_map *&m)
  {
    return ggc_marked_p (m->base.from);
  }
};

static GTY ((cache))
     hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;

static void set_type_quals (tree, int);
static void print_type_hash_statistics (void);
static void print_debug_expr_statistics (void);
static void print_value_expr_statistics (void);

tree global_trees[TI_MAX];
tree integer_types[itk_none];

bool int_n_enabled_p[NUM_INT_N_ENTS];
struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];

bool tree_contains_struct[MAX_TREE_CODES][64];

/* Number of operands for each OMP clause.  */
unsigned const char omp_clause_num_ops[] =
{
  0, /* OMP_CLAUSE_ERROR  */
  1, /* OMP_CLAUSE_PRIVATE  */
  1, /* OMP_CLAUSE_SHARED  */
  1, /* OMP_CLAUSE_FIRSTPRIVATE  */
  2, /* OMP_CLAUSE_LASTPRIVATE  */
  5, /* OMP_CLAUSE_REDUCTION  */
  5, /* OMP_CLAUSE_TASK_REDUCTION  */
  5, /* OMP_CLAUSE_IN_REDUCTION  */
  1, /* OMP_CLAUSE_COPYIN  */
  1, /* OMP_CLAUSE_COPYPRIVATE  */
  3, /* OMP_CLAUSE_LINEAR  */
  1, /* OMP_CLAUSE_AFFINITY  */
  2, /* OMP_CLAUSE_ALIGNED  */
  3, /* OMP_CLAUSE_ALLOCATE  */
  1, /* OMP_CLAUSE_DEPEND  */
  1, /* OMP_CLAUSE_NONTEMPORAL  */
  1, /* OMP_CLAUSE_UNIFORM  */
  1, /* OMP_CLAUSE_TO_DECLARE  */
  1, /* OMP_CLAUSE_LINK  */
  1, /* OMP_CLAUSE_DETACH  */
  1, /* OMP_CLAUSE_USE_DEVICE_PTR  */
  1, /* OMP_CLAUSE_USE_DEVICE_ADDR  */
  1, /* OMP_CLAUSE_IS_DEVICE_PTR  */
  1, /* OMP_CLAUSE_INCLUSIVE  */
  1, /* OMP_CLAUSE_EXCLUSIVE  */
  2, /* OMP_CLAUSE_FROM  */
  2, /* OMP_CLAUSE_TO  */
  2, /* OMP_CLAUSE_MAP  */
  2, /* OMP_CLAUSE__CACHE_  */
  2, /* OMP_CLAUSE_GANG  */
  1, /* OMP_CLAUSE_ASYNC  */
  1, /* OMP_CLAUSE_WAIT  */
  0, /* OMP_CLAUSE_AUTO  */
  0, /* OMP_CLAUSE_SEQ  */
  1, /* OMP_CLAUSE__LOOPTEMP_  */
  1, /* OMP_CLAUSE__REDUCTEMP_  */
  1, /* OMP_CLAUSE__CONDTEMP_  */
  1, /* OMP_CLAUSE__SCANTEMP_  */
  1, /* OMP_CLAUSE_IF  */
  1, /* OMP_CLAUSE_NUM_THREADS  */
  1, /* OMP_CLAUSE_SCHEDULE  */
  0, /* OMP_CLAUSE_NOWAIT  */
  1, /* OMP_CLAUSE_ORDERED  */
  0, /* OMP_CLAUSE_DEFAULT  */
  3, /* OMP_CLAUSE_COLLAPSE  */
  0, /* OMP_CLAUSE_UNTIED   */
  1, /* OMP_CLAUSE_FINAL  */
  0, /* OMP_CLAUSE_MERGEABLE  */
  1, /* OMP_CLAUSE_DEVICE  */
  1, /* OMP_CLAUSE_DIST_SCHEDULE  */
  0, /* OMP_CLAUSE_INBRANCH  */
  0, /* OMP_CLAUSE_NOTINBRANCH  */
  2, /* OMP_CLAUSE_NUM_TEAMS  */
  1, /* OMP_CLAUSE_THREAD_LIMIT  */
  0, /* OMP_CLAUSE_PROC_BIND  */
  1, /* OMP_CLAUSE_SAFELEN  */
  1, /* OMP_CLAUSE_SIMDLEN  */
  0, /* OMP_CLAUSE_DEVICE_TYPE  */
  0, /* OMP_CLAUSE_FOR  */
  0, /* OMP_CLAUSE_PARALLEL  */
  0, /* OMP_CLAUSE_SECTIONS  */
  0, /* OMP_CLAUSE_TASKGROUP  */
  1, /* OMP_CLAUSE_PRIORITY  */
  1, /* OMP_CLAUSE_GRAINSIZE  */
  1, /* OMP_CLAUSE_NUM_TASKS  */
  0, /* OMP_CLAUSE_NOGROUP  */
  0, /* OMP_CLAUSE_THREADS  */
  0, /* OMP_CLAUSE_SIMD  */
  1, /* OMP_CLAUSE_HINT  */
  0, /* OMP_CLAUSE_DEFAULTMAP  */
  0, /* OMP_CLAUSE_ORDER  */
  0, /* OMP_CLAUSE_BIND  */
  1, /* OMP_CLAUSE_FILTER  */
  1, /* OMP_CLAUSE__SIMDUID_  */
  0, /* OMP_CLAUSE__SIMT_  */
  0, /* OMP_CLAUSE_INDEPENDENT  */
  1, /* OMP_CLAUSE_WORKER  */
  1, /* OMP_CLAUSE_VECTOR  */
  1, /* OMP_CLAUSE_NUM_GANGS  */
  1, /* OMP_CLAUSE_NUM_WORKERS  */
  1, /* OMP_CLAUSE_VECTOR_LENGTH  */
  3, /* OMP_CLAUSE_TILE  */
  0, /* OMP_CLAUSE_IF_PRESENT */
  0, /* OMP_CLAUSE_FINALIZE */
  0, /* OMP_CLAUSE_NOHOST */
};

const char * const omp_clause_code_name[] =
{
  "error_clause",
  "private",
  "shared",
  "firstprivate",
  "lastprivate",
  "reduction",
  "task_reduction",
  "in_reduction",
  "copyin",
  "copyprivate",
  "linear",
  "affinity",
  "aligned",
  "allocate",
  "depend",
  "nontemporal",
  "uniform",
  "to",
  "link",
  "detach",
  "use_device_ptr",
  "use_device_addr",
  "is_device_ptr",
  "inclusive",
  "exclusive",
  "from",
  "to",
  "map",
  "_cache_",
  "gang",
  "async",
  "wait",
  "auto",
  "seq",
  "_looptemp_",
  "_reductemp_",
  "_condtemp_",
  "_scantemp_",
  "if",
  "num_threads",
  "schedule",
  "nowait",
  "ordered",
  "default",
  "collapse",
  "untied",
  "final",
  "mergeable",
  "device",
  "dist_schedule",
  "inbranch",
  "notinbranch",
  "num_teams",
  "thread_limit",
  "proc_bind",
  "safelen",
  "simdlen",
  "device_type",
  "for",
  "parallel",
  "sections",
  "taskgroup",
  "priority",
  "grainsize",
  "num_tasks",
  "nogroup",
  "threads",
  "simd",
  "hint",
  "defaultmap",
  "order",
  "bind",
  "filter",
  "_simduid_",
  "_simt_",
  "independent",
  "worker",
  "vector",
  "num_gangs",
  "num_workers",
  "vector_length",
  "tile",
  "if_present",
  "finalize",
  "nohost",
};


/* Return the tree node structure used by tree code CODE.  */

static inline enum tree_node_structure_enum
tree_node_structure_for_code (enum tree_code code)
{
  switch (TREE_CODE_CLASS (code))
    {
    case tcc_declaration:
      switch (code)
	{
	case CONST_DECL:	return TS_CONST_DECL;
	case DEBUG_EXPR_DECL:	return TS_DECL_WRTL;
	case FIELD_DECL:	return TS_FIELD_DECL;
	case FUNCTION_DECL:	return TS_FUNCTION_DECL;
	case LABEL_DECL:	return TS_LABEL_DECL;
	case PARM_DECL:		return TS_PARM_DECL;
	case RESULT_DECL:	return TS_RESULT_DECL;
	case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
	case TYPE_DECL:		return TS_TYPE_DECL;
	case VAR_DECL:		return TS_VAR_DECL;
	default: 		return TS_DECL_NON_COMMON;
	}

    case tcc_type:		return TS_TYPE_NON_COMMON;

    case tcc_binary:
    case tcc_comparison:
    case tcc_expression:
    case tcc_reference:
    case tcc_statement:
    case tcc_unary:
    case tcc_vl_exp:		return TS_EXP;

    default:  /* tcc_constant and tcc_exceptional */
      break;
    }

  switch (code)
    {
      /* tcc_constant cases.  */
    case COMPLEX_CST:		return TS_COMPLEX;
    case FIXED_CST:		return TS_FIXED_CST;
    case INTEGER_CST:		return TS_INT_CST;
    case POLY_INT_CST:		return TS_POLY_INT_CST;
    case REAL_CST:		return TS_REAL_CST;
    case STRING_CST:		return TS_STRING;
    case VECTOR_CST:		return TS_VECTOR;
    case VOID_CST:		return TS_TYPED;

      /* tcc_exceptional cases.  */
    case BLOCK:			return TS_BLOCK;
    case CONSTRUCTOR:		return TS_CONSTRUCTOR;
    case ERROR_MARK:		return TS_COMMON;
    case IDENTIFIER_NODE:	return TS_IDENTIFIER;
    case OMP_CLAUSE:		return TS_OMP_CLAUSE;
    case OPTIMIZATION_NODE:	return TS_OPTIMIZATION;
    case PLACEHOLDER_EXPR:	return TS_COMMON;
    case SSA_NAME:		return TS_SSA_NAME;
    case STATEMENT_LIST:	return TS_STATEMENT_LIST;
    case TARGET_OPTION_NODE:	return TS_TARGET_OPTION;
    case TREE_BINFO:		return TS_BINFO;
    case TREE_LIST:		return TS_LIST;
    case TREE_VEC:		return TS_VEC;

    default:
      gcc_unreachable ();
    }
}


/* Initialize tree_contains_struct to describe the hierarchy of tree
   nodes.  */

static void
initialize_tree_contains_struct (void)
{
  unsigned i;

  for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
    {
      enum tree_code code;
      enum tree_node_structure_enum ts_code;

      code = (enum tree_code) i;
      ts_code = tree_node_structure_for_code (code);

      /* Mark the TS structure itself.  */
      tree_contains_struct[code][ts_code] = 1;

      /* Mark all the structures that TS is derived from.  */
      switch (ts_code)
	{
	case TS_TYPED:
	case TS_BLOCK:
	case TS_OPTIMIZATION:
	case TS_TARGET_OPTION:
	  MARK_TS_BASE (code);
	  break;

	case TS_COMMON:
	case TS_INT_CST:
	case TS_POLY_INT_CST:
	case TS_REAL_CST:
	case TS_FIXED_CST:
	case TS_VECTOR:
	case TS_STRING:
	case TS_COMPLEX:
	case TS_SSA_NAME:
	case TS_CONSTRUCTOR:
	case TS_EXP:
	case TS_STATEMENT_LIST:
	  MARK_TS_TYPED (code);
	  break;

	case TS_IDENTIFIER:
	case TS_DECL_MINIMAL:
	case TS_TYPE_COMMON:
	case TS_LIST:
	case TS_VEC:
	case TS_BINFO:
	case TS_OMP_CLAUSE:
	  MARK_TS_COMMON (code);
	  break;

	case TS_TYPE_WITH_LANG_SPECIFIC:
	  MARK_TS_TYPE_COMMON (code);
	  break;

	case TS_TYPE_NON_COMMON:
	  MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
	  break;

	case TS_DECL_COMMON:
	  MARK_TS_DECL_MINIMAL (code);
	  break;

	case TS_DECL_WRTL:
	case TS_CONST_DECL:
	  MARK_TS_DECL_COMMON (code);
	  break;

	case TS_DECL_NON_COMMON:
	  MARK_TS_DECL_WITH_VIS (code);
	  break;

	case TS_DECL_WITH_VIS:
	case TS_PARM_DECL:
	case TS_LABEL_DECL:
	case TS_RESULT_DECL:
	  MARK_TS_DECL_WRTL (code);
	  break;

	case TS_FIELD_DECL:
	  MARK_TS_DECL_COMMON (code);
	  break;

	case TS_VAR_DECL:
	  MARK_TS_DECL_WITH_VIS (code);
	  break;

	case TS_TYPE_DECL:
	case TS_FUNCTION_DECL:
	  MARK_TS_DECL_NON_COMMON (code);
	  break;

	case TS_TRANSLATION_UNIT_DECL:
	  MARK_TS_DECL_COMMON (code);
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  /* Basic consistency checks for attributes used in fold.  */
  gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
  gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
  gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
  gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
  gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
  gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
  gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
  gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
  gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
  gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
  gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
  gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
  gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
  gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
  gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
  gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
  gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
  gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
  gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
  gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
  gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
}


/* Init tree.c.  */

void
init_ttree (void)
{
  /* Initialize the hash table of types.  */
  type_hash_table
    = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);

  debug_expr_for_decl
    = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);

  value_expr_for_decl
    = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);

  int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);

  poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);

  int_cst_node = make_int_cst (1, 1);

  cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);

  cl_optimization_node = make_node (OPTIMIZATION_NODE);
  cl_target_option_node = make_node (TARGET_OPTION_NODE);

  /* Initialize the tree_contains_struct array.  */
  initialize_tree_contains_struct ();
  lang_hooks.init_ts ();
}


/* The name of the object as the assembler will see it (but before any
   translations made by ASM_OUTPUT_LABELREF).  Often this is the same
   as DECL_NAME.  It is an IDENTIFIER_NODE.  */
tree
decl_assembler_name (tree decl)
{
  if (!DECL_ASSEMBLER_NAME_SET_P (decl))
    lang_hooks.set_decl_assembler_name (decl);
  return DECL_ASSEMBLER_NAME_RAW (decl);
}

/* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
   (either of which may be NULL).  Inform the FE, if this changes the
   name.  */

void
overwrite_decl_assembler_name (tree decl, tree name)
{
  if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
    lang_hooks.overwrite_decl_assembler_name (decl, name);
}

/* Return true if DECL may need an assembler name to be set.  */

static inline bool
need_assembler_name_p (tree decl)
{
  /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
     Rule merging.  This makes type_odr_p to return true on those types during
     LTO and by comparing the mangled name, we can say what types are intended
     to be equivalent across compilation unit.

     We do not store names of type_in_anonymous_namespace_p.

     Record, union and enumeration type have linkage that allows use
     to check type_in_anonymous_namespace_p. We do not mangle compound types
     that always can be compared structurally.

     Similarly for builtin types, we compare properties of their main variant.
     A special case are integer types where mangling do make differences
     between char/signed char/unsigned char etc.  Storing name for these makes
     e.g.  -fno-signed-char/-fsigned-char mismatches to be handled well.
     See cp/mangle.c:write_builtin_type for details.  */

  if (TREE_CODE (decl) == TYPE_DECL)
    {
      if (DECL_NAME (decl)
	  && decl == TYPE_NAME (TREE_TYPE (decl))
	  && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
	  && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
	  && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
	       && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
	      || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
	  && (type_with_linkage_p (TREE_TYPE (decl))
	      || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
	  && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
	return !DECL_ASSEMBLER_NAME_SET_P (decl);
      return false;
    }
  /* Only FUNCTION_DECLs and VAR_DECLs are considered.  */
  if (!VAR_OR_FUNCTION_DECL_P (decl))
    return false;

  /* If DECL already has its assembler name set, it does not need a
     new one.  */
  if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
      || DECL_ASSEMBLER_NAME_SET_P (decl))
    return false;

  /* Abstract decls do not need an assembler name.  */
  if (DECL_ABSTRACT_P (decl))
    return false;

  /* For VAR_DECLs, only static, public and external symbols need an
     assembler name.  */
  if (VAR_P (decl)
      && !TREE_STATIC (decl)
      && !TREE_PUBLIC (decl)
      && !DECL_EXTERNAL (decl))
    return false;

  if (TREE_CODE (decl) == FUNCTION_DECL)
    {
      /* Do not set assembler name on builtins.  Allow RTL expansion to
	 decide whether to expand inline or via a regular call.  */
      if (fndecl_built_in_p (decl)
	  && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
	return false;

      /* Functions represented in the callgraph need an assembler name.  */
      if (cgraph_node::get (decl) != NULL)
	return true;

      /* Unused and not public functions don't need an assembler name.  */
      if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
	return false;
    }

  return true;
}

/* If T needs an assembler name, have one created for it.  */

void
assign_assembler_name_if_needed (tree t)
{
  if (need_assembler_name_p (t))
    {
      /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
	 diagnostics that use input_location to show locus
	 information.  The problem here is that, at this point,
	 input_location is generally anchored to the end of the file
	 (since the parser is long gone), so we don't have a good
	 position to pin it to.

	 To alleviate this problem, this uses the location of T's
	 declaration.  Examples of this are
	 testsuite/g++.dg/template/cond2.C and
	 testsuite/g++.dg/template/pr35240.C.  */
      location_t saved_location = input_location;
      input_location = DECL_SOURCE_LOCATION (t);

      decl_assembler_name (t);

      input_location = saved_location;
    }
}

/* When the target supports COMDAT groups, this indicates which group the
   DECL is associated with.  This can be either an IDENTIFIER_NODE or a
   decl, in which case its DECL_ASSEMBLER_NAME identifies the group.  */
tree
decl_comdat_group (const_tree node)
{
  struct symtab_node *snode = symtab_node::get (node);
  if (!snode)
    return NULL;
  return snode->get_comdat_group ();
}

/* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE.  */
tree
decl_comdat_group_id (const_tree node)
{
  struct symtab_node *snode = symtab_node::get (node);
  if (!snode)
    return NULL;
  return snode->get_comdat_group_id ();
}

/* When the target supports named section, return its name as IDENTIFIER_NODE
   or NULL if it is in no section.  */
const char *
decl_section_name (const_tree node)
{
  struct symtab_node *snode = symtab_node::get (node);
  if (!snode)
    return NULL;
  return snode->get_section ();
}

/* Set section name of NODE to VALUE (that is expected to be
   identifier node) */
void
set_decl_section_name (tree node, const char *value)
{
  struct symtab_node *snode;

  if (value == NULL)
    {
      snode = symtab_node::get (node);
      if (!snode)
	return;
    }
  else if (VAR_P (node))
    snode = varpool_node::get_create (node);
  else
    snode = cgraph_node::get_create (node);
  snode->set_section (value);
}

/* Set section name of NODE to match the section name of OTHER.

   set_decl_section_name (decl, other) is equivalent to
   set_decl_section_name (decl, DECL_SECTION_NAME (other)), but possibly more
   efficient.  */
void
set_decl_section_name (tree decl, const_tree other)
{
  struct symtab_node *other_node = symtab_node::get (other);
  if (other_node)
    {
      struct symtab_node *decl_node;
      if (VAR_P (decl))
    decl_node = varpool_node::get_create (decl);
      else
    decl_node = cgraph_node::get_create (decl);
      decl_node->set_section (*other_node);
    }
  else
    {
      struct symtab_node *decl_node = symtab_node::get (decl);
      if (!decl_node)
    return;
      decl_node->set_section (NULL);
    }
}

/* Return TLS model of a variable NODE.  */
enum tls_model
decl_tls_model (const_tree node)
{
  struct varpool_node *snode = varpool_node::get (node);
  if (!snode)
    return TLS_MODEL_NONE;
  return snode->tls_model;
}

/* Set TLS model of variable NODE to MODEL.  */
void
set_decl_tls_model (tree node, enum tls_model model)
{
  struct varpool_node *vnode;

  if (model == TLS_MODEL_NONE)
    {
      vnode = varpool_node::get (node);
      if (!vnode)
	return;
    }
  else
    vnode = varpool_node::get_create (node);
  vnode->tls_model = model;
}

/* Compute the number of bytes occupied by a tree with code CODE.
   This function cannot be used for nodes that have variable sizes,
   including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR.  */
size_t
tree_code_size (enum tree_code code)
{
  switch (TREE_CODE_CLASS (code))
    {
    case tcc_declaration:  /* A decl node */
      switch (code)
	{
	case FIELD_DECL:	return sizeof (tree_field_decl);
	case PARM_DECL:		return sizeof (tree_parm_decl);
	case VAR_DECL:		return sizeof (tree_var_decl);
	case LABEL_DECL:	return sizeof (tree_label_decl);
	case RESULT_DECL:	return sizeof (tree_result_decl);
	case CONST_DECL:	return sizeof (tree_const_decl);
	case TYPE_DECL:		return sizeof (tree_type_decl);
	case FUNCTION_DECL:	return sizeof (tree_function_decl);
	case DEBUG_EXPR_DECL:	return sizeof (tree_decl_with_rtl);
	case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
	case NAMESPACE_DECL:
	case IMPORTED_DECL:
	case NAMELIST_DECL:	return sizeof (tree_decl_non_common);
	default:
	  gcc_checking_assert (code >= NUM_TREE_CODES);
	  return lang_hooks.tree_size (code);
	}

    case tcc_type:  /* a type node */
      switch (code)
	{
	case OFFSET_TYPE:
	case ENUMERAL_TYPE:
	case BOOLEAN_TYPE:
	case INTEGER_TYPE:
	case REAL_TYPE:
	case OPAQUE_TYPE:
	case POINTER_TYPE:
	case REFERENCE_TYPE:
	case NULLPTR_TYPE:
	case FIXED_POINT_TYPE:
	case COMPLEX_TYPE:
	case VECTOR_TYPE:
	case ARRAY_TYPE:
	case RECORD_TYPE:
	case UNION_TYPE:
	case QUAL_UNION_TYPE:
	case VOID_TYPE:
	case FUNCTION_TYPE:
	case METHOD_TYPE:
	case LANG_TYPE:		return sizeof (tree_type_non_common);
	default:
	  gcc_checking_assert (code >= NUM_TREE_CODES);
	  return lang_hooks.tree_size (code);
	}

    case tcc_reference:   /* a reference */
    case tcc_expression:  /* an expression */
    case tcc_statement:   /* an expression with side effects */
    case tcc_comparison:  /* a comparison expression */
    case tcc_unary:       /* a unary arithmetic expression */
    case tcc_binary:      /* a binary arithmetic expression */
      return (sizeof (struct tree_exp)
	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));

    case tcc_constant:  /* a constant */
      switch (code)
	{
	case VOID_CST:		return sizeof (tree_typed);
	case INTEGER_CST:	gcc_unreachable ();
	case POLY_INT_CST:	return sizeof (tree_poly_int_cst);
	case REAL_CST:		return sizeof (tree_real_cst);
	case FIXED_CST:		return sizeof (tree_fixed_cst);
	case COMPLEX_CST:	return sizeof (tree_complex);
	case VECTOR_CST:	gcc_unreachable ();
	case STRING_CST:	gcc_unreachable ();
	default:
	  gcc_checking_assert (code >= NUM_TREE_CODES);
	  return lang_hooks.tree_size (code);
	}

    case tcc_exceptional:  /* something random, like an identifier.  */
      switch (code)
	{
	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
	case TREE_LIST:		return sizeof (tree_list);

	case ERROR_MARK:
	case PLACEHOLDER_EXPR:	return sizeof (tree_common);

	case TREE_VEC:		gcc_unreachable ();
	case OMP_CLAUSE:	gcc_unreachable ();

	case SSA_NAME:		return sizeof (tree_ssa_name);

	case STATEMENT_LIST:	return sizeof (tree_statement_list);
	case BLOCK:		return sizeof (struct tree_block);
	case CONSTRUCTOR:	return sizeof (tree_constructor);
	case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
	case TARGET_OPTION_NODE: return sizeof (tree_target_option);

	default:
	  gcc_checking_assert (code >= NUM_TREE_CODES);
	  return lang_hooks.tree_size (code);
	}

    default:
      gcc_unreachable ();
    }
}

/* Compute the number of bytes occupied by NODE.  This routine only
   looks at TREE_CODE, except for those nodes that have variable sizes.  */
size_t
tree_size (const_tree node)
{
  const enum tree_code code = TREE_CODE (node);
  switch (code)
    {
    case INTEGER_CST:
      return (sizeof (struct tree_int_cst)
	      + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));

    case TREE_BINFO:
      return (offsetof (struct tree_binfo, base_binfos)
	      + vec<tree, va_gc>
		  ::embedded_size (BINFO_N_BASE_BINFOS (node)));

    case TREE_VEC:
      return (sizeof (struct tree_vec)
	      + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));

    case VECTOR_CST:
      return (sizeof (struct tree_vector)
	      + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));

    case STRING_CST:
      return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;

    case OMP_CLAUSE:
      return (sizeof (struct tree_omp_clause)
	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
	        * sizeof (tree));

    default:
      if (TREE_CODE_CLASS (code) == tcc_vl_exp)
	return (sizeof (struct tree_exp)
		+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
      else
	return tree_code_size (code);
    }
}

/* Return tree node kind based on tree CODE.  */

static tree_node_kind
get_stats_node_kind (enum tree_code code)
{
  enum tree_code_class type = TREE_CODE_CLASS (code);

  switch (type)
    {
    case tcc_declaration:  /* A decl node */
      return d_kind;
    case tcc_type:  /* a type node */
      return t_kind;
    case tcc_statement:  /* an expression with side effects */
      return s_kind;
    case tcc_reference:  /* a reference */
      return r_kind;
    case tcc_expression:  /* an expression */
    case tcc_comparison:  /* a comparison expression */
    case tcc_unary:  /* a unary arithmetic expression */
    case tcc_binary:  /* a binary arithmetic expression */
      return e_kind;
    case tcc_constant:  /* a constant */
      return c_kind;
    case tcc_exceptional:  /* something random, like an identifier.  */
      switch (code)
	{
	case IDENTIFIER_NODE:
	  return id_kind;
	case TREE_VEC:
	  return vec_kind;
	case TREE_BINFO:
	  return binfo_kind;
	case SSA_NAME:
	  return ssa_name_kind;
	case BLOCK:
	  return b_kind;
	case CONSTRUCTOR:
	  return constr_kind;
	case OMP_CLAUSE:
	  return omp_clause_kind;
	default:
	  return x_kind;
	}
      break;
    case tcc_vl_exp:
      return e_kind;
    default:
      gcc_unreachable ();
    }
}

/* Record interesting allocation statistics for a tree node with CODE
   and LENGTH.  */

static void
record_node_allocation_statistics (enum tree_code code, size_t length)
{
  if (!GATHER_STATISTICS)
    return;

  tree_node_kind kind = get_stats_node_kind (code);

  tree_code_counts[(int) code]++;
  tree_node_counts[(int) kind]++;
  tree_node_sizes[(int) kind] += length;
}

/* Allocate and return a new UID from the DECL_UID namespace.  */

int
allocate_decl_uid (void)
{
  return next_decl_uid++;
}

/* Return a newly allocated node of code CODE.  For decl and type
   nodes, some other fields are initialized.  The rest of the node is
   initialized to zero.  This function cannot be used for TREE_VEC,
   INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
   tree_code_size.

   Achoo!  I got a code in the node.  */

tree
make_node (enum tree_code code MEM_STAT_DECL)
{
  tree t;
  enum tree_code_class type = TREE_CODE_CLASS (code);
  size_t length = tree_code_size (code);

  record_node_allocation_statistics (code, length);

  t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
  TREE_SET_CODE (t, code);

  switch (type)
    {
    case tcc_statement:
      if (code != DEBUG_BEGIN_STMT)
	TREE_SIDE_EFFECTS (t) = 1;
      break;

    case tcc_declaration:
      if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
	{
	  if (code == FUNCTION_DECL)
	    {
	      SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
	      SET_DECL_MODE (t, FUNCTION_MODE);
	    }
	  else
	    SET_DECL_ALIGN (t, 1);
	}
      DECL_SOURCE_LOCATION (t) = input_location;
      if (TREE_CODE (t) == DEBUG_EXPR_DECL)
	DECL_UID (t) = --next_debug_decl_uid;
      else
	{
	  DECL_UID (t) = allocate_decl_uid ();
	  SET_DECL_PT_UID (t, -1);
	}
      if (TREE_CODE (t) == LABEL_DECL)
	LABEL_DECL_UID (t) = -1;

      break;

    case tcc_type:
      TYPE_UID (t) = next_type_uid++;
      SET_TYPE_ALIGN (t, BITS_PER_UNIT);
      TYPE_USER_ALIGN (t) = 0;
      TYPE_MAIN_VARIANT (t) = t;
      TYPE_CANONICAL (t) = t;

      /* Default to no attributes for type, but let target change that.  */
      TYPE_ATTRIBUTES (t) = NULL_TREE;
      targetm.set_default_type_attributes (t);

      /* We have not yet computed the alias set for this type.  */
      TYPE_ALIAS_SET (t) = -1;
      break;

    case tcc_constant:
      TREE_CONSTANT (t) = 1;
      break;

    case tcc_expression:
      switch (code)
	{
	case INIT_EXPR:
	case MODIFY_EXPR:
	case VA_ARG_EXPR:
	case PREDECREMENT_EXPR:
	case PREINCREMENT_EXPR:
	case POSTDECREMENT_EXPR:
	case POSTINCREMENT_EXPR:
	  /* All of these have side-effects, no matter what their
	     operands are.  */
	  TREE_SIDE_EFFECTS (t) = 1;
	  break;

	default:
	  break;
	}
      break;

    case tcc_exceptional:
      switch (code)
        {
	case TARGET_OPTION_NODE:
	  TREE_TARGET_OPTION(t)
			    = ggc_cleared_alloc<struct cl_target_option> ();
	  break;

	case OPTIMIZATION_NODE:
	  TREE_OPTIMIZATION (t)
			    = ggc_cleared_alloc<struct cl_optimization> ();
	  break;

	default:
	  break;
	}
      break;

    default:
      /* Other classes need no special treatment.  */
      break;
    }

  return t;
}

/* Free tree node.  */

void
free_node (tree node)
{
  enum tree_code code = TREE_CODE (node);
  if (GATHER_STATISTICS)
    {
      enum tree_node_kind kind = get_stats_node_kind (code);

      gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
      gcc_checking_assert (tree_node_counts[(int) kind] != 0);
      gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));

      tree_code_counts[(int) TREE_CODE (node)]--;
      tree_node_counts[(int) kind]--;
      tree_node_sizes[(int) kind] -= tree_size (node);
    }
  if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
    vec_free (CONSTRUCTOR_ELTS (node));
  else if (code == BLOCK)
    vec_free (BLOCK_NONLOCALIZED_VARS (node));
  else if (code == TREE_BINFO)
    vec_free (BINFO_BASE_ACCESSES (node));
  else if (code == OPTIMIZATION_NODE)
    cl_optimization_option_free (TREE_OPTIMIZATION (node));
  else if (code == TARGET_OPTION_NODE)
    cl_target_option_free (TREE_TARGET_OPTION (node));
  ggc_free (node);
}

/* Return a new node with the same contents as NODE except that its
   TREE_CHAIN, if it has one, is zero and it has a fresh uid.  */

tree
copy_node (tree node MEM_STAT_DECL)
{
  tree t;
  enum tree_code code = TREE_CODE (node);
  size_t length;

  gcc_assert (code != STATEMENT_LIST);

  length = tree_size (node);
  record_node_allocation_statistics (code, length);
  t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
  memcpy (t, node, length);

  if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
    TREE_CHAIN (t) = 0;
  TREE_ASM_WRITTEN (t) = 0;
  TREE_VISITED (t) = 0;

  if (TREE_CODE_CLASS (code) == tcc_declaration)
    {
      if (code == DEBUG_EXPR_DECL)
	DECL_UID (t) = --next_debug_decl_uid;
      else
	{
	  DECL_UID (t) = allocate_decl_uid ();
	  if (DECL_PT_UID_SET_P (node))
	    SET_DECL_PT_UID (t, DECL_PT_UID (node));
	}
      if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
	  && DECL_HAS_VALUE_EXPR_P (node))
	{
	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
	  DECL_HAS_VALUE_EXPR_P (t) = 1;
	}
      /* DECL_DEBUG_EXPR is copied explicitly by callers.  */
      if (VAR_P (node))
	{
	  DECL_HAS_DEBUG_EXPR_P (t) = 0;
	  t->decl_with_vis.symtab_node = NULL;
	}
      if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
	{
	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
	}
      if (TREE_CODE (node) == FUNCTION_DECL)
	{
	  DECL_STRUCT_FUNCTION (t) = NULL;
	  t->decl_with_vis.symtab_node = NULL;
	}
    }
  else if (TREE_CODE_CLASS (code) == tcc_type)
    {
      TYPE_UID (t) = next_type_uid++;
      /* The following is so that the debug code for
	 the copy is different from the original type.
	 The two statements usually duplicate each other
	 (because they clear fields of the same union),
	 but the optimizer should catch that.  */
      TYPE_SYMTAB_ADDRESS (t) = 0;
      TYPE_SYMTAB_DIE (t) = 0;

      /* Do not copy the values cache.  */
      if (TYPE_CACHED_VALUES_P (t))
	{
	  TYPE_CACHED_VALUES_P (t) = 0;
	  TYPE_CACHED_VALUES (t) = NULL_TREE;
	}
    }
    else if (code == TARGET_OPTION_NODE)
      {
	TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
	memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
		sizeof (struct cl_target_option));
      }
    else if (code == OPTIMIZATION_NODE)
      {
	TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
	memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
		sizeof (struct cl_optimization));
      }

  return t;
}

/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
   For example, this can copy a list made of TREE_LIST nodes.  */

tree
copy_list (tree list)
{
  tree head;
  tree prev, next;

  if (list == 0)
    return 0;

  head = prev = copy_node (list);
  next = TREE_CHAIN (list);
  while (next)
    {
      TREE_CHAIN (prev) = copy_node (next);
      prev = TREE_CHAIN (prev);
      next = TREE_CHAIN (next);
    }
  return head;
}


/* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
   INTEGER_CST with value CST and type TYPE.   */

static unsigned int
get_int_cst_ext_nunits (tree type, const wide_int &cst)
{
  gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
  /* We need extra HWIs if CST is an unsigned integer with its
     upper bit set.  */
  if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
    return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
  return cst.get_len ();
}

/* Return a new INTEGER_CST with value CST and type TYPE.  */

static tree
build_new_int_cst (tree type, const wide_int &cst)
{
  unsigned int len = cst.get_len ();
  unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
  tree nt = make_int_cst (len, ext_len);

  if (len < ext_len)
    {
      --ext_len;
      TREE_INT_CST_ELT (nt, ext_len)
	= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
      for (unsigned int i = len; i < ext_len; ++i)
	TREE_INT_CST_ELT (nt, i) = -1;
    }
  else if (TYPE_UNSIGNED (type)
	   && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
    {
      len--;
      TREE_INT_CST_ELT (nt, len)
	= zext_hwi (cst.elt (len),
		    cst.get_precision () % HOST_BITS_PER_WIDE_INT);
    }

  for (unsigned int i = 0; i < len; i++)
    TREE_INT_CST_ELT (nt, i) = cst.elt (i);
  TREE_TYPE (nt) = type;
  return nt;
}

/* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE.  */

static tree
build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
			CXX_MEM_STAT_INFO)
{
  size_t length = sizeof (struct tree_poly_int_cst);
  record_node_allocation_statistics (POLY_INT_CST, length);

  tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);

  TREE_SET_CODE (t, POLY_INT_CST);
  TREE_CONSTANT (t) = 1;
  TREE_TYPE (t) = type;
  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    POLY_INT_CST_COEFF (t, i) = coeffs[i];
  return t;
}

/* Create a constant tree that contains CST sign-extended to TYPE.  */

tree
build_int_cst (tree type, poly_int64 cst)
{
  /* Support legacy code.  */
  if (!type)
    type = integer_type_node;

  return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
}

/* Create a constant tree that contains CST zero-extended to TYPE.  */

tree
build_int_cstu (tree type, poly_uint64 cst)
{
  return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
}

/* Create a constant tree that contains CST sign-extended to TYPE.  */

tree
build_int_cst_type (tree type, poly_int64 cst)
{
  gcc_assert (type);
  return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
}

/* Constructs tree in type TYPE from with value given by CST.  Signedness
   of CST is assumed to be the same as the signedness of TYPE.  */

tree
double_int_to_tree (tree type, double_int cst)
{
  return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
}

/* We force the wide_int CST to the range of the type TYPE by sign or
   zero extending it.  OVERFLOWABLE indicates if we are interested in
   overflow of the value, when >0 we are only interested in signed
   overflow, for <0 we are interested in any overflow.  OVERFLOWED
   indicates whether overflow has already occurred.  CONST_OVERFLOWED
   indicates whether constant overflow has already occurred.  We force
   T's value to be within range of T's type (by setting to 0 or 1 all
   the bits outside the type's range).  We set TREE_OVERFLOWED if,
        OVERFLOWED is nonzero,
        or OVERFLOWABLE is >0 and signed overflow occurs
        or OVERFLOWABLE is <0 and any overflow occurs
   We return a new tree node for the extended wide_int.  The node
   is shared if no overflow flags are set.  */


tree
force_fit_type (tree type, const poly_wide_int_ref &cst,
		int overflowable, bool overflowed)
{
  signop sign = TYPE_SIGN (type);

  /* If we need to set overflow flags, return a new unshared node.  */
  if (overflowed || !wi::fits_to_tree_p (cst, type))
    {
      if (overflowed
	  || overflowable < 0
	  || (overflowable > 0 && sign == SIGNED))
	{
	  poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
						   sign);
	  tree t;
	  if (tmp.is_constant ())
	    t = build_new_int_cst (type, tmp.coeffs[0]);
	  else
	    {
	      tree coeffs[NUM_POLY_INT_COEFFS];
	      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
		{
		  coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
		  TREE_OVERFLOW (coeffs[i]) = 1;
		}
	      t = build_new_poly_int_cst (type, coeffs);
	    }
	  TREE_OVERFLOW (t) = 1;
	  return t;
	}
    }

  /* Else build a shared node.  */
  return wide_int_to_tree (type, cst);
}

/* These are the hash table functions for the hash table of INTEGER_CST
   nodes of a sizetype.  */

/* Return the hash code X, an INTEGER_CST.  */

hashval_t
int_cst_hasher::hash (tree x)
{
  const_tree const t = x;
  hashval_t code = TYPE_UID (TREE_TYPE (t));
  int i;

  for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
    code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);

  return code;
}

/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
   is the same as that given by *Y, which is the same.  */

bool
int_cst_hasher::equal (tree x, tree y)
{
  const_tree const xt = x;
  const_tree const yt = y;

  if (TREE_TYPE (xt) != TREE_TYPE (yt)
      || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
      || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
    return false;

  for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
    if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
      return false;

  return true;
}

/* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE.
   SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum
   number of slots that can be cached for the type.  */

static inline tree
cache_wide_int_in_type_cache (tree type, const wide_int &cst,
			      int slot, int max_slots)
{
  gcc_checking_assert (slot >= 0);
  /* Initialize cache.  */
  if (!TYPE_CACHED_VALUES_P (type))
    {
      TYPE_CACHED_VALUES_P (type) = 1;
      TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots);
    }
  tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot);
  if (!t)
    {
      /* Create a new shared int.  */
      t = build_new_int_cst (type, cst);
      TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t;
    }
  return t;
}

/* Create an INT_CST node of TYPE and value CST.
   The returned node is always shared.  For small integers we use a
   per-type vector cache, for larger ones we use a single hash table.
   The value is extended from its precision according to the sign of
   the type to be a multiple of HOST_BITS_PER_WIDE_INT.  This defines
   the upper bits and ensures that hashing and value equality based
   upon the underlying HOST_WIDE_INTs works without masking.  */

static tree
wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
{
  tree t;
  int ix = -1;
  int limit = 0;

  gcc_assert (type);
  unsigned int prec = TYPE_PRECISION (type);
  signop sgn = TYPE_SIGN (type);

  /* Verify that everything is canonical.  */
  int l = pcst.get_len ();
  if (l > 1)
    {
      if (pcst.elt (l - 1) == 0)
	gcc_checking_assert (pcst.elt (l - 2) < 0);
      if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
	gcc_checking_assert (pcst.elt (l - 2) >= 0);
    }

  wide_int cst = wide_int::from (pcst, prec, sgn);
  unsigned int ext_len = get_int_cst_ext_nunits (type, cst);

  enum tree_code code = TREE_CODE (type);
  if (code == POINTER_TYPE || code == REFERENCE_TYPE)
    {
      /* Cache NULL pointer and zero bounds.  */
      if (cst == 0)
	ix = 0;
      /* Cache upper bounds of pointers.  */
      else if (cst == wi::max_value (prec, sgn))
	ix = 1;
      /* Cache 1 which is used for a non-zero range.  */
      else if (cst == 1)
	ix = 2;

      if (ix >= 0)
	{
	  t = cache_wide_int_in_type_cache (type, cst, ix, 3);
	  /* Make sure no one is clobbering the shared constant.  */
	  gcc_checking_assert (TREE_TYPE (t) == type
			       && cst == wi::to_wide (t));
	  return t;
	}
    }
  if (ext_len == 1)
    {
      /* We just need to store a single HOST_WIDE_INT.  */
      HOST_WIDE_INT hwi;
      if (TYPE_UNSIGNED (type))
	hwi = cst.to_uhwi ();
      else
	hwi = cst.to_shwi ();

      switch (code)
	{
	case NULLPTR_TYPE:
	  gcc_assert (hwi == 0);
	  /* Fallthru.  */

	case POINTER_TYPE:
	case REFERENCE_TYPE:
	  /* Ignore pointers, as they were already handled above.  */
	  break;

	case BOOLEAN_TYPE:
	  /* Cache false or true.  */
	  limit = 2;
	  if (IN_RANGE (hwi, 0, 1))
	    ix = hwi;
	  break;

	case INTEGER_TYPE:
	case OFFSET_TYPE:
	  if (TYPE_SIGN (type) == UNSIGNED)
	    {
	      /* Cache [0, N).  */
	      limit = param_integer_share_limit;
	      if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
		ix = hwi;
	    }
	  else
	    {
	      /* Cache [-1, N).  */
	      limit = param_integer_share_limit + 1;
	      if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
		ix = hwi + 1;
	    }
	  break;

	case ENUMERAL_TYPE:
	  break;

	default:
	  gcc_unreachable ();
	}

      if (ix >= 0)
	{
	  t = cache_wide_int_in_type_cache (type, cst, ix, limit);
	  /* Make sure no one is clobbering the shared constant.  */
	  gcc_checking_assert (TREE_TYPE (t) == type
			       && TREE_INT_CST_NUNITS (t) == 1
			       && TREE_INT_CST_OFFSET_NUNITS (t) == 1
			       && TREE_INT_CST_EXT_NUNITS (t) == 1
			       && TREE_INT_CST_ELT (t, 0) == hwi);
	  return t;
	}
      else
	{
	  /* Use the cache of larger shared ints, using int_cst_node as
	     a temporary.  */

	  TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
	  TREE_TYPE (int_cst_node) = type;

	  tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
	  t = *slot;
	  if (!t)
	    {
	      /* Insert this one into the hash table.  */
	      t = int_cst_node;
	      *slot = t;
	      /* Make a new node for next time round.  */
	      int_cst_node = make_int_cst (1, 1);
	    }
	}
    }
  else
    {
      /* The value either hashes properly or we drop it on the floor
	 for the gc to take care of.  There will not be enough of them
	 to worry about.  */

      tree nt = build_new_int_cst (type, cst);
      tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
      t = *slot;
      if (!t)
	{
	  /* Insert this one into the hash table.  */
	  t = nt;
	  *slot = t;
	}
      else
	ggc_free (nt);
    }

  return t;
}

hashval_t
poly_int_cst_hasher::hash (tree t)
{
  inchash::hash hstate;

  hstate.add_int (TYPE_UID (TREE_TYPE (t)));
  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));

  return hstate.end ();
}

bool
poly_int_cst_hasher::equal (tree x, const compare_type &y)
{
  if (TREE_TYPE (x) != y.first)
    return false;
  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
      return false;
  return true;
}

/* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
   The elements must also have type TYPE.  */

tree
build_poly_int_cst (tree type, const poly_wide_int_ref &values)
{
  unsigned int prec = TYPE_PRECISION (type);
  gcc_assert (prec <= values.coeffs[0].get_precision ());
  poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);

  inchash::hash h;
  h.add_int (TYPE_UID (type));
  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    h.add_wide_int (c.coeffs[i]);
  poly_int_cst_hasher::compare_type comp (type, &c);
  tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
							     INSERT);
  if (*slot == NULL_TREE)
    {
      tree coeffs[NUM_POLY_INT_COEFFS];
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
      *slot = build_new_poly_int_cst (type, coeffs);
    }
  return *slot;
}

/* Create a constant tree with value VALUE in type TYPE.  */

tree
wide_int_to_tree (tree type, const poly_wide_int_ref &value)
{
  if (value.is_constant ())
    return wide_int_to_tree_1 (type, value.coeffs[0]);
  return build_poly_int_cst (type, value);
}

/* Insert INTEGER_CST T into a cache of integer constants.  And return
   the cached constant (which may or may not be T).  If MIGHT_DUPLICATE
   is false, and T falls into the type's 'smaller values' range, there
   cannot be an existing entry.  Otherwise, if MIGHT_DUPLICATE is true,
   or the value is large, should an existing entry exist, it is
   returned (rather than inserting T).  */

tree
cache_integer_cst (tree t, bool might_duplicate ATTRIBUTE_UNUSED)
{
  tree type = TREE_TYPE (t);
  int ix = -1;
  int limit = 0;
  int prec = TYPE_PRECISION (type);

  gcc_assert (!TREE_OVERFLOW (t));

  /* The caching indices here must match those in
     wide_int_to_type_1.  */
  switch (TREE_CODE (type))
    {
    case NULLPTR_TYPE:
      gcc_checking_assert (integer_zerop (t));
      /* Fallthru.  */

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      {
	if (integer_zerop (t))
	  ix = 0;
	else if (integer_onep (t))
	  ix = 2;

	if (ix >= 0)
	  limit = 3;
      }
      break;

    case BOOLEAN_TYPE:
      /* Cache false or true.  */
      limit = 2;
      if (wi::ltu_p (wi::to_wide (t), 2))
	ix = TREE_INT_CST_ELT (t, 0);
      break;

    case INTEGER_TYPE:
    case OFFSET_TYPE:
      if (TYPE_UNSIGNED (type))
	{
	  /* Cache 0..N */
	  limit = param_integer_share_limit;

	  /* This is a little hokie, but if the prec is smaller than
	     what is necessary to hold param_integer_share_limit, then the
	     obvious test will not get the correct answer.  */
	  if (prec < HOST_BITS_PER_WIDE_INT)
	    {
	      if (tree_to_uhwi (t)
		  < (unsigned HOST_WIDE_INT) param_integer_share_limit)
		ix = tree_to_uhwi (t);
	    }
	  else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
	    ix = tree_to_uhwi (t);
	}
      else
	{
	  /* Cache -1..N */
	  limit = param_integer_share_limit + 1;

	  if (integer_minus_onep (t))
	    ix = 0;
	  else if (!wi::neg_p (wi::to_wide (t)))
	    {
	      if (prec < HOST_BITS_PER_WIDE_INT)
		{
		  if (tree_to_shwi (t) < param_integer_share_limit)
		    ix = tree_to_shwi (t) + 1;
		}
	      else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
		ix = tree_to_shwi (t) + 1;
	    }
	}
      break;

    case ENUMERAL_TYPE:
      /* The slot used by TYPE_CACHED_VALUES is used for the enum
	 members.  */
      break;

    default:
      gcc_unreachable ();
    }

  if (ix >= 0)
    {
      /* Look for it in the type's vector of small shared ints.  */
      if (!TYPE_CACHED_VALUES_P (type))
	{
	  TYPE_CACHED_VALUES_P (type) = 1;
	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
	}

      if (tree r = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix))
	{
	  gcc_checking_assert (might_duplicate);
	  t = r;
	}
      else
	TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
    }
  else
    {
      /* Use the cache of larger shared ints.  */
      tree *slot = int_cst_hash_table->find_slot (t, INSERT);
      if (tree r = *slot)
	{
	  /* If there is already an entry for the number verify it's the
	     same value.  */
	  gcc_checking_assert (wi::to_wide (tree (r)) == wi::to_wide (t));
	  /* And return the cached value.  */
	  t = r;
	}
      else
	/* Otherwise insert this one into the hash table.  */
	*slot = t;
    }

  return t;
}


/* Builds an integer constant in TYPE such that lowest BITS bits are ones
   and the rest are zeros.  */

tree
build_low_bits_mask (tree type, unsigned bits)
{
  gcc_assert (bits <= TYPE_PRECISION (type));

  return wide_int_to_tree (type, wi::mask (bits, false,
					   TYPE_PRECISION (type)));
}

/* Checks that X is integer constant that can be expressed in (unsigned)
   HOST_WIDE_INT without loss of precision.  */

bool
cst_and_fits_in_hwi (const_tree x)
{
  return (TREE_CODE (x) == INTEGER_CST
	  && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
}

/* Build a newly constructed VECTOR_CST with the given values of
   (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN.  */

tree
make_vector (unsigned log2_npatterns,
	     unsigned int nelts_per_pattern MEM_STAT_DECL)
{
  gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
  tree t;
  unsigned npatterns = 1 << log2_npatterns;
  unsigned encoded_nelts = npatterns * nelts_per_pattern;
  unsigned length = (sizeof (struct tree_vector)
		     + (encoded_nelts - 1) * sizeof (tree));

  record_node_allocation_statistics (VECTOR_CST, length);

  t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);

  TREE_SET_CODE (t, VECTOR_CST);
  TREE_CONSTANT (t) = 1;
  VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
  VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;

  return t;
}

/* Return a new VECTOR_CST node whose type is TYPE and whose values
   are extracted from V, a vector of CONSTRUCTOR_ELT.  */

tree
build_vector_from_ctor (tree type, const vec<constructor_elt, va_gc> *v)
{
  if (vec_safe_length (v) == 0)
    return build_zero_cst (type);

  unsigned HOST_WIDE_INT idx, nelts;
  tree value;

  /* We can't construct a VECTOR_CST for a variable number of elements.  */
  nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
  tree_vector_builder vec (type, nelts, 1);
  FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
    {
      if (TREE_CODE (value) == VECTOR_CST)
	{
	  /* If NELTS is constant then this must be too.  */
	  unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
	  for (unsigned i = 0; i < sub_nelts; ++i)
	    vec.quick_push (VECTOR_CST_ELT (value, i));
	}
      else
	vec.quick_push (value);
    }
  while (vec.length () < nelts)
    vec.quick_push (build_zero_cst (TREE_TYPE (type)));

  return vec.build ();
}

/* Build a vector of type VECTYPE where all the elements are SCs.  */
tree
build_vector_from_val (tree vectype, tree sc)
{
  unsigned HOST_WIDE_INT i, nunits;

  if (sc == error_mark_node)
    return sc;

  /* Verify that the vector type is suitable for SC.  Note that there
     is some inconsistency in the type-system with respect to restrict
     qualifications of pointers.  Vector types always have a main-variant
     element type and the qualification is applied to the vector-type.
     So TREE_TYPE (vector-type) does not return a properly qualified
     vector element-type.  */
  gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
					   TREE_TYPE (vectype)));

  if (CONSTANT_CLASS_P (sc))
    {
      tree_vector_builder v (vectype, 1, 1);
      v.quick_push (sc);
      return v.build ();
    }
  else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
    return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
  else
    {
      vec<constructor_elt, va_gc> *v;
      vec_alloc (v, nunits);
      for (i = 0; i < nunits; ++i)
	CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
      return build_constructor (vectype, v);
    }
}

/* If TYPE is not a vector type, just return SC, otherwise return
   build_vector_from_val (TYPE, SC).  */

tree
build_uniform_cst (tree type, tree sc)
{
  if (!VECTOR_TYPE_P (type))
    return sc;

  return build_vector_from_val (type, sc);
}

/* Build a vector series of type TYPE in which element I has the value
   BASE + I * STEP.  The result is a constant if BASE and STEP are constant
   and a VEC_SERIES_EXPR otherwise.  */

tree
build_vec_series (tree type, tree base, tree step)
{
  if (integer_zerop (step))
    return build_vector_from_val (type, base);
  if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
    {
      tree_vector_builder builder (type, 1, 3);
      tree elt1 = wide_int_to_tree (TREE_TYPE (base),
				    wi::to_wide (base) + wi::to_wide (step));
      tree elt2 = wide_int_to_tree (TREE_TYPE (base),
				    wi::to_wide (elt1) + wi::to_wide (step));
      builder.quick_push (base);
      builder.quick_push (elt1);
      builder.quick_push (elt2);
      return builder.build ();
    }
  return build2 (VEC_SERIES_EXPR, type, base, step);
}

/* Return a vector with the same number of units and number of bits
   as VEC_TYPE, but in which the elements are a linear series of unsigned
   integers { BASE, BASE + STEP, BASE + STEP * 2, ... }.  */

tree
build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
{
  tree index_vec_type = vec_type;
  tree index_elt_type = TREE_TYPE (vec_type);
  poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
  if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
    {
      index_elt_type = build_nonstandard_integer_type
	(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
      index_vec_type = build_vector_type (index_elt_type, nunits);
    }

  tree_vector_builder v (index_vec_type, 1, 3);
  for (unsigned int i = 0; i < 3; ++i)
    v.quick_push (build_int_cstu (index_elt_type, base + i * step));
  return v.build ();
}

/* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
   elements are A and the rest are B.  */

tree
build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
{
  gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
  unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
  /* Optimize the constant case.  */
  if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
    count /= 2;
  tree_vector_builder builder (vec_type, count, 2);
  for (unsigned int i = 0; i < count * 2; ++i)
    builder.quick_push (i < num_a ? a : b);
  return builder.build ();
}

/* Something has messed with the elements of CONSTRUCTOR C after it was built;
   calculate TREE_CONSTANT and TREE_SIDE_EFFECTS.  */

void
recompute_constructor_flags (tree c)
{
  unsigned int i;
  tree val;
  bool constant_p = true;
  bool side_effects_p = false;
  vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);

  FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
    {
      /* Mostly ctors will have elts that don't have side-effects, so
	 the usual case is to scan all the elements.  Hence a single
	 loop for both const and side effects, rather than one loop
	 each (with early outs).  */
      if (!TREE_CONSTANT (val))
	constant_p = false;
      if (TREE_SIDE_EFFECTS (val))
	side_effects_p = true;
    }

  TREE_SIDE_EFFECTS (c) = side_effects_p;
  TREE_CONSTANT (c) = constant_p;
}

/* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
   CONSTRUCTOR C.  */

void
verify_constructor_flags (tree c)
{
  unsigned int i;
  tree val;
  bool constant_p = TREE_CONSTANT (c);
  bool side_effects_p = TREE_SIDE_EFFECTS (c);
  vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);

  FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
    {
      if (constant_p && !TREE_CONSTANT (val))
	internal_error ("non-constant element in constant CONSTRUCTOR");
      if (!side_effects_p && TREE_SIDE_EFFECTS (val))
	internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
    }
}

/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
   are in the vec pointed to by VALS.  */
tree
build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
{
  tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);

  TREE_TYPE (c) = type;
  CONSTRUCTOR_ELTS (c) = vals;

  recompute_constructor_flags (c);

  return c;
}

/* Build a CONSTRUCTOR node made of a single initializer, with the specified
   INDEX and VALUE.  */
tree
build_constructor_single (tree type, tree index, tree value)
{
  vec<constructor_elt, va_gc> *v;
  constructor_elt elt = {index, value};

  vec_alloc (v, 1);
  v->quick_push (elt);

  return build_constructor (type, v);
}


/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
   are in a list pointed to by VALS.  */
tree
build_constructor_from_list (tree type, tree vals)
{
  tree t;
  vec<constructor_elt, va_gc> *v = NULL;

  if (vals)
    {
      vec_alloc (v, list_length (vals));
      for (t = vals; t; t = TREE_CHAIN (t))
	CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
    }

  return build_constructor (type, v);
}

/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
   are in a vector pointed to by VALS.  Note that the TREE_PURPOSE
   fields in the constructor remain null.  */

tree
build_constructor_from_vec (tree type, const vec<tree, va_gc> *vals)
{
  vec<constructor_elt, va_gc> *v = NULL;

  for (tree t : vals)
    CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);

  return build_constructor (type, v);
}

/* Return a new CONSTRUCTOR node whose type is TYPE.  NELTS is the number
   of elements, provided as index/value pairs.  */

tree
build_constructor_va (tree type, int nelts, ...)
{
  vec<constructor_elt, va_gc> *v = NULL;
  va_list p;

  va_start (p, nelts);
  vec_alloc (v, nelts);
  while (nelts--)
    {
      tree index = va_arg (p, tree);
      tree value = va_arg (p, tree);
      CONSTRUCTOR_APPEND_ELT (v, index, value);
    }
  va_end (p);
  return build_constructor (type, v);
}

/* Return a node of type TYPE for which TREE_CLOBBER_P is true.  */

tree
build_clobber (tree type)
{
  tree clobber = build_constructor (type, NULL);
  TREE_THIS_VOLATILE (clobber) = true;
  return clobber;
}

/* Return a new FIXED_CST node whose type is TYPE and value is F.  */

tree
build_fixed (tree type, FIXED_VALUE_TYPE f)
{
  tree v;
  FIXED_VALUE_TYPE *fp;

  v = make_node (FIXED_CST);
  fp = ggc_alloc<fixed_value> ();
  memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));

  TREE_TYPE (v) = type;
  TREE_FIXED_CST_PTR (v) = fp;
  return v;
}

/* Return a new REAL_CST node whose type is TYPE and value is D.  */

tree
build_real (tree type, REAL_VALUE_TYPE d)
{
  tree v;
  REAL_VALUE_TYPE *dp;
  int overflow = 0;

  /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
     Consider doing it via real_convert now.  */

  v = make_node (REAL_CST);
  dp = ggc_alloc<real_value> ();
  memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));

  TREE_TYPE (v) = type;
  TREE_REAL_CST_PTR (v) = dp;
  TREE_OVERFLOW (v) = overflow;
  return v;
}

/* Like build_real, but first truncate D to the type.  */

tree
build_real_truncate (tree type, REAL_VALUE_TYPE d)
{
  return build_real (type, real_value_truncate (TYPE_MODE (type), d));
}

/* Return a new REAL_CST node whose type is TYPE
   and whose value is the integer value of the INTEGER_CST node I.  */

REAL_VALUE_TYPE
real_value_from_int_cst (const_tree type, const_tree i)
{
  REAL_VALUE_TYPE d;

  /* Clear all bits of the real value type so that we can later do
     bitwise comparisons to see if two values are the same.  */
  memset (&d, 0, sizeof d);

  real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
		     TYPE_SIGN (TREE_TYPE (i)));
  return d;
}

/* Given a tree representing an integer constant I, return a tree
   representing the same value as a floating-point constant of type TYPE.  */

tree
build_real_from_int_cst (tree type, const_tree i)
{
  tree v;
  int overflow = TREE_OVERFLOW (i);

  v = build_real (type, real_value_from_int_cst (type, i));

  TREE_OVERFLOW (v) |= overflow;
  return v;
}

/* Return a new REAL_CST node whose type is TYPE
   and whose value is the integer value I which has sign SGN.  */

tree
build_real_from_wide (tree type, const wide_int_ref &i, signop sgn)
{
  REAL_VALUE_TYPE d;

  /* Clear all bits of the real value type so that we can later do
     bitwise comparisons to see if two values are the same.  */
  memset (&d, 0, sizeof d);

  real_from_integer (&d, TYPE_MODE (type), i, sgn);
  return build_real (type, d);
}

/* Return a newly constructed STRING_CST node whose value is the LEN
   characters at STR when STR is nonnull, or all zeros otherwise.
   Note that for a C string literal, LEN should include the trailing NUL.
   The TREE_TYPE is not initialized.  */

tree
build_string (unsigned len, const char *str /*= NULL */)
{
  /* Do not waste bytes provided by padding of struct tree_string.  */
  unsigned size = len + offsetof (struct tree_string, str) + 1;

  record_node_allocation_statistics (STRING_CST, size);

  tree s = (tree) ggc_internal_alloc (size);

  memset (s, 0, sizeof (struct tree_typed));
  TREE_SET_CODE (s, STRING_CST);
  TREE_CONSTANT (s) = 1;
  TREE_STRING_LENGTH (s) = len;
  if (str)
    memcpy (s->string.str, str, len);
  else
    memset (s->string.str, 0, len);
  s->string.str[len] = '\0';

  return s;
}

/* Return a newly constructed COMPLEX_CST node whose value is
   specified by the real and imaginary parts REAL and IMAG.
   Both REAL and IMAG should be constant nodes.  TYPE, if specified,
   will be the type of the COMPLEX_CST; otherwise a new type will be made.  */

tree
build_complex (tree type, tree real, tree imag)
{
  gcc_assert (CONSTANT_CLASS_P (real));
  gcc_assert (CONSTANT_CLASS_P (imag));

  tree t = make_node (COMPLEX_CST);

  TREE_REALPART (t) = real;
  TREE_IMAGPART (t) = imag;
  TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
  TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
  return t;
}

/* Build a complex (inf +- 0i), such as for the result of cproj.
   TYPE is the complex tree type of the result.  If NEG is true, the
   imaginary zero is negative.  */

tree
build_complex_inf (tree type, bool neg)
{
  REAL_VALUE_TYPE rinf, rzero = dconst0;

  real_inf (&rinf);
  rzero.sign = neg;
  return build_complex (type, build_real (TREE_TYPE (type), rinf),
			build_real (TREE_TYPE (type), rzero));
}

/* Return the constant 1 in type TYPE.  If TYPE has several elements, each
   element is set to 1.  In particular, this is 1 + i for complex types.  */

tree
build_each_one_cst (tree type)
{
  if (TREE_CODE (type) == COMPLEX_TYPE)
    {
      tree scalar = build_one_cst (TREE_TYPE (type));
      return build_complex (type, scalar, scalar);
    }
  else
    return build_one_cst (type);
}

/* Return a constant of arithmetic type TYPE which is the
   multiplicative identity of the set TYPE.  */

tree
build_one_cst (tree type)
{
  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
    case POINTER_TYPE: case REFERENCE_TYPE:
    case OFFSET_TYPE:
      return build_int_cst (type, 1);

    case REAL_TYPE:
      return build_real (type, dconst1);

    case FIXED_POINT_TYPE:
      /* We can only generate 1 for accum types.  */
      gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
      return build_fixed (type, FCONST1 (TYPE_MODE (type)));

    case VECTOR_TYPE:
      {
	tree scalar = build_one_cst (TREE_TYPE (type));

	return build_vector_from_val (type, scalar);
      }

    case COMPLEX_TYPE:
      return build_complex (type,
			    build_one_cst (TREE_TYPE (type)),
			    build_zero_cst (TREE_TYPE (type)));

    default:
      gcc_unreachable ();
    }
}

/* Return an integer of type TYPE containing all 1's in as much precision as
   it contains, or a complex or vector whose subparts are such integers.  */

tree
build_all_ones_cst (tree type)
{
  if (TREE_CODE (type) == COMPLEX_TYPE)
    {
      tree scalar = build_all_ones_cst (TREE_TYPE (type));
      return build_complex (type, scalar, scalar);
    }
  else
    return build_minus_one_cst (type);
}

/* Return a constant of arithmetic type TYPE which is the
   opposite of the multiplicative identity of the set TYPE.  */

tree
build_minus_one_cst (tree type)
{
  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
    case POINTER_TYPE: case REFERENCE_TYPE:
    case OFFSET_TYPE:
      return build_int_cst (type, -1);

    case REAL_TYPE:
      return build_real (type, dconstm1);

    case FIXED_POINT_TYPE:
      /* We can only generate 1 for accum types.  */
      gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
      return build_fixed (type,
			  fixed_from_double_int (double_int_minus_one,
						 SCALAR_TYPE_MODE (type)));

    case VECTOR_TYPE:
      {
	tree scalar = build_minus_one_cst (TREE_TYPE (type));

	return build_vector_from_val (type, scalar);
      }

    case COMPLEX_TYPE:
      return build_complex (type,
			    build_minus_one_cst (TREE_TYPE (type)),
			    build_zero_cst (TREE_TYPE (type)));

    default:
      gcc_unreachable ();
    }
}

/* Build 0 constant of type TYPE.  This is used by constructor folding
   and thus the constant should be represented in memory by
   zero(es).  */

tree
build_zero_cst (tree type)
{
  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
    case POINTER_TYPE: case REFERENCE_TYPE:
    case OFFSET_TYPE: case NULLPTR_TYPE:
      return build_int_cst (type, 0);

    case REAL_TYPE:
      return build_real (type, dconst0);

    case FIXED_POINT_TYPE:
      return build_fixed (type, FCONST0 (TYPE_MODE (type)));

    case VECTOR_TYPE:
      {
	tree scalar = build_zero_cst (TREE_TYPE (type));

	return build_vector_from_val (type, scalar);
      }

    case COMPLEX_TYPE:
      {
	tree zero = build_zero_cst (TREE_TYPE (type));

	return build_complex (type, zero, zero);
      }

    default:
      if (!AGGREGATE_TYPE_P (type))
	return fold_convert (type, integer_zero_node);
      return build_constructor (type, NULL);
    }
}


/* Build a BINFO with LEN language slots.  */

tree
make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
{
  tree t;
  size_t length = (offsetof (struct tree_binfo, base_binfos)
		   + vec<tree, va_gc>::embedded_size (base_binfos));

  record_node_allocation_statistics (TREE_BINFO, length);

  t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);

  memset (t, 0, offsetof (struct tree_binfo, base_binfos));

  TREE_SET_CODE (t, TREE_BINFO);

  BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);

  return t;
}

/* Create a CASE_LABEL_EXPR tree node and return it.  */

tree
build_case_label (tree low_value, tree high_value, tree label_decl)
{
  tree t = make_node (CASE_LABEL_EXPR);

  TREE_TYPE (t) = void_type_node;
  SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));

  CASE_LOW (t) = low_value;
  CASE_HIGH (t) = high_value;
  CASE_LABEL (t) = label_decl;
  CASE_CHAIN (t) = NULL_TREE;

  return t;
}

/* Build a newly constructed INTEGER_CST node.  LEN and EXT_LEN are the
   values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
   The latter determines the length of the HOST_WIDE_INT vector.  */

tree
make_int_cst (int len, int ext_len MEM_STAT_DECL)
{
  tree t;
  int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
		+ sizeof (struct tree_int_cst));

  gcc_assert (len);
  record_node_allocation_statistics (INTEGER_CST, length);

  t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);

  TREE_SET_CODE (t, INTEGER_CST);
  TREE_INT_CST_NUNITS (t) = len;
  TREE_INT_CST_EXT_NUNITS (t) = ext_len;
  /* to_offset can only be applied to trees that are offset_int-sized
     or smaller.  EXT_LEN is correct if it fits, otherwise the constant
     must be exactly the precision of offset_int and so LEN is correct.  */
  if (ext_len <= OFFSET_INT_ELTS)
    TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
  else
    TREE_INT_CST_OFFSET_NUNITS (t) = len;

  TREE_CONSTANT (t) = 1;

  return t;
}

/* Build a newly constructed TREE_VEC node of length LEN.  */

tree
make_tree_vec (int len MEM_STAT_DECL)
{
  tree t;
  size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);

  record_node_allocation_statistics (TREE_VEC, length);

  t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);

  TREE_SET_CODE (t, TREE_VEC);
  TREE_VEC_LENGTH (t) = len;

  return t;
}

/* Grow a TREE_VEC node to new length LEN.  */

tree
grow_tree_vec (tree v, int len MEM_STAT_DECL)
{
  gcc_assert (TREE_CODE (v) == TREE_VEC);

  int oldlen = TREE_VEC_LENGTH (v);
  gcc_assert (len > oldlen);

  size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
  size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);

  record_node_allocation_statistics (TREE_VEC, length - oldlength);

  v = (tree) ggc_realloc (v, length PASS_MEM_STAT);

  TREE_VEC_LENGTH (v) = len;

  return v;
}

/* Return 1 if EXPR is the constant zero, whether it is integral, float or
   fixed, and scalar, complex or vector.  */

bool
zerop (const_tree expr)
{
  return (integer_zerop (expr)
	  || real_zerop (expr)
	  || fixed_zerop (expr));
}

/* Return 1 if EXPR is the integer constant zero or a complex constant
   of zero, or a location wrapper for such a constant.  */

bool
integer_zerop (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      return wi::to_wide (expr) == 0;
    case COMPLEX_CST:
      return (integer_zerop (TREE_REALPART (expr))
	      && integer_zerop (TREE_IMAGPART (expr)));
    case VECTOR_CST:
      return (VECTOR_CST_NPATTERNS (expr) == 1
	      && VECTOR_CST_DUPLICATE_P (expr)
	      && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
    default:
      return false;
    }
}

/* Return 1 if EXPR is the integer constant one or the corresponding
   complex constant, or a location wrapper for such a constant.  */

bool
integer_onep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      return wi::eq_p (wi::to_widest (expr), 1);
    case COMPLEX_CST:
      return (integer_onep (TREE_REALPART (expr))
	      && integer_zerop (TREE_IMAGPART (expr)));
    case VECTOR_CST:
      return (VECTOR_CST_NPATTERNS (expr) == 1
	      && VECTOR_CST_DUPLICATE_P (expr)
	      && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
    default:
      return false;
    }
}

/* Return 1 if EXPR is the integer constant one.  For complex and vector,
   return 1 if every piece is the integer constant one.
   Also return 1 for location wrappers for such a constant.  */

bool
integer_each_onep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  if (TREE_CODE (expr) == COMPLEX_CST)
    return (integer_onep (TREE_REALPART (expr))
	    && integer_onep (TREE_IMAGPART (expr)));
  else
    return integer_onep (expr);
}

/* Return 1 if EXPR is an integer containing all 1's in as much precision as
   it contains, or a complex or vector whose subparts are such integers,
   or a location wrapper for such a constant.  */

bool
integer_all_onesp (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  if (TREE_CODE (expr) == COMPLEX_CST
      && integer_all_onesp (TREE_REALPART (expr))
      && integer_all_onesp (TREE_IMAGPART (expr)))
    return true;

  else if (TREE_CODE (expr) == VECTOR_CST)
    return (VECTOR_CST_NPATTERNS (expr) == 1
	    && VECTOR_CST_DUPLICATE_P (expr)
	    && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));

  else if (TREE_CODE (expr) != INTEGER_CST)
    return false;

  return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
	  == wi::to_wide (expr));
}

/* Return 1 if EXPR is the integer constant minus one, or a location wrapper
   for such a constant.  */

bool
integer_minus_onep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  if (TREE_CODE (expr) == COMPLEX_CST)
    return (integer_all_onesp (TREE_REALPART (expr))
	    && integer_zerop (TREE_IMAGPART (expr)));
  else
    return integer_all_onesp (expr);
}

/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
   one bit on), or a location wrapper for such a constant.  */

bool
integer_pow2p (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  if (TREE_CODE (expr) == COMPLEX_CST
      && integer_pow2p (TREE_REALPART (expr))
      && integer_zerop (TREE_IMAGPART (expr)))
    return true;

  if (TREE_CODE (expr) != INTEGER_CST)
    return false;

  return wi::popcount (wi::to_wide (expr)) == 1;
}

/* Return 1 if EXPR is an integer constant other than zero or a
   complex constant other than zero, or a location wrapper for such a
   constant.  */

bool
integer_nonzerop (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  return ((TREE_CODE (expr) == INTEGER_CST
	   && wi::to_wide (expr) != 0)
	  || (TREE_CODE (expr) == COMPLEX_CST
	      && (integer_nonzerop (TREE_REALPART (expr))
		  || integer_nonzerop (TREE_IMAGPART (expr)))));
}

/* Return 1 if EXPR is the integer constant one.  For vector,
   return 1 if every piece is the integer constant minus one
   (representing the value TRUE).
   Also return 1 for location wrappers for such a constant.  */

bool
integer_truep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  if (TREE_CODE (expr) == VECTOR_CST)
    return integer_all_onesp (expr);
  return integer_onep (expr);
}

/* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
   for such a constant.  */

bool
fixed_zerop (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  return (TREE_CODE (expr) == FIXED_CST
	  && TREE_FIXED_CST (expr).data.is_zero ());
}

/* Return the power of two represented by a tree node known to be a
   power of two.  */

int
tree_log2 (const_tree expr)
{
  if (TREE_CODE (expr) == COMPLEX_CST)
    return tree_log2 (TREE_REALPART (expr));

  return wi::exact_log2 (wi::to_wide (expr));
}

/* Similar, but return the largest integer Y such that 2 ** Y is less
   than or equal to EXPR.  */

int
tree_floor_log2 (const_tree expr)
{
  if (TREE_CODE (expr) == COMPLEX_CST)
    return tree_log2 (TREE_REALPART (expr));

  return wi::floor_log2 (wi::to_wide (expr));
}

/* Return number of known trailing zero bits in EXPR, or, if the value of
   EXPR is known to be zero, the precision of it's type.  */

unsigned int
tree_ctz (const_tree expr)
{
  if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
      && !POINTER_TYPE_P (TREE_TYPE (expr)))
    return 0;

  unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      ret1 = wi::ctz (wi::to_wide (expr));
      return MIN (ret1, prec);
    case SSA_NAME:
      ret1 = wi::ctz (get_nonzero_bits (expr));
      return MIN (ret1, prec);
    case PLUS_EXPR:
    case MINUS_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
      if (ret1 == 0)
	return ret1;
      ret2 = tree_ctz (TREE_OPERAND (expr, 1));
      return MIN (ret1, ret2);
    case POINTER_PLUS_EXPR:
      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
      ret2 = tree_ctz (TREE_OPERAND (expr, 1));
      /* Second operand is sizetype, which could be in theory
	 wider than pointer's precision.  Make sure we never
	 return more than prec.  */
      ret2 = MIN (ret2, prec);
      return MIN (ret1, ret2);
    case BIT_AND_EXPR:
      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
      ret2 = tree_ctz (TREE_OPERAND (expr, 1));
      return MAX (ret1, ret2);
    case MULT_EXPR:
      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
      ret2 = tree_ctz (TREE_OPERAND (expr, 1));
      return MIN (ret1 + ret2, prec);
    case LSHIFT_EXPR:
      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
      if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
	{
	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
	  return MIN (ret1 + ret2, prec);
	}
      return ret1;
    case RSHIFT_EXPR:
      if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
	{
	  ret1 = tree_ctz (TREE_OPERAND (expr, 0));
	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
	  if (ret1 > ret2)
	    return ret1 - ret2;
	}
      return 0;
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
      if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
	  && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
	{
	  int l = tree_log2 (TREE_OPERAND (expr, 1));
	  if (l >= 0)
	    {
	      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
	      ret2 = l;
	      if (ret1 > ret2)
		return ret1 - ret2;
	    }
	}
      return 0;
    CASE_CONVERT:
      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
      if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
	ret1 = prec;
      return MIN (ret1, prec);
    case SAVE_EXPR:
      return tree_ctz (TREE_OPERAND (expr, 0));
    case COND_EXPR:
      ret1 = tree_ctz (TREE_OPERAND (expr, 1));
      if (ret1 == 0)
	return 0;
      ret2 = tree_ctz (TREE_OPERAND (expr, 2));
      return MIN (ret1, ret2);
    case COMPOUND_EXPR:
      return tree_ctz (TREE_OPERAND (expr, 1));
    case ADDR_EXPR:
      ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
      if (ret1 > BITS_PER_UNIT)
	{
	  ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
	  return MIN (ret1, prec);
	}
      return 0;
    default:
      return 0;
    }
}

/* Return 1 if EXPR is the real constant zero.  Trailing zeroes matter for
   decimal float constants, so don't return 1 for them.
   Also return 1 for location wrappers around such a constant.  */

bool
real_zerop (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  switch (TREE_CODE (expr))
    {
    case REAL_CST:
      return real_equal (&TREE_REAL_CST (expr), &dconst0)
	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
    case COMPLEX_CST:
      return real_zerop (TREE_REALPART (expr))
	     && real_zerop (TREE_IMAGPART (expr));
    case VECTOR_CST:
      {
	/* Don't simply check for a duplicate because the predicate
	   accepts both +0.0 and -0.0.  */
	unsigned count = vector_cst_encoded_nelts (expr);
	for (unsigned int i = 0; i < count; ++i)
	  if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
	    return false;
	return true;
      }
    default:
      return false;
    }
}

/* Return 1 if EXPR is the real constant one in real or complex form.
   Trailing zeroes matter for decimal float constants, so don't return
   1 for them.
   Also return 1 for location wrappers around such a constant.  */

bool
real_onep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  switch (TREE_CODE (expr))
    {
    case REAL_CST:
      return real_equal (&TREE_REAL_CST (expr), &dconst1)
	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
    case COMPLEX_CST:
      return real_onep (TREE_REALPART (expr))
	     && real_zerop (TREE_IMAGPART (expr));
    case VECTOR_CST:
      return (VECTOR_CST_NPATTERNS (expr) == 1
	      && VECTOR_CST_DUPLICATE_P (expr)
	      && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
    default:
      return false;
    }
}

/* Return 1 if EXPR is the real constant minus one.  Trailing zeroes
   matter for decimal float constants, so don't return 1 for them.
   Also return 1 for location wrappers around such a constant.  */

bool
real_minus_onep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  switch (TREE_CODE (expr))
    {
    case REAL_CST:
      return real_equal (&TREE_REAL_CST (expr), &dconstm1)
	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
    case COMPLEX_CST:
      return real_minus_onep (TREE_REALPART (expr))
	     && real_zerop (TREE_IMAGPART (expr));
    case VECTOR_CST:
      return (VECTOR_CST_NPATTERNS (expr) == 1
	      && VECTOR_CST_DUPLICATE_P (expr)
	      && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
    default:
      return false;
    }
}

/* Nonzero if EXP is a constant or a cast of a constant.  */

bool
really_constant_p (const_tree exp)
{
  /* This is not quite the same as STRIP_NOPS.  It does more.  */
  while (CONVERT_EXPR_P (exp)
	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
    exp = TREE_OPERAND (exp, 0);
  return TREE_CONSTANT (exp);
}

/* Return true if T holds a polynomial pointer difference, storing it in
   *VALUE if so.  A true return means that T's precision is no greater
   than 64 bits, which is the largest address space we support, so *VALUE
   never loses precision.  However, the signedness of the result does
   not necessarily match the signedness of T: sometimes an unsigned type
   like sizetype is used to encode a value that is actually negative.  */

bool
ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
{
  if (!t)
    return false;
  if (TREE_CODE (t) == INTEGER_CST)
    {
      if (!cst_and_fits_in_hwi (t))
	return false;
      *value = int_cst_value (t);
      return true;
    }
  if (POLY_INT_CST_P (t))
    {
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
	  return false;
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
      return true;
    }
  return false;
}

poly_int64
tree_to_poly_int64 (const_tree t)
{
  gcc_assert (tree_fits_poly_int64_p (t));
  if (POLY_INT_CST_P (t))
    return poly_int_cst_value (t).force_shwi ();
  return TREE_INT_CST_LOW (t);
}

poly_uint64
tree_to_poly_uint64 (const_tree t)
{
  gcc_assert (tree_fits_poly_uint64_p (t));
  if (POLY_INT_CST_P (t))
    return poly_int_cst_value (t).force_uhwi ();
  return TREE_INT_CST_LOW (t);
}

/* Return first list element whose TREE_VALUE is ELEM.
   Return 0 if ELEM is not in LIST.  */

tree
value_member (tree elem, tree list)
{
  while (list)
    {
      if (elem == TREE_VALUE (list))
	return list;
      list = TREE_CHAIN (list);
    }
  return NULL_TREE;
}

/* Return first list element whose TREE_PURPOSE is ELEM.
   Return 0 if ELEM is not in LIST.  */

tree
purpose_member (const_tree elem, tree list)
{
  while (list)
    {
      if (elem == TREE_PURPOSE (list))
	return list;
      list = TREE_CHAIN (list);
    }
  return NULL_TREE;
}

/* Return true if ELEM is in V.  */

bool
vec_member (const_tree elem, vec<tree, va_gc> *v)
{
  unsigned ix;
  tree t;
  FOR_EACH_VEC_SAFE_ELT (v, ix, t)
    if (elem == t)
      return true;
  return false;
}

/* Returns element number IDX (zero-origin) of chain CHAIN, or
   NULL_TREE.  */

tree
chain_index (int idx, tree chain)
{
  for (; chain && idx > 0; --idx)
    chain = TREE_CHAIN (chain);
  return chain;
}

/* Return nonzero if ELEM is part of the chain CHAIN.  */

bool
chain_member (const_tree elem, const_tree chain)
{
  while (chain)
    {
      if (elem == chain)
	return true;
      chain = DECL_CHAIN (chain);
    }

  return false;
}

/* Return the length of a chain of nodes chained through TREE_CHAIN.
   We expect a null pointer to mark the end of the chain.
   This is the Lisp primitive `length'.  */

int
list_length (const_tree t)
{
  const_tree p = t;
#ifdef ENABLE_TREE_CHECKING
  const_tree q = t;
#endif
  int len = 0;

  while (p)
    {
      p = TREE_CHAIN (p);
#ifdef ENABLE_TREE_CHECKING
      if (len % 2)
	q = TREE_CHAIN (q);
      gcc_assert (p != q);
#endif
      len++;
    }

  return len;
}

/* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
   UNION_TYPE TYPE, or NULL_TREE if none.  */

tree
first_field (const_tree type)
{
  tree t = TYPE_FIELDS (type);
  while (t && TREE_CODE (t) != FIELD_DECL)
    t = TREE_CHAIN (t);
  return t;
}

/* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
   UNION_TYPE TYPE, or NULL_TREE if none.  */

tree
last_field (const_tree type)
{
  tree last = NULL_TREE;

  for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
    {
      if (TREE_CODE (fld) != FIELD_DECL)
	continue;

      last = fld;
    }

  return last;
}

/* Concatenate two chains of nodes (chained through TREE_CHAIN)
   by modifying the last node in chain 1 to point to chain 2.
   This is the Lisp primitive `nconc'.  */

tree
chainon (tree op1, tree op2)
{
  tree t1;

  if (!op1)
    return op2;
  if (!op2)
    return op1;

  for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
    continue;
  TREE_CHAIN (t1) = op2;

#ifdef ENABLE_TREE_CHECKING
  {
    tree t2;
    for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
      gcc_assert (t2 != t1);
  }
#endif

  return op1;
}

/* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */

tree
tree_last (tree chain)
{
  tree next;
  if (chain)
    while ((next = TREE_CHAIN (chain)))
      chain = next;
  return chain;
}

/* Reverse the order of elements in the chain T,
   and return the new head of the chain (old last element).  */

tree
nreverse (tree t)
{
  tree prev = 0, decl, next;
  for (decl = t; decl; decl = next)
    {
      /* We shouldn't be using this function to reverse BLOCK chains; we
	 have blocks_nreverse for that.  */
      gcc_checking_assert (TREE_CODE (decl) != BLOCK);
      next = TREE_CHAIN (decl);
      TREE_CHAIN (decl) = prev;
      prev = decl;
    }
  return prev;
}

/* Return a newly created TREE_LIST node whose
   purpose and value fields are PARM and VALUE.  */

tree
build_tree_list (tree parm, tree value MEM_STAT_DECL)
{
  tree t = make_node (TREE_LIST PASS_MEM_STAT);
  TREE_PURPOSE (t) = parm;
  TREE_VALUE (t) = value;
  return t;
}

/* Build a chain of TREE_LIST nodes from a vector.  */

tree
build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
{
  tree ret = NULL_TREE;
  tree *pp = &ret;
  unsigned int i;
  tree t;
  FOR_EACH_VEC_SAFE_ELT (vec, i, t)
    {
      *pp = build_tree_list (NULL, t PASS_MEM_STAT);
      pp = &TREE_CHAIN (*pp);
    }
  return ret;
}

/* Return a newly created TREE_LIST node whose
   purpose and value fields are PURPOSE and VALUE
   and whose TREE_CHAIN is CHAIN.  */

tree 
tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
{
  tree node;

  node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
  memset (node, 0, sizeof (struct tree_common));

  record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));

  TREE_SET_CODE (node, TREE_LIST);
  TREE_CHAIN (node) = chain;
  TREE_PURPOSE (node) = purpose;
  TREE_VALUE (node) = value;
  return node;
}

/* Return the values of the elements of a CONSTRUCTOR as a vector of
   trees.  */

vec<tree, va_gc> *
ctor_to_vec (tree ctor)
{
  vec<tree, va_gc> *vec;
  vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
  unsigned int ix;
  tree val;

  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
    vec->quick_push (val);

  return vec;
}

/* Return the size nominally occupied by an object of type TYPE
   when it resides in memory.  The value is measured in units of bytes,
   and its data type is that normally used for type sizes
   (which is the first type created by make_signed_type or
   make_unsigned_type).  */

tree
size_in_bytes_loc (location_t loc, const_tree type)
{
  tree t;

  if (type == error_mark_node)
    return integer_zero_node;

  type = TYPE_MAIN_VARIANT (type);
  t = TYPE_SIZE_UNIT (type);

  if (t == 0)
    {
      lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
      return size_zero_node;
    }

  return t;
}

/* Return the size of TYPE (in bytes) as a wide integer
   or return -1 if the size can vary or is larger than an integer.  */

HOST_WIDE_INT
int_size_in_bytes (const_tree type)
{
  tree t;

  if (type == error_mark_node)
    return 0;

  type = TYPE_MAIN_VARIANT (type);
  t = TYPE_SIZE_UNIT (type);

  if (t && tree_fits_uhwi_p (t))
    return TREE_INT_CST_LOW (t);
  else
    return -1;
}

/* Return the maximum size of TYPE (in bytes) as a wide integer
   or return -1 if the size can vary or is larger than an integer.  */

HOST_WIDE_INT
max_int_size_in_bytes (const_tree type)
{
  HOST_WIDE_INT size = -1;
  tree size_tree;

  /* If this is an array type, check for a possible MAX_SIZE attached.  */

  if (TREE_CODE (type) == ARRAY_TYPE)
    {
      size_tree = TYPE_ARRAY_MAX_SIZE (type);

      if (size_tree && tree_fits_uhwi_p (size_tree))
	size = tree_to_uhwi (size_tree);
    }

  /* If we still haven't been able to get a size, see if the language
     can compute a maximum size.  */

  if (size == -1)
    {
      size_tree = lang_hooks.types.max_size (type);

      if (size_tree && tree_fits_uhwi_p (size_tree))
	size = tree_to_uhwi (size_tree);
    }

  return size;
}

/* Return the bit position of FIELD, in bits from the start of the record.
   This is a tree of type bitsizetype.  */

tree
bit_position (const_tree field)
{
  return bit_from_pos (DECL_FIELD_OFFSET (field),
		       DECL_FIELD_BIT_OFFSET (field));
}

/* Return the byte position of FIELD, in bytes from the start of the record.
   This is a tree of type sizetype.  */

tree
byte_position (const_tree field)
{
  return byte_from_pos (DECL_FIELD_OFFSET (field),
			DECL_FIELD_BIT_OFFSET (field));
}

/* Likewise, but return as an integer.  It must be representable in
   that way (since it could be a signed value, we don't have the
   option of returning -1 like int_size_in_byte can.  */

HOST_WIDE_INT
int_byte_position (const_tree field)
{
  return tree_to_shwi (byte_position (field));
}

/* Return, as a tree node, the number of elements for TYPE (which is an
   ARRAY_TYPE) minus one. This counts only elements of the top array.  */

tree
array_type_nelts (const_tree type)
{
  tree index_type, min, max;

  /* If they did it with unspecified bounds, then we should have already
     given an error about it before we got here.  */
  if (! TYPE_DOMAIN (type))
    return error_mark_node;

  index_type = TYPE_DOMAIN (type);
  min = TYPE_MIN_VALUE (index_type);
  max = TYPE_MAX_VALUE (index_type);

  /* TYPE_MAX_VALUE may not be set if the array has unknown length.  */
  if (!max)
    {
      /* zero sized arrays are represented from C FE as complete types with
	 NULL TYPE_MAX_VALUE and zero TYPE_SIZE, while C++ FE represents
	 them as min 0, max -1.  */
      if (COMPLETE_TYPE_P (type)
	  && integer_zerop (TYPE_SIZE (type))
	  && integer_zerop (min))
	return build_int_cst (TREE_TYPE (min), -1);

      return error_mark_node;
    }

  return (integer_zerop (min)
	  ? max
	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
}

/* If arg is static -- a reference to an object in static storage -- then
   return the object.  This is not the same as the C meaning of `static'.
   If arg isn't static, return NULL.  */

tree
staticp (tree arg)
{
  switch (TREE_CODE (arg))
    {
    case FUNCTION_DECL:
      /* Nested functions are static, even though taking their address will
	 involve a trampoline as we unnest the nested function and create
	 the trampoline on the tree level.  */
      return arg;

    case VAR_DECL:
      return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
	      && ! DECL_THREAD_LOCAL_P (arg)
	      && ! DECL_DLLIMPORT_P (arg)
	      ? arg : NULL);

    case CONST_DECL:
      return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
	      ? arg : NULL);

    case CONSTRUCTOR:
      return TREE_STATIC (arg) ? arg : NULL;

    case LABEL_DECL:
    case STRING_CST:
      return arg;

    case COMPONENT_REF:
      /* If the thing being referenced is not a field, then it is
	 something language specific.  */
      gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);

      /* If we are referencing a bitfield, we can't evaluate an
	 ADDR_EXPR at compile time and so it isn't a constant.  */
      if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
	return NULL;

      return staticp (TREE_OPERAND (arg, 0));

    case BIT_FIELD_REF:
      return NULL;

    case INDIRECT_REF:
      return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;

    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
	return staticp (TREE_OPERAND (arg, 0));
      else
	return NULL;

    case COMPOUND_LITERAL_EXPR:
      return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;

    default:
      return NULL;
    }
}




/* Return whether OP is a DECL whose address is function-invariant.  */

bool
decl_address_invariant_p (const_tree op)
{
  /* The conditions below are slightly less strict than the one in
     staticp.  */

  switch (TREE_CODE (op))
    {
    case PARM_DECL:
    case RESULT_DECL:
    case LABEL_DECL:
    case FUNCTION_DECL:
      return true;

    case VAR_DECL:
      if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
          || DECL_THREAD_LOCAL_P (op)
          || DECL_CONTEXT (op) == current_function_decl
          || decl_function_context (op) == current_function_decl)
        return true;
      break;

    case CONST_DECL:
      if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
          || decl_function_context (op) == current_function_decl)
        return true;
      break;

    default:
      break;
    }

  return false;
}

/* Return whether OP is a DECL whose address is interprocedural-invariant.  */

bool
decl_address_ip_invariant_p (const_tree op)
{
  /* The conditions below are slightly less strict than the one in
     staticp.  */

  switch (TREE_CODE (op))
    {
    case LABEL_DECL:
    case FUNCTION_DECL:
    case STRING_CST:
      return true;

    case VAR_DECL:
      if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
           && !DECL_DLLIMPORT_P (op))
          || DECL_THREAD_LOCAL_P (op))
        return true;
      break;

    case CONST_DECL:
      if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
        return true;
      break;

    default:
      break;
    }

  return false;
}


/* Return true if T is function-invariant (internal function, does
   not handle arithmetic; that's handled in skip_simple_arithmetic and
   tree_invariant_p).  */

static bool
tree_invariant_p_1 (tree t)
{
  tree op;

  if (TREE_CONSTANT (t)
      || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
    return true;

  switch (TREE_CODE (t))
    {
    case SAVE_EXPR:
      return true;

    case ADDR_EXPR:
      op = TREE_OPERAND (t, 0);
      while (handled_component_p (op))
	{
	  switch (TREE_CODE (op))
	    {
	    case ARRAY_REF:
	    case ARRAY_RANGE_REF:
	      if (!tree_invariant_p (TREE_OPERAND (op, 1))
		  || TREE_OPERAND (op, 2) != NULL_TREE
		  || TREE_OPERAND (op, 3) != NULL_TREE)
		return false;
	      break;

	    case COMPONENT_REF:
	      if (TREE_OPERAND (op, 2) != NULL_TREE)
		return false;
	      break;

	    default:;
	    }
	  op = TREE_OPERAND (op, 0);
	}

      return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);

    default:
      break;
    }

  return false;
}

/* Return true if T is function-invariant.  */

bool
tree_invariant_p (tree t)
{
  tree inner = skip_simple_arithmetic (t);
  return tree_invariant_p_1 (inner);
}

/* Wrap a SAVE_EXPR around EXPR, if appropriate.
   Do this to any expression which may be used in more than one place,
   but must be evaluated only once.

   Normally, expand_expr would reevaluate the expression each time.
   Calling save_expr produces something that is evaluated and recorded
   the first time expand_expr is called on it.  Subsequent calls to
   expand_expr just reuse the recorded value.

   The call to expand_expr that generates code that actually computes
   the value is the first call *at compile time*.  Subsequent calls
   *at compile time* generate code to use the saved value.
   This produces correct result provided that *at run time* control
   always flows through the insns made by the first expand_expr
   before reaching the other places where the save_expr was evaluated.
   You, the caller of save_expr, must make sure this is so.

   Constants, and certain read-only nodes, are returned with no
   SAVE_EXPR because that is safe.  Expressions containing placeholders
   are not touched; see tree.def for an explanation of what these
   are used for.  */

tree
save_expr (tree expr)
{
  tree inner;

  /* If the tree evaluates to a constant, then we don't want to hide that
     fact (i.e. this allows further folding, and direct checks for constants).
     However, a read-only object that has side effects cannot be bypassed.
     Since it is no problem to reevaluate literals, we just return the
     literal node.  */
  inner = skip_simple_arithmetic (expr);
  if (TREE_CODE (inner) == ERROR_MARK)
    return inner;

  if (tree_invariant_p_1 (inner))
    return expr;

  /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
     it means that the size or offset of some field of an object depends on
     the value within another field.

     Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
     and some variable since it would then need to be both evaluated once and
     evaluated more than once.  Front-ends must assure this case cannot
     happen by surrounding any such subexpressions in their own SAVE_EXPR
     and forcing evaluation at the proper time.  */
  if (contains_placeholder_p (inner))
    return expr;

  expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);

  /* This expression might be placed ahead of a jump to ensure that the
     value was computed on both sides of the jump.  So make sure it isn't
     eliminated as dead.  */
  TREE_SIDE_EFFECTS (expr) = 1;
  return expr;
}

/* Look inside EXPR into any simple arithmetic operations.  Return the
   outermost non-arithmetic or non-invariant node.  */

tree
skip_simple_arithmetic (tree expr)
{
  /* We don't care about whether this can be used as an lvalue in this
     context.  */
  while (TREE_CODE (expr) == NON_LVALUE_EXPR)
    expr = TREE_OPERAND (expr, 0);

  /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
     a constant, it will be more efficient to not make another SAVE_EXPR since
     it will allow better simplification and GCSE will be able to merge the
     computations if they actually occur.  */
  while (true)
    {
      if (UNARY_CLASS_P (expr))
	expr = TREE_OPERAND (expr, 0);
      else if (BINARY_CLASS_P (expr))
	{
	  if (tree_invariant_p (TREE_OPERAND (expr, 1)))
	    expr = TREE_OPERAND (expr, 0);
	  else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
	    expr = TREE_OPERAND (expr, 1);
	  else
	    break;
	}
      else
	break;
    }

  return expr;
}

/* Look inside EXPR into simple arithmetic operations involving constants.
   Return the outermost non-arithmetic or non-constant node.  */

tree
skip_simple_constant_arithmetic (tree expr)
{
  while (TREE_CODE (expr) == NON_LVALUE_EXPR)
    expr = TREE_OPERAND (expr, 0);

  while (true)
    {
      if (UNARY_CLASS_P (expr))
	expr = TREE_OPERAND (expr, 0);
      else if (BINARY_CLASS_P (expr))
	{
	  if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
	    expr = TREE_OPERAND (expr, 0);
	  else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
	    expr = TREE_OPERAND (expr, 1);
	  else
	    break;
	}
      else
	break;
    }

  return expr;
}

/* Return which tree structure is used by T.  */

enum tree_node_structure_enum
tree_node_structure (const_tree t)
{
  const enum tree_code code = TREE_CODE (t);
  return tree_node_structure_for_code (code);
}

/* Set various status flags when building a CALL_EXPR object T.  */

static void
process_call_operands (tree t)
{
  bool side_effects = TREE_SIDE_EFFECTS (t);
  bool read_only = false;
  int i = call_expr_flags (t);

  /* Calls have side-effects, except those to const or pure functions.  */
  if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
    side_effects = true;
  /* Propagate TREE_READONLY of arguments for const functions.  */
  if (i & ECF_CONST)
    read_only = true;

  if (!side_effects || read_only)
    for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
      {
	tree op = TREE_OPERAND (t, i);
	if (op && TREE_SIDE_EFFECTS (op))
	  side_effects = true;
	if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
	  read_only = false;
      }

  TREE_SIDE_EFFECTS (t) = side_effects;
  TREE_READONLY (t) = read_only;
}

/* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
   size or offset that depends on a field within a record.  */

bool
contains_placeholder_p (const_tree exp)
{
  enum tree_code code;

  if (!exp)
    return 0;

  code = TREE_CODE (exp);
  if (code == PLACEHOLDER_EXPR)
    return 1;

  switch (TREE_CODE_CLASS (code))
    {
    case tcc_reference:
      /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
	 position computations since they will be converted into a
	 WITH_RECORD_EXPR involving the reference, which will assume
	 here will be valid.  */
      return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));

    case tcc_exceptional:
      if (code == TREE_LIST)
	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
      break;

    case tcc_unary:
    case tcc_binary:
    case tcc_comparison:
    case tcc_expression:
      switch (code)
	{
	case COMPOUND_EXPR:
	  /* Ignoring the first operand isn't quite right, but works best.  */
	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));

	case COND_EXPR:
	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));

	case SAVE_EXPR:
	  /* The save_expr function never wraps anything containing
	     a PLACEHOLDER_EXPR. */
	  return 0;

	default:
	  break;
	}

      switch (TREE_CODE_LENGTH (code))
	{
	case 1:
	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
	case 2:
	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
	default:
	  return 0;
	}

    case tcc_vl_exp:
      switch (code)
	{
	case CALL_EXPR:
	  {
	    const_tree arg;
	    const_call_expr_arg_iterator iter;
	    FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
	      if (CONTAINS_PLACEHOLDER_P (arg))
		return 1;
	    return 0;
	  }
	default:
	  return 0;
	}

    default:
      return 0;
    }
  return 0;
}

/* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
   directly.  This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
   field positions.  */

static bool
type_contains_placeholder_1 (const_tree type)
{
  /* If the size contains a placeholder or the parent type (component type in
     the case of arrays) type involves a placeholder, this type does.  */
  if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
      || (!POINTER_TYPE_P (type)
	  && TREE_TYPE (type)
	  && type_contains_placeholder_p (TREE_TYPE (type))))
    return true;

  /* Now do type-specific checks.  Note that the last part of the check above
     greatly limits what we have to do below.  */
  switch (TREE_CODE (type))
    {
    case VOID_TYPE:
    case OPAQUE_TYPE:
    case COMPLEX_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case POINTER_TYPE:
    case OFFSET_TYPE:
    case REFERENCE_TYPE:
    case METHOD_TYPE:
    case FUNCTION_TYPE:
    case VECTOR_TYPE:
    case NULLPTR_TYPE:
      return false;

    case INTEGER_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
      /* Here we just check the bounds.  */
      return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));

    case ARRAY_TYPE:
      /* We have already checked the component type above, so just check
	 the domain type.  Flexible array members have a null domain.  */
      return TYPE_DOMAIN (type) ?
	type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree field;

	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	  if (TREE_CODE (field) == FIELD_DECL
	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
		  || (TREE_CODE (type) == QUAL_UNION_TYPE
		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
		  || type_contains_placeholder_p (TREE_TYPE (field))))
	    return true;

	return false;
      }

    default:
      gcc_unreachable ();
    }
}

/* Wrapper around above function used to cache its result.  */

bool
type_contains_placeholder_p (tree type)
{
  bool result;

  /* If the contains_placeholder_bits field has been initialized,
     then we know the answer.  */
  if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
    return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;

  /* Indicate that we've seen this type node, and the answer is false.
     This is what we want to return if we run into recursion via fields.  */
  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;

  /* Compute the real value.  */
  result = type_contains_placeholder_1 (type);

  /* Store the real value.  */
  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;

  return result;
}

/* Push tree EXP onto vector QUEUE if it is not already present.  */

static void
push_without_duplicates (tree exp, vec<tree> *queue)
{
  unsigned int i;
  tree iter;

  FOR_EACH_VEC_ELT (*queue, i, iter)
    if (simple_cst_equal (iter, exp) == 1)
      break;

  if (!iter)
    queue->safe_push (exp);
}

/* Given a tree EXP, find all occurrences of references to fields
   in a PLACEHOLDER_EXPR and place them in vector REFS without
   duplicates.  Also record VAR_DECLs and CONST_DECLs.  Note that
   we assume here that EXP contains only arithmetic expressions
   or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
   argument list.  */

void
find_placeholder_in_expr (tree exp, vec<tree> *refs)
{
  enum tree_code code = TREE_CODE (exp);
  tree inner;
  int i;

  /* We handle TREE_LIST and COMPONENT_REF separately.  */
  if (code == TREE_LIST)
    {
      FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
      FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
    }
  else if (code == COMPONENT_REF)
    {
      for (inner = TREE_OPERAND (exp, 0);
	   REFERENCE_CLASS_P (inner);
	   inner = TREE_OPERAND (inner, 0))
	;

      if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
	push_without_duplicates (exp, refs);
      else
	FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
   }
  else
    switch (TREE_CODE_CLASS (code))
      {
      case tcc_constant:
	break;

      case tcc_declaration:
	/* Variables allocated to static storage can stay.  */
        if (!TREE_STATIC (exp))
	  push_without_duplicates (exp, refs);
	break;

      case tcc_expression:
	/* This is the pattern built in ada/make_aligning_type.  */
	if (code == ADDR_EXPR
	    && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
	  {
	    push_without_duplicates (exp, refs);
	    break;
	  }

        /* Fall through.  */

      case tcc_exceptional:
      case tcc_unary:
      case tcc_binary:
      case tcc_comparison:
      case tcc_reference:
	for (i = 0; i < TREE_CODE_LENGTH (code); i++)
	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
	break;

      case tcc_vl_exp:
	for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
	break;

      default:
	gcc_unreachable ();
      }
}

/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
   return a tree with all occurrences of references to F in a
   PLACEHOLDER_EXPR replaced by R.  Also handle VAR_DECLs and
   CONST_DECLs.  Note that we assume here that EXP contains only
   arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
   occurring only in their argument list.  */

tree
substitute_in_expr (tree exp, tree f, tree r)
{
  enum tree_code code = TREE_CODE (exp);
  tree op0, op1, op2, op3;
  tree new_tree;

  /* We handle TREE_LIST and COMPONENT_REF separately.  */
  if (code == TREE_LIST)
    {
      op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
      op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
	return exp;

      return tree_cons (TREE_PURPOSE (exp), op1, op0);
    }
  else if (code == COMPONENT_REF)
    {
      tree inner;

      /* If this expression is getting a value from a PLACEHOLDER_EXPR
	 and it is the right field, replace it with R.  */
      for (inner = TREE_OPERAND (exp, 0);
	   REFERENCE_CLASS_P (inner);
	   inner = TREE_OPERAND (inner, 0))
	;

      /* The field.  */
      op1 = TREE_OPERAND (exp, 1);

      if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
	return r;

      /* If this expression hasn't been completed let, leave it alone.  */
      if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
	return exp;

      op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
      if (op0 == TREE_OPERAND (exp, 0))
	return exp;

      new_tree
	= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
   }
  else
    switch (TREE_CODE_CLASS (code))
      {
      case tcc_constant:
	return exp;

      case tcc_declaration:
	if (exp == f)
	  return r;
	else
	  return exp;

      case tcc_expression:
	if (exp == f)
	  return r;

        /* Fall through.  */

      case tcc_exceptional:
      case tcc_unary:
      case tcc_binary:
      case tcc_comparison:
      case tcc_reference:
	switch (TREE_CODE_LENGTH (code))
	  {
	  case 0:
	    return exp;

	  case 1:
	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
	    if (op0 == TREE_OPERAND (exp, 0))
	      return exp;

	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
	    break;

	  case 2:
	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
	      return exp;

	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
	    break;

	  case 3:
	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
		&& op2 == TREE_OPERAND (exp, 2))
	      return exp;

	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
	    break;

	  case 4:
	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
		&& op2 == TREE_OPERAND (exp, 2)
		&& op3 == TREE_OPERAND (exp, 3))
	      return exp;

	    new_tree
	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
	    break;

	  default:
	    gcc_unreachable ();
	  }
	break;

      case tcc_vl_exp:
	{
	  int i;

	  new_tree = NULL_TREE;

	  /* If we are trying to replace F with a constant or with another
	     instance of one of the arguments of the call, inline back
	     functions which do nothing else than computing a value from
	     the arguments they are passed.  This makes it possible to
	     fold partially or entirely the replacement expression.  */
	  if (code == CALL_EXPR)
	    {
	      bool maybe_inline = false;
	      if (CONSTANT_CLASS_P (r))
		maybe_inline = true;
	      else
		for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
		  if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
		    {
		      maybe_inline = true;
		      break;
		    }
	      if (maybe_inline)
		{
		  tree t = maybe_inline_call_in_expr (exp);
		  if (t)
		    return SUBSTITUTE_IN_EXPR (t, f, r);
		}
	    }

	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
	    {
	      tree op = TREE_OPERAND (exp, i);
	      tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
	      if (new_op != op)
		{
		  if (!new_tree)
		    new_tree = copy_node (exp);
		  TREE_OPERAND (new_tree, i) = new_op;
		}
	    }

	  if (new_tree)
	    {
	      new_tree = fold (new_tree);
	      if (TREE_CODE (new_tree) == CALL_EXPR)
		process_call_operands (new_tree);
	    }
	  else
	    return exp;
	}
	break;

      default:
	gcc_unreachable ();
      }

  TREE_READONLY (new_tree) |= TREE_READONLY (exp);

  if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
    TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);

  return new_tree;
}

/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
   for it within OBJ, a tree that is an object or a chain of references.  */

tree
substitute_placeholder_in_expr (tree exp, tree obj)
{
  enum tree_code code = TREE_CODE (exp);
  tree op0, op1, op2, op3;
  tree new_tree;

  /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
     in the chain of OBJ.  */
  if (code == PLACEHOLDER_EXPR)
    {
      tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
      tree elt;

      for (elt = obj; elt != 0;
	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
		   || TREE_CODE (elt) == COND_EXPR)
		  ? TREE_OPERAND (elt, 1)
		  : (REFERENCE_CLASS_P (elt)
		     || UNARY_CLASS_P (elt)
		     || BINARY_CLASS_P (elt)
		     || VL_EXP_CLASS_P (elt)
		     || EXPRESSION_CLASS_P (elt))
		  ? TREE_OPERAND (elt, 0) : 0))
	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
	  return elt;

      for (elt = obj; elt != 0;
	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
		   || TREE_CODE (elt) == COND_EXPR)
		  ? TREE_OPERAND (elt, 1)
		  : (REFERENCE_CLASS_P (elt)
		     || UNARY_CLASS_P (elt)
		     || BINARY_CLASS_P (elt)
		     || VL_EXP_CLASS_P (elt)
		     || EXPRESSION_CLASS_P (elt))
		  ? TREE_OPERAND (elt, 0) : 0))
	if (POINTER_TYPE_P (TREE_TYPE (elt))
	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
		== need_type))
	  return fold_build1 (INDIRECT_REF, need_type, elt);

      /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
	 survives until RTL generation, there will be an error.  */
      return exp;
    }

  /* TREE_LIST is special because we need to look at TREE_VALUE
     and TREE_CHAIN, not TREE_OPERANDS.  */
  else if (code == TREE_LIST)
    {
      op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
      op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
	return exp;

      return tree_cons (TREE_PURPOSE (exp), op1, op0);
    }
  else
    switch (TREE_CODE_CLASS (code))
      {
      case tcc_constant:
      case tcc_declaration:
	return exp;

      case tcc_exceptional:
      case tcc_unary:
      case tcc_binary:
      case tcc_comparison:
      case tcc_expression:
      case tcc_reference:
      case tcc_statement:
	switch (TREE_CODE_LENGTH (code))
	  {
	  case 0:
	    return exp;

	  case 1:
	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
	    if (op0 == TREE_OPERAND (exp, 0))
	      return exp;

	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
	    break;

	  case 2:
	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
	      return exp;

	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
	    break;

	  case 3:
	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
		&& op2 == TREE_OPERAND (exp, 2))
	      return exp;

	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
	    break;

	  case 4:
	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
		&& op2 == TREE_OPERAND (exp, 2)
		&& op3 == TREE_OPERAND (exp, 3))
	      return exp;

	    new_tree
	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
	    break;

	  default:
	    gcc_unreachable ();
	  }
	break;

      case tcc_vl_exp:
	{
	  int i;

	  new_tree = NULL_TREE;

	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
	    {
	      tree op = TREE_OPERAND (exp, i);
	      tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
	      if (new_op != op)
		{
		  if (!new_tree)
		    new_tree = copy_node (exp);
		  TREE_OPERAND (new_tree, i) = new_op;
		}
	    }

	  if (new_tree)
	    {
	      new_tree = fold (new_tree);
	      if (TREE_CODE (new_tree) == CALL_EXPR)
		process_call_operands (new_tree);
	    }
	  else
	    return exp;
	}
	break;

      default:
	gcc_unreachable ();
      }

  TREE_READONLY (new_tree) |= TREE_READONLY (exp);

  if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
    TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);

  return new_tree;
}


/* Subroutine of stabilize_reference; this is called for subtrees of
   references.  Any expression with side-effects must be put in a SAVE_EXPR
   to ensure that it is only evaluated once.

   We don't put SAVE_EXPR nodes around everything, because assigning very
   simple expressions to temporaries causes us to miss good opportunities
   for optimizations.  Among other things, the opportunity to fold in the
   addition of a constant into an addressing mode often gets lost, e.g.
   "y[i+1] += x;".  In general, we take the approach that we should not make
   an assignment unless we are forced into it - i.e., that any non-side effect
   operator should be allowed, and that cse should take care of coalescing
   multiple utterances of the same expression should that prove fruitful.  */

static tree
stabilize_reference_1 (tree e)
{
  tree result;
  enum tree_code code = TREE_CODE (e);

  /* We cannot ignore const expressions because it might be a reference
     to a const array but whose index contains side-effects.  But we can
     ignore things that are actual constant or that already have been
     handled by this function.  */

  if (tree_invariant_p (e))
    return e;

  switch (TREE_CODE_CLASS (code))
    {
    case tcc_exceptional:
      /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
	 have side-effects.  */
      if (code == STATEMENT_LIST)
	return save_expr (e);
      /* FALLTHRU */
    case tcc_type:
    case tcc_declaration:
    case tcc_comparison:
    case tcc_statement:
    case tcc_expression:
    case tcc_reference:
    case tcc_vl_exp:
      /* If the expression has side-effects, then encase it in a SAVE_EXPR
	 so that it will only be evaluated once.  */
      /* The reference (r) and comparison (<) classes could be handled as
	 below, but it is generally faster to only evaluate them once.  */
      if (TREE_SIDE_EFFECTS (e))
	return save_expr (e);
      return e;

    case tcc_constant:
      /* Constants need no processing.  In fact, we should never reach
	 here.  */
      return e;

    case tcc_binary:
      /* Division is slow and tends to be compiled with jumps,
	 especially the division by powers of 2 that is often
	 found inside of an array reference.  So do it just once.  */
      if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
	return save_expr (e);
      /* Recursively stabilize each operand.  */
      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
      break;

    case tcc_unary:
      /* Recursively stabilize each operand.  */
      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
      break;

    default:
      gcc_unreachable ();
    }

  TREE_TYPE (result) = TREE_TYPE (e);
  TREE_READONLY (result) = TREE_READONLY (e);
  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);

  return result;
}

/* Stabilize a reference so that we can use it any number of times
   without causing its operands to be evaluated more than once.
   Returns the stabilized reference.  This works by means of save_expr,
   so see the caveats in the comments about save_expr.

   Also allows conversion expressions whose operands are references.
   Any other kind of expression is returned unchanged.  */

tree
stabilize_reference (tree ref)
{
  tree result;
  enum tree_code code = TREE_CODE (ref);

  switch (code)
    {
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      /* No action is needed in this case.  */
      return ref;

    CASE_CONVERT:
    case FLOAT_EXPR:
    case FIX_TRUNC_EXPR:
      result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
      break;

    case INDIRECT_REF:
      result = build_nt (INDIRECT_REF,
			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
      break;

    case COMPONENT_REF:
      result = build_nt (COMPONENT_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 TREE_OPERAND (ref, 1), NULL_TREE);
      break;

    case BIT_FIELD_REF:
      result = build_nt (BIT_FIELD_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
      REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
      break;

    case ARRAY_REF:
      result = build_nt (ARRAY_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
      break;

    case ARRAY_RANGE_REF:
      result = build_nt (ARRAY_RANGE_REF,
			 stabilize_reference (TREE_OPERAND (ref, 0)),
			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
      break;

    case COMPOUND_EXPR:
      /* We cannot wrap the first expression in a SAVE_EXPR, as then
	 it wouldn't be ignored.  This matters when dealing with
	 volatiles.  */
      return stabilize_reference_1 (ref);

      /* If arg isn't a kind of lvalue we recognize, make no change.
	 Caller should recognize the error for an invalid lvalue.  */
    default:
      return ref;

    case ERROR_MARK:
      return error_mark_node;
    }

  TREE_TYPE (result) = TREE_TYPE (ref);
  TREE_READONLY (result) = TREE_READONLY (ref);
  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
  protected_set_expr_location (result, EXPR_LOCATION (ref));

  return result;
}

/* Low-level constructors for expressions.  */

/* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
   and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */

void
recompute_tree_invariant_for_addr_expr (tree t)
{
  tree node;
  bool tc = true, se = false;

  gcc_assert (TREE_CODE (t) == ADDR_EXPR);

  /* We started out assuming this address is both invariant and constant, but
     does not have side effects.  Now go down any handled components and see if
     any of them involve offsets that are either non-constant or non-invariant.
     Also check for side-effects.

     ??? Note that this code makes no attempt to deal with the case where
     taking the address of something causes a copy due to misalignment.  */

#define UPDATE_FLAGS(NODE)  \
do { tree _node = (NODE); \
     if (_node && !TREE_CONSTANT (_node)) tc = false; \
     if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)

  for (node = TREE_OPERAND (t, 0); handled_component_p (node);
       node = TREE_OPERAND (node, 0))
    {
      /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
	 array reference (probably made temporarily by the G++ front end),
	 so ignore all the operands.  */
      if ((TREE_CODE (node) == ARRAY_REF
	   || TREE_CODE (node) == ARRAY_RANGE_REF)
	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
	{
	  UPDATE_FLAGS (TREE_OPERAND (node, 1));
	  if (TREE_OPERAND (node, 2))
	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
	  if (TREE_OPERAND (node, 3))
	    UPDATE_FLAGS (TREE_OPERAND (node, 3));
	}
      /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
	 FIELD_DECL, apparently.  The G++ front end can put something else
	 there, at least temporarily.  */
      else if (TREE_CODE (node) == COMPONENT_REF
	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
	{
	  if (TREE_OPERAND (node, 2))
	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
	}
    }

  node = lang_hooks.expr_to_decl (node, &tc, &se);

  /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
     the address, since &(*a)->b is a form of addition.  If it's a constant, the
     address is constant too.  If it's a decl, its address is constant if the
     decl is static.  Everything else is not constant and, furthermore,
     taking the address of a volatile variable is not volatile.  */
  if (TREE_CODE (node) == INDIRECT_REF
      || TREE_CODE (node) == MEM_REF)
    UPDATE_FLAGS (TREE_OPERAND (node, 0));
  else if (CONSTANT_CLASS_P (node))
    ;
  else if (DECL_P (node))
    tc &= (staticp (node) != NULL_TREE);
  else
    {
      tc = false;
      se |= TREE_SIDE_EFFECTS (node);
    }


  TREE_CONSTANT (t) = tc;
  TREE_SIDE_EFFECTS (t) = se;
#undef UPDATE_FLAGS
}

/* Build an expression of code CODE, data type TYPE, and operands as
   specified.  Expressions and reference nodes can be created this way.
   Constants, decls, types and misc nodes cannot be.

   We define 5 non-variadic functions, from 0 to 4 arguments.  This is
   enough for all extant tree codes.  */

tree
build0 (enum tree_code code, tree tt MEM_STAT_DECL)
{
  tree t;

  gcc_assert (TREE_CODE_LENGTH (code) == 0);

  t = make_node (code PASS_MEM_STAT);
  TREE_TYPE (t) = tt;

  return t;
}

tree
build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
{
  int length = sizeof (struct tree_exp);
  tree t;

  record_node_allocation_statistics (code, length);

  gcc_assert (TREE_CODE_LENGTH (code) == 1);

  t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);

  memset (t, 0, sizeof (struct tree_common));

  TREE_SET_CODE (t, code);

  TREE_TYPE (t) = type;
  SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
  TREE_OPERAND (t, 0) = node;
  if (node && !TYPE_P (node))
    {
      TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
      TREE_READONLY (t) = TREE_READONLY (node);
    }

  if (TREE_CODE_CLASS (code) == tcc_statement)
    {
      if (code != DEBUG_BEGIN_STMT)
	TREE_SIDE_EFFECTS (t) = 1;
    }
  else switch (code)
    {
    case VA_ARG_EXPR:
      /* All of these have side-effects, no matter what their
	 operands are.  */
      TREE_SIDE_EFFECTS (t) = 1;
      TREE_READONLY (t) = 0;
      break;

    case INDIRECT_REF:
      /* Whether a dereference is readonly has nothing to do with whether
	 its operand is readonly.  */
      TREE_READONLY (t) = 0;
      break;

    case ADDR_EXPR:
      if (node)
	recompute_tree_invariant_for_addr_expr (t);
      break;

    default:
      if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
	  && node && !TYPE_P (node)
	  && TREE_CONSTANT (node))
	TREE_CONSTANT (t) = 1;
      if (TREE_CODE_CLASS (code) == tcc_reference
	  && node && TREE_THIS_VOLATILE (node))
	TREE_THIS_VOLATILE (t) = 1;
      break;
    }

  return t;
}

#define PROCESS_ARG(N)				\
  do {						\
    TREE_OPERAND (t, N) = arg##N;		\
    if (arg##N &&!TYPE_P (arg##N))		\
      {						\
        if (TREE_SIDE_EFFECTS (arg##N))		\
	  side_effects = 1;			\
        if (!TREE_READONLY (arg##N)		\
	    && !CONSTANT_CLASS_P (arg##N))	\
	  (void) (read_only = 0);		\
        if (!TREE_CONSTANT (arg##N))		\
	  (void) (constant = 0);		\
      }						\
  } while (0)

tree
build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
{
  bool constant, read_only, side_effects, div_by_zero;
  tree t;

  gcc_assert (TREE_CODE_LENGTH (code) == 2);

  if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
      && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
      /* When sizetype precision doesn't match that of pointers
         we need to be able to build explicit extensions or truncations
	 of the offset argument.  */
      && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
    gcc_assert (TREE_CODE (arg0) == INTEGER_CST
		&& TREE_CODE (arg1) == INTEGER_CST);

  if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
    gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
		&& ptrofftype_p (TREE_TYPE (arg1)));

  t = make_node (code PASS_MEM_STAT);
  TREE_TYPE (t) = tt;

  /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
     result based on those same flags for the arguments.  But if the
     arguments aren't really even `tree' expressions, we shouldn't be trying
     to do this.  */

  /* Expressions without side effects may be constant if their
     arguments are as well.  */
  constant = (TREE_CODE_CLASS (code) == tcc_comparison
	      || TREE_CODE_CLASS (code) == tcc_binary);
  read_only = 1;
  side_effects = TREE_SIDE_EFFECTS (t);

  switch (code)
    {
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      div_by_zero = integer_zerop (arg1);
      break;
    default:
      div_by_zero = false;
    }

  PROCESS_ARG (0);
  PROCESS_ARG (1);

  TREE_SIDE_EFFECTS (t) = side_effects;
  if (code == MEM_REF)
    {
      if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
	{
	  tree o = TREE_OPERAND (arg0, 0);
	  TREE_READONLY (t) = TREE_READONLY (o);
	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
	}
    }
  else
    {
      TREE_READONLY (t) = read_only;
      /* Don't mark X / 0 as constant.  */
      TREE_CONSTANT (t) = constant && !div_by_zero;
      TREE_THIS_VOLATILE (t)
	= (TREE_CODE_CLASS (code) == tcc_reference
	   && arg0 && TREE_THIS_VOLATILE (arg0));
    }

  return t;
}


tree
build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
	tree arg2 MEM_STAT_DECL)
{
  bool constant, read_only, side_effects;
  tree t;

  gcc_assert (TREE_CODE_LENGTH (code) == 3);
  gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);

  t = make_node (code PASS_MEM_STAT);
  TREE_TYPE (t) = tt;

  read_only = 1;

  /* As a special exception, if COND_EXPR has NULL branches, we
     assume that it is a gimple statement and always consider
     it to have side effects.  */
  if (code == COND_EXPR
      && tt == void_type_node
      && arg1 == NULL_TREE
      && arg2 == NULL_TREE)
    side_effects = true;
  else
    side_effects = TREE_SIDE_EFFECTS (t);

  PROCESS_ARG (0);
  PROCESS_ARG (1);
  PROCESS_ARG (2);

  if (code == COND_EXPR)
    TREE_READONLY (t) = read_only;

  TREE_SIDE_EFFECTS (t) = side_effects;
  TREE_THIS_VOLATILE (t)
    = (TREE_CODE_CLASS (code) == tcc_reference
       && arg0 && TREE_THIS_VOLATILE (arg0));

  return t;
}

tree
build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
	tree arg2, tree arg3 MEM_STAT_DECL)
{
  bool constant, read_only, side_effects;
  tree t;

  gcc_assert (TREE_CODE_LENGTH (code) == 4);

  t = make_node (code PASS_MEM_STAT);
  TREE_TYPE (t) = tt;

  side_effects = TREE_SIDE_EFFECTS (t);

  PROCESS_ARG (0);
  PROCESS_ARG (1);
  PROCESS_ARG (2);
  PROCESS_ARG (3);

  TREE_SIDE_EFFECTS (t) = side_effects;
  TREE_THIS_VOLATILE (t)
    = (TREE_CODE_CLASS (code) == tcc_reference
       && arg0 && TREE_THIS_VOLATILE (arg0));

  return t;
}

tree
build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
	tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
{
  bool constant, read_only, side_effects;
  tree t;

  gcc_assert (TREE_CODE_LENGTH (code) == 5);

  t = make_node (code PASS_MEM_STAT);
  TREE_TYPE (t) = tt;

  side_effects = TREE_SIDE_EFFECTS (t);

  PROCESS_ARG (0);
  PROCESS_ARG (1);
  PROCESS_ARG (2);
  PROCESS_ARG (3);
  PROCESS_ARG (4);

  TREE_SIDE_EFFECTS (t) = side_effects;
  if (code == TARGET_MEM_REF)
    {
      if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
	{
	  tree o = TREE_OPERAND (arg0, 0);
	  TREE_READONLY (t) = TREE_READONLY (o);
	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
	}
    }
  else
    TREE_THIS_VOLATILE (t)
      = (TREE_CODE_CLASS (code) == tcc_reference
	 && arg0 && TREE_THIS_VOLATILE (arg0));

  return t;
}

/* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
   on the pointer PTR.  */

tree
build_simple_mem_ref_loc (location_t loc, tree ptr)
{
  poly_int64 offset = 0;
  tree ptype = TREE_TYPE (ptr);
  tree tem;
  /* For convenience allow addresses that collapse to a simple base
     and offset.  */
  if (TREE_CODE (ptr) == ADDR_EXPR
      && (handled_component_p (TREE_OPERAND (ptr, 0))
	  || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
    {
      ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
      gcc_assert (ptr);
      if (TREE_CODE (ptr) == MEM_REF)
	{
	  offset += mem_ref_offset (ptr).force_shwi ();
	  ptr = TREE_OPERAND (ptr, 0);
	}
      else
	ptr = build_fold_addr_expr (ptr);
      gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
    }
  tem = build2 (MEM_REF, TREE_TYPE (ptype),
		ptr, build_int_cst (ptype, offset));
  SET_EXPR_LOCATION (tem, loc);
  return tem;
}

/* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T.  */

poly_offset_int
mem_ref_offset (const_tree t)
{
  return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
				SIGNED);
}

/* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
   offsetted by OFFSET units.  */

tree
build_invariant_address (tree type, tree base, poly_int64 offset)
{
  tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
			  build_fold_addr_expr (base),
			  build_int_cst (ptr_type_node, offset));
  tree addr = build1 (ADDR_EXPR, type, ref);
  recompute_tree_invariant_for_addr_expr (addr);
  return addr;
}

/* Similar except don't specify the TREE_TYPE
   and leave the TREE_SIDE_EFFECTS as 0.
   It is permissible for arguments to be null,
   or even garbage if their values do not matter.  */

tree
build_nt (enum tree_code code, ...)
{
  tree t;
  int length;
  int i;
  va_list p;

  gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);

  va_start (p, code);

  t = make_node (code);
  length = TREE_CODE_LENGTH (code);

  for (i = 0; i < length; i++)
    TREE_OPERAND (t, i) = va_arg (p, tree);

  va_end (p);
  return t;
}

/* Similar to build_nt, but for creating a CALL_EXPR object with a
   tree vec.  */

tree
build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
{
  tree ret, t;
  unsigned int ix;

  ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
  CALL_EXPR_FN (ret) = fn;
  CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
  FOR_EACH_VEC_SAFE_ELT (args, ix, t)
    CALL_EXPR_ARG (ret, ix) = t;
  return ret;
}

/* Create a DECL_... node of code CODE, name NAME  (if non-null)
   and data type TYPE.
   We do NOT enter this node in any sort of symbol table.

   LOC is the location of the decl.

   layout_decl is used to set up the decl's storage layout.
   Other slots are initialized to 0 or null pointers.  */

tree
build_decl (location_t loc, enum tree_code code, tree name,
    		 tree type MEM_STAT_DECL)
{
  tree t;

  t = make_node (code PASS_MEM_STAT);
  DECL_SOURCE_LOCATION (t) = loc;

/*  if (type == error_mark_node)
    type = integer_type_node; */
/* That is not done, deliberately, so that having error_mark_node
   as the type can suppress useless errors in the use of this variable.  */

  DECL_NAME (t) = name;
  TREE_TYPE (t) = type;

  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
    layout_decl (t, 0);

  return t;
}

/* Create and return a DEBUG_EXPR_DECL node of the given TYPE.  */

tree
build_debug_expr_decl (tree type)
{
  tree vexpr = make_node (DEBUG_EXPR_DECL);
  DECL_ARTIFICIAL (vexpr) = 1;
  TREE_TYPE (vexpr) = type;
  SET_DECL_MODE (vexpr, TYPE_MODE (type));
  return vexpr;
}

/* Builds and returns function declaration with NAME and TYPE.  */

tree
build_fn_decl (const char *name, tree type)
{
  tree id = get_identifier (name);
  tree decl = build_decl (input_location, FUNCTION_DECL, id, type);

  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  TREE_NOTHROW (decl) = 1;

  return decl;
}

vec<tree, va_gc> *all_translation_units;

/* Builds a new translation-unit decl with name NAME, queues it in the
   global list of translation-unit decls and returns it.   */

tree
build_translation_unit_decl (tree name)
{
  tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
			name, NULL_TREE);
  TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
  vec_safe_push (all_translation_units, tu);
  return tu;
}


/* BLOCK nodes are used to represent the structure of binding contours
   and declarations, once those contours have been exited and their contents
   compiled.  This information is used for outputting debugging info.  */

tree
build_block (tree vars, tree subblocks, tree supercontext, tree chain)
{
  tree block = make_node (BLOCK);

  BLOCK_VARS (block) = vars;
  BLOCK_SUBBLOCKS (block) = subblocks;
  BLOCK_SUPERCONTEXT (block) = supercontext;
  BLOCK_CHAIN (block) = chain;
  return block;
}


/* Like SET_EXPR_LOCATION, but make sure the tree can have a location.

   LOC is the location to use in tree T.  */

void
protected_set_expr_location (tree t, location_t loc)
{
  if (CAN_HAVE_LOCATION_P (t))
    SET_EXPR_LOCATION (t, loc);
  else if (t && TREE_CODE (t) == STATEMENT_LIST)
    {
      t = expr_single (t);
      if (t && CAN_HAVE_LOCATION_P (t))
	SET_EXPR_LOCATION (t, loc);
    }
}

/* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
   UNKNOWN_LOCATION.  */

void
protected_set_expr_location_if_unset (tree t, location_t loc)
{
  t = expr_single (t);
  if (t && !EXPR_HAS_LOCATION (t))
    protected_set_expr_location (t, loc);
}

/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
   of the various TYPE_QUAL values.  */

static void
set_type_quals (tree type, int type_quals)
{
  TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
  TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
  TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
  TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
  TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
}

/* Returns true iff CAND and BASE have equivalent language-specific
   qualifiers.  */

bool
check_lang_type (const_tree cand, const_tree base)
{
  if (lang_hooks.types.type_hash_eq == NULL)
    return true;
  /* type_hash_eq currently only applies to these types.  */
  if (TREE_CODE (cand) != FUNCTION_TYPE
      && TREE_CODE (cand) != METHOD_TYPE)
    return true;
  return lang_hooks.types.type_hash_eq (cand, base);
}

/* This function checks to see if TYPE matches the size one of the built-in 
   atomic types, and returns that core atomic type.  */

static tree
find_atomic_core_type (const_tree type)
{
  tree base_atomic_type;

  /* Only handle complete types.  */
  if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
    return NULL_TREE;

  switch (tree_to_uhwi (TYPE_SIZE (type)))
    {
    case 8:
      base_atomic_type = atomicQI_type_node;
      break;

    case 16:
      base_atomic_type = atomicHI_type_node;
      break;

    case 32:
      base_atomic_type = atomicSI_type_node;
      break;

    case 64:
      base_atomic_type = atomicDI_type_node;
      break;

    case 128:
      base_atomic_type = atomicTI_type_node;
      break;

    default:
      base_atomic_type = NULL_TREE;
    }

  return base_atomic_type;
}

/* Returns true iff unqualified CAND and BASE are equivalent.  */

bool
check_base_type (const_tree cand, const_tree base)
{
  if (TYPE_NAME (cand) != TYPE_NAME (base)
      /* Apparently this is needed for Objective-C.  */
      || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
      || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
			        TYPE_ATTRIBUTES (base)))
    return false;
  /* Check alignment.  */
  if (TYPE_ALIGN (cand) == TYPE_ALIGN (base)
      && TYPE_USER_ALIGN (cand) == TYPE_USER_ALIGN (base))
    return true;
  /* Atomic types increase minimal alignment.  We must to do so as well
     or we get duplicated canonical types. See PR88686.  */
  if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
    {
      /* See if this object can map to a basic atomic type.  */
      tree atomic_type = find_atomic_core_type (cand);
      if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
       return true;
    }
  return false;
}

/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS.  */

bool
check_qualified_type (const_tree cand, const_tree base, int type_quals)
{
  return (TYPE_QUALS (cand) == type_quals
	  && check_base_type (cand, base)
	  && check_lang_type (cand, base));
}

/* Returns true iff CAND is equivalent to BASE with ALIGN.  */

static bool
check_aligned_type (const_tree cand, const_tree base, unsigned int align)
{
  return (TYPE_QUALS (cand) == TYPE_QUALS (base)
	  && TYPE_NAME (cand) == TYPE_NAME (base)
	  /* Apparently this is needed for Objective-C.  */
	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
	  /* Check alignment.  */
	  && TYPE_ALIGN (cand) == align
	  /* Check this is a user-aligned type as build_aligned_type
	     would create.  */
	  && TYPE_USER_ALIGN (cand)
	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
				   TYPE_ATTRIBUTES (base))
	  && check_lang_type (cand, base));
}

/* Return a version of the TYPE, qualified as indicated by the
   TYPE_QUALS, if one exists.  If no qualified version exists yet,
   return NULL_TREE.  */

tree
get_qualified_type (tree type, int type_quals)
{
  if (TYPE_QUALS (type) == type_quals)
    return type;

  tree mv = TYPE_MAIN_VARIANT (type);
  if (check_qualified_type (mv, type, type_quals))
    return mv;

  /* Search the chain of variants to see if there is already one there just
     like the one we need to have.  If so, use that existing one.  We must
     preserve the TYPE_NAME, since there is code that depends on this.  */
  for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
    if (check_qualified_type (*tp, type, type_quals))
      {
	/* Put the found variant at the head of the variant list so
	   frequently searched variants get found faster.  The C++ FE
	   benefits greatly from this.  */
	tree t = *tp;
	*tp = TYPE_NEXT_VARIANT (t);
	TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
	TYPE_NEXT_VARIANT (mv) = t;
	return t;
      }

  return NULL_TREE;
}

/* Like get_qualified_type, but creates the type if it does not
   exist.  This function never returns NULL_TREE.  */

tree
build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
{
  tree t;

  /* See if we already have the appropriate qualified variant.  */
  t = get_qualified_type (type, type_quals);

  /* If not, build it.  */
  if (!t)
    {
      t = build_variant_type_copy (type PASS_MEM_STAT);
      set_type_quals (t, type_quals);

      if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
	{
	  /* See if this object can map to a basic atomic type.  */
	  tree atomic_type = find_atomic_core_type (type);
	  if (atomic_type)
	    {
	      /* Ensure the alignment of this type is compatible with
		 the required alignment of the atomic type.  */
	      if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
		SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
	    }
	}

      if (TYPE_STRUCTURAL_EQUALITY_P (type))
	/* Propagate structural equality. */
	SET_TYPE_STRUCTURAL_EQUALITY (t);
      else if (TYPE_CANONICAL (type) != type)
	/* Build the underlying canonical type, since it is different
	   from TYPE. */
	{
	  tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
	  TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
	}
      else
	/* T is its own canonical type. */
	TYPE_CANONICAL (t) = t;

    }

  return t;
}

/* Create a variant of type T with alignment ALIGN.  */

tree
build_aligned_type (tree type, unsigned int align)
{
  tree t;

  if (TYPE_PACKED (type)
      || TYPE_ALIGN (type) == align)
    return type;

  for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
    if (check_aligned_type (t, type, align))
      return t;

  t = build_variant_type_copy (type);
  SET_TYPE_ALIGN (t, align);
  TYPE_USER_ALIGN (t) = 1;

  return t;
}

/* Create a new distinct copy of TYPE.  The new type is made its own
   MAIN_VARIANT. If TYPE requires structural equality checks, the
   resulting type requires structural equality checks; otherwise, its
   TYPE_CANONICAL points to itself. */

tree
build_distinct_type_copy (tree type MEM_STAT_DECL)
{
  tree t = copy_node (type PASS_MEM_STAT);

  TYPE_POINTER_TO (t) = 0;
  TYPE_REFERENCE_TO (t) = 0;

  /* Set the canonical type either to a new equivalence class, or
     propagate the need for structural equality checks. */
  if (TYPE_STRUCTURAL_EQUALITY_P (type))
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else
    TYPE_CANONICAL (t) = t;

  /* Make it its own variant.  */
  TYPE_MAIN_VARIANT (t) = t;
  TYPE_NEXT_VARIANT (t) = 0;

  /* Note that it is now possible for TYPE_MIN_VALUE to be a value
     whose TREE_TYPE is not t.  This can also happen in the Ada
     frontend when using subtypes.  */

  return t;
}

/* Create a new variant of TYPE, equivalent but distinct.  This is so
   the caller can modify it. TYPE_CANONICAL for the return type will
   be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
   are considered equal by the language itself (or that both types
   require structural equality checks). */

tree
build_variant_type_copy (tree type MEM_STAT_DECL)
{
  tree t, m = TYPE_MAIN_VARIANT (type);

  t = build_distinct_type_copy (type PASS_MEM_STAT);

  /* Since we're building a variant, assume that it is a non-semantic
     variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
  TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
  /* Type variants have no alias set defined.  */
  TYPE_ALIAS_SET (t) = -1;

  /* Add the new type to the chain of variants of TYPE.  */
  TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
  TYPE_NEXT_VARIANT (m) = t;
  TYPE_MAIN_VARIANT (t) = m;

  return t;
}

/* Return true if the from tree in both tree maps are equal.  */

int
tree_map_base_eq (const void *va, const void *vb)
{
  const struct tree_map_base  *const a = (const struct tree_map_base *) va,
    *const b = (const struct tree_map_base *) vb;
  return (a->from == b->from);
}

/* Hash a from tree in a tree_base_map.  */

unsigned int
tree_map_base_hash (const void *item)
{
  return htab_hash_pointer (((const struct tree_map_base *)item)->from);
}

/* Return true if this tree map structure is marked for garbage collection
   purposes.  We simply return true if the from tree is marked, so that this
   structure goes away when the from tree goes away.  */

int
tree_map_base_marked_p (const void *p)
{
  return ggc_marked_p (((const struct tree_map_base *) p)->from);
}

/* Hash a from tree in a tree_map.  */

unsigned int
tree_map_hash (const void *item)
{
  return (((const struct tree_map *) item)->hash);
}

/* Hash a from tree in a tree_decl_map.  */

unsigned int
tree_decl_map_hash (const void *item)
{
  return DECL_UID (((const struct tree_decl_map *) item)->base.from);
}

/* Return the initialization priority for DECL.  */

priority_type
decl_init_priority_lookup (tree decl)
{
  symtab_node *snode = symtab_node::get (decl);

  if (!snode)
    return DEFAULT_INIT_PRIORITY;
  return
    snode->get_init_priority ();
}

/* Return the finalization priority for DECL.  */

priority_type
decl_fini_priority_lookup (tree decl)
{
  cgraph_node *node = cgraph_node::get (decl);

  if (!node)
    return DEFAULT_INIT_PRIORITY;
  return
    node->get_fini_priority ();
}

/* Set the initialization priority for DECL to PRIORITY.  */

void
decl_init_priority_insert (tree decl, priority_type priority)
{
  struct symtab_node *snode;

  if (priority == DEFAULT_INIT_PRIORITY)
    {
      snode = symtab_node::get (decl);
      if (!snode)
	return;
    }
  else if (VAR_P (decl))
    snode = varpool_node::get_create (decl);
  else
    snode = cgraph_node::get_create (decl);
  snode->set_init_priority (priority);
}

/* Set the finalization priority for DECL to PRIORITY.  */

void
decl_fini_priority_insert (tree decl, priority_type priority)
{
  struct cgraph_node *node;

  if (priority == DEFAULT_INIT_PRIORITY)
    {
      node = cgraph_node::get (decl);
      if (!node)
	return;
    }
  else
    node = cgraph_node::get_create (decl);
  node->set_fini_priority (priority);
}

/* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */

static void
print_debug_expr_statistics (void)
{
  fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
	   (long) debug_expr_for_decl->size (),
	   (long) debug_expr_for_decl->elements (),
	   debug_expr_for_decl->collisions ());
}

/* Print out the statistics for the DECL_VALUE_EXPR hash table.  */

static void
print_value_expr_statistics (void)
{
  fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
	   (long) value_expr_for_decl->size (),
	   (long) value_expr_for_decl->elements (),
	   value_expr_for_decl->collisions ());
}

/* Lookup a debug expression for FROM, and return it if we find one.  */

tree
decl_debug_expr_lookup (tree from)
{
  struct tree_decl_map *h, in;
  in.base.from = from;

  h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
  if (h)
    return h->to;
  return NULL_TREE;
}

/* Insert a mapping FROM->TO in the debug expression hashtable.  */

void
decl_debug_expr_insert (tree from, tree to)
{
  struct tree_decl_map *h;

  h = ggc_alloc<tree_decl_map> ();
  h->base.from = from;
  h->to = to;
  *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
}

/* Lookup a value expression for FROM, and return it if we find one.  */

tree
decl_value_expr_lookup (tree from)
{
  struct tree_decl_map *h, in;
  in.base.from = from;

  h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
  if (h)
    return h->to;
  return NULL_TREE;
}

/* Insert a mapping FROM->TO in the value expression hashtable.  */

void
decl_value_expr_insert (tree from, tree to)
{
  struct tree_decl_map *h;

  h = ggc_alloc<tree_decl_map> ();
  h->base.from = from;
  h->to = to;
  *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
}

/* Lookup a vector of debug arguments for FROM, and return it if we
   find one.  */

vec<tree, va_gc> **
decl_debug_args_lookup (tree from)
{
  struct tree_vec_map *h, in;

  if (!DECL_HAS_DEBUG_ARGS_P (from))
    return NULL;
  gcc_checking_assert (debug_args_for_decl != NULL);
  in.base.from = from;
  h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
  if (h)
    return &h->to;
  return NULL;
}

/* Insert a mapping FROM->empty vector of debug arguments in the value
   expression hashtable.  */

vec<tree, va_gc> **
decl_debug_args_insert (tree from)
{
  struct tree_vec_map *h;
  tree_vec_map **loc;

  if (DECL_HAS_DEBUG_ARGS_P (from))
    return decl_debug_args_lookup (from);
  if (debug_args_for_decl == NULL)
    debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
  h = ggc_alloc<tree_vec_map> ();
  h->base.from = from;
  h->to = NULL;
  loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
  *loc = h;
  DECL_HAS_DEBUG_ARGS_P (from) = 1;
  return &h->to;
}

/* Hashing of types so that we don't make duplicates.
   The entry point is `type_hash_canon'.  */

/* Generate the default hash code for TYPE.  This is designed for
   speed, rather than maximum entropy.  */

hashval_t
type_hash_canon_hash (tree type)
{
  inchash::hash hstate;

  hstate.add_int (TREE_CODE (type));

  if (TREE_TYPE (type))
    hstate.add_object (TYPE_HASH (TREE_TYPE (type)));

  for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
    /* Just the identifier is adequate to distinguish.  */
    hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));

  switch (TREE_CODE (type))
    {
    case METHOD_TYPE:
      hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
      /* FALLTHROUGH. */
    case FUNCTION_TYPE:
      for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
	if (TREE_VALUE (t) != error_mark_node)
	  hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
      break;

    case OFFSET_TYPE:
      hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
      break;

    case ARRAY_TYPE:
      {
	if (TYPE_DOMAIN (type))
	  hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
	if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
	  {
	    unsigned typeless = TYPE_TYPELESS_STORAGE (type);
	    hstate.add_object (typeless);
	  }
      }
      break;

    case INTEGER_TYPE:
      {
	tree t = TYPE_MAX_VALUE (type);
	if (!t)
	  t = TYPE_MIN_VALUE (type);
	for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
	  hstate.add_object (TREE_INT_CST_ELT (t, i));
	break;
      }
      
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
      {
	unsigned prec = TYPE_PRECISION (type);
	hstate.add_object (prec);
	break;
      }

    case VECTOR_TYPE:
      hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
      break;

    default:
      break;
    }

  return hstate.end ();
}

/* These are the Hashtable callback functions.  */

/* Returns true iff the types are equivalent.  */

bool
type_cache_hasher::equal (type_hash *a, type_hash *b)
{
  /* First test the things that are the same for all types.  */
  if (a->hash != b->hash
      || TREE_CODE (a->type) != TREE_CODE (b->type)
      || TREE_TYPE (a->type) != TREE_TYPE (b->type)
      || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
				 TYPE_ATTRIBUTES (b->type))
      || (TREE_CODE (a->type) != COMPLEX_TYPE
          && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
    return 0;

  /* Be careful about comparing arrays before and after the element type
     has been completed; don't compare TYPE_ALIGN unless both types are
     complete.  */
  if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
      && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
	  || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
    return 0;

  switch (TREE_CODE (a->type))
    {
    case VOID_TYPE:
    case OPAQUE_TYPE:
    case COMPLEX_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case NULLPTR_TYPE:
      return 1;

    case VECTOR_TYPE:
      return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
		       TYPE_VECTOR_SUBPARTS (b->type));

    case ENUMERAL_TYPE:
      if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
	  && !(TYPE_VALUES (a->type)
	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
	       && TYPE_VALUES (b->type)
	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
	       && type_list_equal (TYPE_VALUES (a->type),
				   TYPE_VALUES (b->type))))
	return 0;

      /* fall through */

    case INTEGER_TYPE:
    case REAL_TYPE:
    case BOOLEAN_TYPE:
      if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
	return false;
      return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
				      TYPE_MAX_VALUE (b->type)))
	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
					 TYPE_MIN_VALUE (b->type))));

    case FIXED_POINT_TYPE:
      return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);

    case OFFSET_TYPE:
      return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);

    case METHOD_TYPE:
      if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
	  && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
	      || (TYPE_ARG_TYPES (a->type)
		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
		  && TYPE_ARG_TYPES (b->type)
		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
		  && type_list_equal (TYPE_ARG_TYPES (a->type),
				      TYPE_ARG_TYPES (b->type)))))
        break;
      return 0;
    case ARRAY_TYPE:
      /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
	 where the flag should be inherited from the element type
	 and can change after ARRAY_TYPEs are created; on non-aggregates
	 compare it and hash it, scalars will never have that flag set
	 and we need to differentiate between arrays created by different
	 front-ends or middle-end created arrays.  */
      return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
	      && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
		  || (TYPE_TYPELESS_STORAGE (a->type)
		      == TYPE_TYPELESS_STORAGE (b->type))));

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
	      || (TYPE_FIELDS (a->type)
		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
		  && TYPE_FIELDS (b->type)
		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
		  && type_list_equal (TYPE_FIELDS (a->type),
				      TYPE_FIELDS (b->type))));

    case FUNCTION_TYPE:
      if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
	  || (TYPE_ARG_TYPES (a->type)
	      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
	      && TYPE_ARG_TYPES (b->type)
	      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
	      && type_list_equal (TYPE_ARG_TYPES (a->type),
				  TYPE_ARG_TYPES (b->type))))
	break;
      return 0;

    default:
      return 0;
    }

  if (lang_hooks.types.type_hash_eq != NULL)
    return lang_hooks.types.type_hash_eq (a->type, b->type);

  return 1;
}

/* Given TYPE, and HASHCODE its hash code, return the canonical
   object for an identical type if one already exists.
   Otherwise, return TYPE, and record it as the canonical object.

   To use this function, first create a type of the sort you want.
   Then compute its hash code from the fields of the type that
   make it different from other similar types.
   Then call this function and use the value.  */

tree
type_hash_canon (unsigned int hashcode, tree type)
{
  type_hash in;
  type_hash **loc;

  /* The hash table only contains main variants, so ensure that's what we're
     being passed.  */
  gcc_assert (TYPE_MAIN_VARIANT (type) == type);

  /* The TYPE_ALIGN field of a type is set by layout_type(), so we
     must call that routine before comparing TYPE_ALIGNs.  */
  layout_type (type);

  in.hash = hashcode;
  in.type = type;

  loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
  if (*loc)
    {
      tree t1 = ((type_hash *) *loc)->type;
      gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
		  && t1 != type);
      if (TYPE_UID (type) + 1 == next_type_uid)
	--next_type_uid;
      /* Free also min/max values and the cache for integer
	 types.  This can't be done in free_node, as LTO frees
	 those on its own.  */
      if (TREE_CODE (type) == INTEGER_TYPE)
	{
	  if (TYPE_MIN_VALUE (type)
	      && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
	    {
	      /* Zero is always in TYPE_CACHED_VALUES.  */
	      if (! TYPE_UNSIGNED (type))
		int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
	      ggc_free (TYPE_MIN_VALUE (type));
	    }
	  if (TYPE_MAX_VALUE (type)
	      && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
	    {
	      int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
	      ggc_free (TYPE_MAX_VALUE (type));
	    }
	  if (TYPE_CACHED_VALUES_P (type))
	    ggc_free (TYPE_CACHED_VALUES (type));
	}
      free_node (type);
      return t1;
    }
  else
    {
      struct type_hash *h;

      h = ggc_alloc<type_hash> ();
      h->hash = hashcode;
      h->type = type;
      *loc = h;

      return type;
    }
}

static void
print_type_hash_statistics (void)
{
  fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
	   (long) type_hash_table->size (),
	   (long) type_hash_table->elements (),
	   type_hash_table->collisions ());
}

/* Given two lists of types
   (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
   return 1 if the lists contain the same types in the same order.
   Also, the TREE_PURPOSEs must match.  */

bool
type_list_equal (const_tree l1, const_tree l2)
{
  const_tree t1, t2;

  for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
    if (TREE_VALUE (t1) != TREE_VALUE (t2)
	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
		  && (TREE_TYPE (TREE_PURPOSE (t1))
		      == TREE_TYPE (TREE_PURPOSE (t2))))))
      return false;

  return t1 == t2;
}

/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
   given by TYPE.  If the argument list accepts variable arguments,
   then this function counts only the ordinary arguments.  */

int
type_num_arguments (const_tree fntype)
{
  int i = 0;

  for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
    /* If the function does not take a variable number of arguments,
       the last element in the list will have type `void'.  */
    if (VOID_TYPE_P (TREE_VALUE (t)))
      break;
    else
      ++i;

  return i;
}

/* Return the type of the function TYPE's argument ARGNO if known.
   For vararg function's where ARGNO refers to one of the variadic
   arguments return null.  Otherwise, return a void_type_node for
   out-of-bounds ARGNO.  */

tree
type_argument_type (const_tree fntype, unsigned argno)
{
  /* Treat zero the same as an out-of-bounds argument number.  */
  if (!argno)
    return void_type_node;

  function_args_iterator iter;

  tree argtype;
  unsigned i = 1;
  FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
    {
      /* A vararg function's argument list ends in a null.  Otherwise,
	 an ordinary function's argument list ends with void.  Return
	 null if ARGNO refers to a vararg argument, void_type_node if
	 it's out of bounds, and the formal argument type otherwise.  */
      if (!argtype)
	break;

      if (i == argno || VOID_TYPE_P (argtype))
	return argtype;

      ++i;
    }

  return NULL_TREE;
}

/* Nonzero if integer constants T1 and T2
   represent the same constant value.  */

int
tree_int_cst_equal (const_tree t1, const_tree t2)
{
  if (t1 == t2)
    return 1;

  if (t1 == 0 || t2 == 0)
    return 0;

  STRIP_ANY_LOCATION_WRAPPER (t1);
  STRIP_ANY_LOCATION_WRAPPER (t2);

  if (TREE_CODE (t1) == INTEGER_CST
      && TREE_CODE (t2) == INTEGER_CST
      && wi::to_widest (t1) == wi::to_widest (t2))
    return 1;

  return 0;
}

/* Return true if T is an INTEGER_CST whose numerical value (extended
   according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  */

bool
tree_fits_shwi_p (const_tree t)
{
  return (t != NULL_TREE
	  && TREE_CODE (t) == INTEGER_CST
	  && wi::fits_shwi_p (wi::to_widest (t)));
}

/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
   value (extended according to TYPE_UNSIGNED) fits in a poly_int64.  */

bool
tree_fits_poly_int64_p (const_tree t)
{
  if (t == NULL_TREE)
    return false;
  if (POLY_INT_CST_P (t))
    {
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
	if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
	  return false;
      return true;
    }
  return (TREE_CODE (t) == INTEGER_CST
	  && wi::fits_shwi_p (wi::to_widest (t)));
}

/* Return true if T is an INTEGER_CST whose numerical value (extended
   according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  */

bool
tree_fits_uhwi_p (const_tree t)
{
  return (t != NULL_TREE
	  && TREE_CODE (t) == INTEGER_CST
	  && wi::fits_uhwi_p (wi::to_widest (t)));
}

/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
   value (extended according to TYPE_UNSIGNED) fits in a poly_uint64.  */

bool
tree_fits_poly_uint64_p (const_tree t)
{
  if (t == NULL_TREE)
    return false;
  if (POLY_INT_CST_P (t))
    {
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
	if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
	  return false;
      return true;
    }
  return (TREE_CODE (t) == INTEGER_CST
	  && wi::fits_uhwi_p (wi::to_widest (t)));
}

/* T is an INTEGER_CST whose numerical value (extended according to
   TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  Return that
   HOST_WIDE_INT.  */

HOST_WIDE_INT
tree_to_shwi (const_tree t)
{
  gcc_assert (tree_fits_shwi_p (t));
  return TREE_INT_CST_LOW (t);
}

/* T is an INTEGER_CST whose numerical value (extended according to
   TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  Return that
   HOST_WIDE_INT.  */

unsigned HOST_WIDE_INT
tree_to_uhwi (const_tree t)
{
  gcc_assert (tree_fits_uhwi_p (t));
  return TREE_INT_CST_LOW (t);
}

/* Return the most significant (sign) bit of T.  */

int
tree_int_cst_sign_bit (const_tree t)
{
  unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;

  return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
}

/* Return an indication of the sign of the integer constant T.
   The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
   Note that -1 will never be returned if T's type is unsigned.  */

int
tree_int_cst_sgn (const_tree t)
{
  if (wi::to_wide (t) == 0)
    return 0;
  else if (TYPE_UNSIGNED (TREE_TYPE (t)))
    return 1;
  else if (wi::neg_p (wi::to_wide (t)))
    return -1;
  else
    return 1;
}

/* Return the minimum number of bits needed to represent VALUE in a
   signed or unsigned type, UNSIGNEDP says which.  */

unsigned int
tree_int_cst_min_precision (tree value, signop sgn)
{
  /* If the value is negative, compute its negative minus 1.  The latter
     adjustment is because the absolute value of the largest negative value
     is one larger than the largest positive value.  This is equivalent to
     a bit-wise negation, so use that operation instead.  */

  if (tree_int_cst_sgn (value) < 0)
    value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);

  /* Return the number of bits needed, taking into account the fact
     that we need one more bit for a signed than unsigned type.
     If value is 0 or -1, the minimum precision is 1 no matter
     whether unsignedp is true or false.  */

  if (integer_zerop (value))
    return 1;
  else
    return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
}

/* Return truthvalue of whether T1 is the same tree structure as T2.
   Return 1 if they are the same.
   Return 0 if they are understandably different.
   Return -1 if either contains tree structure not understood by
   this function.  */

int
simple_cst_equal (const_tree t1, const_tree t2)
{
  enum tree_code code1, code2;
  int cmp;
  int i;

  if (t1 == t2)
    return 1;
  if (t1 == 0 || t2 == 0)
    return 0;

  /* For location wrappers to be the same, they must be at the same
     source location (and wrap the same thing).  */
  if (location_wrapper_p (t1) && location_wrapper_p (t2))
    {
      if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
	return 0;
      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
    }

  code1 = TREE_CODE (t1);
  code2 = TREE_CODE (t2);

  if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
    {
      if (CONVERT_EXPR_CODE_P (code2)
	  || code2 == NON_LVALUE_EXPR)
	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      else
	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
    }

  else if (CONVERT_EXPR_CODE_P (code2)
	   || code2 == NON_LVALUE_EXPR)
    return simple_cst_equal (t1, TREE_OPERAND (t2, 0));

  if (code1 != code2)
    return 0;

  switch (code1)
    {
    case INTEGER_CST:
      return wi::to_widest (t1) == wi::to_widest (t2);

    case REAL_CST:
      return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));

    case FIXED_CST:
      return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));

    case STRING_CST:
      return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
			 TREE_STRING_LENGTH (t1)));

    case CONSTRUCTOR:
      {
	unsigned HOST_WIDE_INT idx;
	vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
	vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);

	if (vec_safe_length (v1) != vec_safe_length (v2))
	  return false;

        for (idx = 0; idx < vec_safe_length (v1); ++idx)
	  /* ??? Should we handle also fields here? */
	  if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
	    return false;
	return true;
      }

    case SAVE_EXPR:
      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));

    case CALL_EXPR:
      cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
      if (cmp <= 0)
	return cmp;
      if (call_expr_nargs (t1) != call_expr_nargs (t2))
	return 0;
      {
	const_tree arg1, arg2;
	const_call_expr_arg_iterator iter1, iter2;
	for (arg1 = first_const_call_expr_arg (t1, &iter1),
	       arg2 = first_const_call_expr_arg (t2, &iter2);
	     arg1 && arg2;
	     arg1 = next_const_call_expr_arg (&iter1),
	       arg2 = next_const_call_expr_arg (&iter2))
	  {
	    cmp = simple_cst_equal (arg1, arg2);
	    if (cmp <= 0)
	      return cmp;
	  }
	return arg1 == arg2;
      }

    case TARGET_EXPR:
      /* Special case: if either target is an unallocated VAR_DECL,
	 it means that it's going to be unified with whatever the
	 TARGET_EXPR is really supposed to initialize, so treat it
	 as being equivalent to anything.  */
      if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
	cmp = 1;
      else
	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));

      if (cmp <= 0)
	return cmp;

      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));

    case WITH_CLEANUP_EXPR:
      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
      if (cmp <= 0)
	return cmp;

      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));

    case COMPONENT_REF:
      if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));

      return 0;

    case VAR_DECL:
    case PARM_DECL:
    case CONST_DECL:
    case FUNCTION_DECL:
      return 0;

    default:
      if (POLY_INT_CST_P (t1))
	/* A false return means maybe_ne rather than known_ne.  */
	return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
						TYPE_SIGN (TREE_TYPE (t1))),
			 poly_widest_int::from (poly_int_cst_value (t2),
						TYPE_SIGN (TREE_TYPE (t2))));
      break;
    }

  /* This general rule works for most tree codes.  All exceptions should be
     handled above.  If this is a language-specific tree code, we can't
     trust what might be in the operand, so say we don't know
     the situation.  */
  if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
    return -1;

  switch (TREE_CODE_CLASS (code1))
    {
    case tcc_unary:
    case tcc_binary:
    case tcc_comparison:
    case tcc_expression:
    case tcc_reference:
    case tcc_statement:
      cmp = 1;
      for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
	{
	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
	  if (cmp <= 0)
	    return cmp;
	}

      return cmp;

    default:
      return -1;
    }
}

/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
   Return -1, 0, or 1 if the value of T is less than, equal to, or greater
   than U, respectively.  */

int
compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
{
  if (tree_int_cst_sgn (t) < 0)
    return -1;
  else if (!tree_fits_uhwi_p (t))
    return 1;
  else if (TREE_INT_CST_LOW (t) == u)
    return 0;
  else if (TREE_INT_CST_LOW (t) < u)
    return -1;
  else
    return 1;
}

/* Return true if SIZE represents a constant size that is in bounds of
   what the middle-end and the backend accepts (covering not more than
   half of the address-space).
   When PERR is non-null, set *PERR on failure to the description of
   why SIZE is not valid.  */

bool
valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
{
  if (POLY_INT_CST_P (size))
    {
      if (TREE_OVERFLOW (size))
	return false;
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
	  return false;
      return true;
    }

  cst_size_error error;
  if (!perr)
    perr = &error;

  if (TREE_CODE (size) != INTEGER_CST)
    {
      *perr = cst_size_not_constant;
      return false;
    }

  if (TREE_OVERFLOW_P (size))
    {
      *perr = cst_size_overflow;
      return false;
    }

  if (tree_int_cst_sgn (size) < 0)
    {
      *perr = cst_size_negative;
      return false;
    }
  if (!tree_fits_uhwi_p (size)
      || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
	  < wi::to_widest (size) * 2))
    {
      *perr = cst_size_too_big;
      return false;
    }

  return true;
}

/* Return the precision of the type, or for a complex or vector type the
   precision of the type of its elements.  */

unsigned int
element_precision (const_tree type)
{
  if (!TYPE_P (type))
    type = TREE_TYPE (type);
  enum tree_code code = TREE_CODE (type);
  if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
    type = TREE_TYPE (type);

  return TYPE_PRECISION (type);
}

/* Return true if CODE represents an associative tree code.  Otherwise
   return false.  */
bool
associative_tree_code (enum tree_code code)
{
  switch (code)
    {
    case BIT_IOR_EXPR:
    case BIT_AND_EXPR:
    case BIT_XOR_EXPR:
    case PLUS_EXPR:
    case MULT_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
      return true;

    default:
      break;
    }
  return false;
}

/* Return true if CODE represents a commutative tree code.  Otherwise
   return false.  */
bool
commutative_tree_code (enum tree_code code)
{
  switch (code)
    {
    case PLUS_EXPR:
    case MULT_EXPR:
    case MULT_HIGHPART_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:
    case NE_EXPR:
    case EQ_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_XOR_EXPR:
    case TRUTH_OR_EXPR:
    case WIDEN_MULT_EXPR:
    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_WIDEN_MULT_EVEN_EXPR:
    case VEC_WIDEN_MULT_ODD_EXPR:
      return true;

    default:
      break;
    }
  return false;
}

/* Return true if CODE represents a ternary tree code for which the
   first two operands are commutative.  Otherwise return false.  */
bool
commutative_ternary_tree_code (enum tree_code code)
{
  switch (code)
    {
    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
    case DOT_PROD_EXPR:
      return true;

    default:
      break;
    }
  return false;
}

/* Returns true if CODE can overflow.  */

bool
operation_can_overflow (enum tree_code code)
{
  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case LSHIFT_EXPR:
      /* Can overflow in various ways.  */
      return true;
    case TRUNC_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
      /* For INT_MIN / -1.  */
      return true;
    case NEGATE_EXPR:
    case ABS_EXPR:
      /* For -INT_MIN.  */
      return true;
    default:
      /* These operators cannot overflow.  */
      return false;
    }
}

/* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
   ftrapv doesn't generate trapping insns for CODE.  */

bool
operation_no_trapping_overflow (tree type, enum tree_code code)
{
  gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));

  /* We don't generate instructions that trap on overflow for complex or vector
     types.  */
  if (!INTEGRAL_TYPE_P (type))
    return true;

  if (!TYPE_OVERFLOW_TRAPS (type))
    return true;

  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case NEGATE_EXPR:
    case ABS_EXPR:
      /* These operators can overflow, and -ftrapv generates trapping code for
	 these.  */
      return false;
    case TRUNC_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case LSHIFT_EXPR:
      /* These operators can overflow, but -ftrapv does not generate trapping
	 code for these.  */
      return true;
    default:
      /* These operators cannot overflow.  */
      return true;
    }
}

/* Constructors for pointer, array and function types.
   (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
   constructed by language-dependent code, not here.)  */

/* Construct, lay out and return the type of pointers to TO_TYPE with
   mode MODE.  If MODE is VOIDmode, a pointer mode for the address
   space of TO_TYPE will be picked.  If CAN_ALIAS_ALL is TRUE,
   indicate this type can reference all of memory. If such a type has
   already been constructed, reuse it.  */

tree
build_pointer_type_for_mode (tree to_type, machine_mode mode,
			     bool can_alias_all)
{
  tree t;
  bool could_alias = can_alias_all;

  if (to_type == error_mark_node)
    return error_mark_node;

  if (mode == VOIDmode)
    {
      addr_space_t as = TYPE_ADDR_SPACE (to_type);
      mode = targetm.addr_space.pointer_mode (as);
    }

  /* If the pointed-to type has the may_alias attribute set, force
     a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
  if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
    can_alias_all = true;

  /* In some cases, languages will have things that aren't a POINTER_TYPE
     (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
     In that case, return that type without regard to the rest of our
     operands.

     ??? This is a kludge, but consistent with the way this function has
     always operated and there doesn't seem to be a good way to avoid this
     at the moment.  */
  if (TYPE_POINTER_TO (to_type) != 0
      && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
    return TYPE_POINTER_TO (to_type);

  /* First, if we already have a type for pointers to TO_TYPE and it's
     the proper mode, use it.  */
  for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
    if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
      return t;

  t = make_node (POINTER_TYPE);

  TREE_TYPE (t) = to_type;
  SET_TYPE_MODE (t, mode);
  TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
  TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
  TYPE_POINTER_TO (to_type) = t;

  /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
  if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
    TYPE_CANONICAL (t)
      = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
				     mode, false);

  /* Lay out the type.  This function has many callers that are concerned
     with expression-construction, and this simplifies them all.  */
  layout_type (t);

  return t;
}

/* By default build pointers in ptr_mode.  */

tree
build_pointer_type (tree to_type)
{
  return build_pointer_type_for_mode (to_type, VOIDmode, false);
}

/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */

tree
build_reference_type_for_mode (tree to_type, machine_mode mode,
			       bool can_alias_all)
{
  tree t;
  bool could_alias = can_alias_all;

  if (to_type == error_mark_node)
    return error_mark_node;

  if (mode == VOIDmode)
    {
      addr_space_t as = TYPE_ADDR_SPACE (to_type);
      mode = targetm.addr_space.pointer_mode (as);
    }

  /* If the pointed-to type has the may_alias attribute set, force
     a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
  if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
    can_alias_all = true;

  /* In some cases, languages will have things that aren't a REFERENCE_TYPE
     (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
     In that case, return that type without regard to the rest of our
     operands.

     ??? This is a kludge, but consistent with the way this function has
     always operated and there doesn't seem to be a good way to avoid this
     at the moment.  */
  if (TYPE_REFERENCE_TO (to_type) != 0
      && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
    return TYPE_REFERENCE_TO (to_type);

  /* First, if we already have a type for pointers to TO_TYPE and it's
     the proper mode, use it.  */
  for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
    if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
      return t;

  t = make_node (REFERENCE_TYPE);

  TREE_TYPE (t) = to_type;
  SET_TYPE_MODE (t, mode);
  TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
  TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
  TYPE_REFERENCE_TO (to_type) = t;

  /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
  if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
    TYPE_CANONICAL (t)
      = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
				       mode, false);

  layout_type (t);

  return t;
}


/* Build the node for the type of references-to-TO_TYPE by default
   in ptr_mode.  */

tree
build_reference_type (tree to_type)
{
  return build_reference_type_for_mode (to_type, VOIDmode, false);
}

#define MAX_INT_CACHED_PREC \
  (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];

/* Builds a signed or unsigned integer type of precision PRECISION.
   Used for C bitfields whose precision does not match that of
   built-in target types.  */
tree
build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
				int unsignedp)
{
  tree itype, ret;

  if (unsignedp)
    unsignedp = MAX_INT_CACHED_PREC + 1;
    
  if (precision <= MAX_INT_CACHED_PREC)
    {
      itype = nonstandard_integer_type_cache[precision + unsignedp];
      if (itype)
	return itype;
    }

  itype = make_node (INTEGER_TYPE);
  TYPE_PRECISION (itype) = precision;

  if (unsignedp)
    fixup_unsigned_type (itype);
  else
    fixup_signed_type (itype);

  inchash::hash hstate;
  inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
  ret = type_hash_canon (hstate.end (), itype);
  if (precision <= MAX_INT_CACHED_PREC)
    nonstandard_integer_type_cache[precision + unsignedp] = ret;

  return ret;
}

#define MAX_BOOL_CACHED_PREC \
  (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];

/* Builds a boolean type of precision PRECISION.
   Used for boolean vectors to choose proper vector element size.  */
tree
build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
{
  tree type;

  if (precision <= MAX_BOOL_CACHED_PREC)
    {
      type = nonstandard_boolean_type_cache[precision];
      if (type)
	return type;
    }

  type = make_node (BOOLEAN_TYPE);
  TYPE_PRECISION (type) = precision;
  fixup_signed_type (type);

  if (precision <= MAX_INT_CACHED_PREC)
    nonstandard_boolean_type_cache[precision] = type;

  return type;
}

/* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
   or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL.  If SHARED
   is true, reuse such a type that has already been constructed.  */

static tree
build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
{
  tree itype = make_node (INTEGER_TYPE);

  TREE_TYPE (itype) = type;

  TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
  TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;

  TYPE_PRECISION (itype) = TYPE_PRECISION (type);
  SET_TYPE_MODE (itype, TYPE_MODE (type));
  TYPE_SIZE (itype) = TYPE_SIZE (type);
  TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
  SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
  TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
  SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));

  if (!shared)
    return itype;

  if ((TYPE_MIN_VALUE (itype)
       && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
      || (TYPE_MAX_VALUE (itype)
	  && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
    {
      /* Since we cannot reliably merge this type, we need to compare it using
	 structural equality checks.  */
      SET_TYPE_STRUCTURAL_EQUALITY (itype);
      return itype;
    }

  hashval_t hash = type_hash_canon_hash (itype);
  itype = type_hash_canon (hash, itype);

  return itype;
}

/* Wrapper around build_range_type_1 with SHARED set to true.  */

tree
build_range_type (tree type, tree lowval, tree highval)
{
  return build_range_type_1 (type, lowval, highval, true);
}

/* Wrapper around build_range_type_1 with SHARED set to false.  */

tree
build_nonshared_range_type (tree type, tree lowval, tree highval)
{
  return build_range_type_1 (type, lowval, highval, false);
}

/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
   MAXVAL should be the maximum value in the domain
   (one less than the length of the array).

   The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
   We don't enforce this limit, that is up to caller (e.g. language front end).
   The limit exists because the result is a signed type and we don't handle
   sizes that use more than one HOST_WIDE_INT.  */

tree
build_index_type (tree maxval)
{
  return build_range_type (sizetype, size_zero_node, maxval);
}

/* Return true if the debug information for TYPE, a subtype, should be emitted
   as a subrange type.  If so, set LOWVAL to the low bound and HIGHVAL to the
   high bound, respectively.  Sometimes doing so unnecessarily obfuscates the
   debug info and doesn't reflect the source code.  */

bool
subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
{
  tree base_type = TREE_TYPE (type), low, high;

  /* Subrange types have a base type which is an integral type.  */
  if (!INTEGRAL_TYPE_P (base_type))
    return false;

  /* Get the real bounds of the subtype.  */
  if (lang_hooks.types.get_subrange_bounds)
    lang_hooks.types.get_subrange_bounds (type, &low, &high);
  else
    {
      low = TYPE_MIN_VALUE (type);
      high = TYPE_MAX_VALUE (type);
    }

  /* If the type and its base type have the same representation and the same
     name, then the type is not a subrange but a copy of the base type.  */
  if ((TREE_CODE (base_type) == INTEGER_TYPE
       || TREE_CODE (base_type) == BOOLEAN_TYPE)
      && int_size_in_bytes (type) == int_size_in_bytes (base_type)
      && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
      && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
      && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
    return false;

  if (lowval)
    *lowval = low;
  if (highval)
    *highval = high;
  return true;
}

/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
   and number of elements specified by the range of values of INDEX_TYPE.
   If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
   If SHARED is true, reuse such a type that has already been constructed.
   If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type.  */

tree
build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
		    bool shared, bool set_canonical)
{
  tree t;

  if (TREE_CODE (elt_type) == FUNCTION_TYPE)
    {
      error ("arrays of functions are not meaningful");
      elt_type = integer_type_node;
    }

  t = make_node (ARRAY_TYPE);
  TREE_TYPE (t) = elt_type;
  TYPE_DOMAIN (t) = index_type;
  TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
  TYPE_TYPELESS_STORAGE (t) = typeless_storage;
  layout_type (t);

  if (shared)
    {
      hashval_t hash = type_hash_canon_hash (t);
      t = type_hash_canon (hash, t);
    }

  if (TYPE_CANONICAL (t) == t && set_canonical)
    {
      if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
	  || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
	  || in_lto_p)
	SET_TYPE_STRUCTURAL_EQUALITY (t);
      else if (TYPE_CANONICAL (elt_type) != elt_type
	       || (index_type && TYPE_CANONICAL (index_type) != index_type))
	TYPE_CANONICAL (t)
	  = build_array_type_1 (TYPE_CANONICAL (elt_type),
				index_type
				? TYPE_CANONICAL (index_type) : NULL_TREE,
				typeless_storage, shared, set_canonical);
    }

  return t;
}

/* Wrapper around build_array_type_1 with SHARED set to true.  */

tree
build_array_type (tree elt_type, tree index_type, bool typeless_storage)
{
  return
    build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
}

/* Wrapper around build_array_type_1 with SHARED set to false.  */

tree
build_nonshared_array_type (tree elt_type, tree index_type)
{
  return build_array_type_1 (elt_type, index_type, false, false, true);
}

/* Return a representation of ELT_TYPE[NELTS], using indices of type
   sizetype.  */

tree
build_array_type_nelts (tree elt_type, poly_uint64 nelts)
{
  return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
}

/* Recursively examines the array elements of TYPE, until a non-array
   element type is found.  */

tree
strip_array_types (tree type)
{
  while (TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);

  return type;
}

/* Computes the canonical argument types from the argument type list
   ARGTYPES.

   Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
   on entry to this function, or if any of the ARGTYPES are
   structural.

   Upon return, *ANY_NONCANONICAL_P will be true iff either it was
   true on entry to this function, or if any of the ARGTYPES are
   non-canonical.

   Returns a canonical argument list, which may be ARGTYPES when the
   canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
   true) or would not differ from ARGTYPES.  */

static tree
maybe_canonicalize_argtypes (tree argtypes,
			     bool *any_structural_p,
			     bool *any_noncanonical_p)
{
  tree arg;
  bool any_noncanonical_argtypes_p = false;

  for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
    {
      if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
	/* Fail gracefully by stating that the type is structural.  */
	*any_structural_p = true;
      else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
	*any_structural_p = true;
      else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
	       || TREE_PURPOSE (arg))
	/* If the argument has a default argument, we consider it
	   non-canonical even though the type itself is canonical.
	   That way, different variants of function and method types
	   with default arguments will all point to the variant with
	   no defaults as their canonical type.  */
        any_noncanonical_argtypes_p = true;
    }

  if (*any_structural_p)
    return argtypes;

  if (any_noncanonical_argtypes_p)
    {
      /* Build the canonical list of argument types.  */
      tree canon_argtypes = NULL_TREE;
      bool is_void = false;

      for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
        {
          if (arg == void_list_node)
            is_void = true;
          else
            canon_argtypes = tree_cons (NULL_TREE,
                                        TYPE_CANONICAL (TREE_VALUE (arg)),
                                        canon_argtypes);
        }

      canon_argtypes = nreverse (canon_argtypes);
      if (is_void)
        canon_argtypes = chainon (canon_argtypes, void_list_node);

      /* There is a non-canonical type.  */
      *any_noncanonical_p = true;
      return canon_argtypes;
    }

  /* The canonical argument types are the same as ARGTYPES.  */
  return argtypes;
}

/* Construct, lay out and return
   the type of functions returning type VALUE_TYPE
   given arguments of types ARG_TYPES.
   ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
   are data type nodes for the arguments of the function.
   If such a type has already been constructed, reuse it.  */

tree
build_function_type (tree value_type, tree arg_types)
{
  tree t;
  inchash::hash hstate;
  bool any_structural_p, any_noncanonical_p;
  tree canon_argtypes;

  gcc_assert (arg_types != error_mark_node);

  if (TREE_CODE (value_type) == FUNCTION_TYPE)
    {
      error ("function return type cannot be function");
      value_type = integer_type_node;
    }

  /* Make a node of the sort we want.  */
  t = make_node (FUNCTION_TYPE);
  TREE_TYPE (t) = value_type;
  TYPE_ARG_TYPES (t) = arg_types;

  /* If we already have such a type, use the old one.  */
  hashval_t hash = type_hash_canon_hash (t);
  t = type_hash_canon (hash, t);

  /* Set up the canonical type. */
  any_structural_p   = TYPE_STRUCTURAL_EQUALITY_P (value_type);
  any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
  canon_argtypes = maybe_canonicalize_argtypes (arg_types,
						&any_structural_p,
						&any_noncanonical_p);
  if (any_structural_p)
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else if (any_noncanonical_p)
    TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
					      canon_argtypes);

  if (!COMPLETE_TYPE_P (t))
    layout_type (t);
  return t;
}

/* Build a function type.  The RETURN_TYPE is the type returned by the
   function.  If VAARGS is set, no void_type_node is appended to the
   list.  ARGP must be always be terminated be a NULL_TREE.  */

static tree
build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
{
  tree t, args, last;

  t = va_arg (argp, tree);
  for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
    args = tree_cons (NULL_TREE, t, args);

  if (vaargs)
    {
      last = args;
      if (args != NULL_TREE)
	args = nreverse (args);
      gcc_assert (last != void_list_node);
    }
  else if (args == NULL_TREE)
    args = void_list_node;
  else
    {
      last = args;
      args = nreverse (args);
      TREE_CHAIN (last) = void_list_node;
    }
  args = build_function_type (return_type, args);

  return args;
}

/* Build a function type.  The RETURN_TYPE is the type returned by the
   function.  If additional arguments are provided, they are
   additional argument types.  The list of argument types must always
   be terminated by NULL_TREE.  */

tree
build_function_type_list (tree return_type, ...)
{
  tree args;
  va_list p;

  va_start (p, return_type);
  args = build_function_type_list_1 (false, return_type, p);
  va_end (p);
  return args;
}

/* Build a variable argument function type.  The RETURN_TYPE is the
   type returned by the function.  If additional arguments are provided,
   they are additional argument types.  The list of argument types must
   always be terminated by NULL_TREE.  */

tree
build_varargs_function_type_list (tree return_type, ...)
{
  tree args;
  va_list p;

  va_start (p, return_type);
  args = build_function_type_list_1 (true, return_type, p);
  va_end (p);

  return args;
}

/* Build a function type.  RETURN_TYPE is the type returned by the
   function; VAARGS indicates whether the function takes varargs.  The
   function takes N named arguments, the types of which are provided in
   ARG_TYPES.  */

static tree
build_function_type_array_1 (bool vaargs, tree return_type, int n,
			     tree *arg_types)
{
  int i;
  tree t = vaargs ? NULL_TREE : void_list_node;

  for (i = n - 1; i >= 0; i--)
    t = tree_cons (NULL_TREE, arg_types[i], t);

  return build_function_type (return_type, t);
}

/* Build a function type.  RETURN_TYPE is the type returned by the
   function.  The function takes N named arguments, the types of which
   are provided in ARG_TYPES.  */

tree
build_function_type_array (tree return_type, int n, tree *arg_types)
{
  return build_function_type_array_1 (false, return_type, n, arg_types);
}

/* Build a variable argument function type.  RETURN_TYPE is the type
   returned by the function.  The function takes N named arguments, the
   types of which are provided in ARG_TYPES.  */

tree
build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
{
  return build_function_type_array_1 (true, return_type, n, arg_types);
}

/* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
   and ARGTYPES (a TREE_LIST) are the return type and arguments types
   for the method.  An implicit additional parameter (of type
   pointer-to-BASETYPE) is added to the ARGTYPES.  */

tree
build_method_type_directly (tree basetype,
			    tree rettype,
			    tree argtypes)
{
  tree t;
  tree ptype;
  bool any_structural_p, any_noncanonical_p;
  tree canon_argtypes;

  /* Make a node of the sort we want.  */
  t = make_node (METHOD_TYPE);

  TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
  TREE_TYPE (t) = rettype;
  ptype = build_pointer_type (basetype);

  /* The actual arglist for this function includes a "hidden" argument
     which is "this".  Put it into the list of argument types.  */
  argtypes = tree_cons (NULL_TREE, ptype, argtypes);
  TYPE_ARG_TYPES (t) = argtypes;

  /* If we already have such a type, use the old one.  */
  hashval_t hash = type_hash_canon_hash (t);
  t = type_hash_canon (hash, t);

  /* Set up the canonical type. */
  any_structural_p
    = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
       || TYPE_STRUCTURAL_EQUALITY_P (rettype));
  any_noncanonical_p
    = (TYPE_CANONICAL (basetype) != basetype
       || TYPE_CANONICAL (rettype) != rettype);
  canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
						&any_structural_p,
						&any_noncanonical_p);
  if (any_structural_p)
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else if (any_noncanonical_p)
    TYPE_CANONICAL (t)
      = build_method_type_directly (TYPE_CANONICAL (basetype),
				    TYPE_CANONICAL (rettype),
				    canon_argtypes);
  if (!COMPLETE_TYPE_P (t))
    layout_type (t);

  return t;
}

/* Construct, lay out and return the type of methods belonging to class
   BASETYPE and whose arguments and values are described by TYPE.
   If that type exists already, reuse it.
   TYPE must be a FUNCTION_TYPE node.  */

tree
build_method_type (tree basetype, tree type)
{
  gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);

  return build_method_type_directly (basetype,
				     TREE_TYPE (type),
				     TYPE_ARG_TYPES (type));
}

/* Construct, lay out and return the type of offsets to a value
   of type TYPE, within an object of type BASETYPE.
   If a suitable offset type exists already, reuse it.  */

tree
build_offset_type (tree basetype, tree type)
{
  tree t;

  /* Make a node of the sort we want.  */
  t = make_node (OFFSET_TYPE);

  TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
  TREE_TYPE (t) = type;

  /* If we already have such a type, use the old one.  */
  hashval_t hash = type_hash_canon_hash (t);
  t = type_hash_canon (hash, t);

  if (!COMPLETE_TYPE_P (t))
    layout_type (t);

  if (TYPE_CANONICAL (t) == t)
    {
      if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
	  || TYPE_STRUCTURAL_EQUALITY_P (type))
	SET_TYPE_STRUCTURAL_EQUALITY (t);
      else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
	       || TYPE_CANONICAL (type) != type)
	TYPE_CANONICAL (t)
	  = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
			       TYPE_CANONICAL (type));
    }

  return t;
}

/* Create a complex type whose components are COMPONENT_TYPE.

   If NAMED is true, the type is given a TYPE_NAME.  We do not always
   do so because this creates a DECL node and thus make the DECL_UIDs
   dependent on the type canonicalization hashtable, which is GC-ed,
   so the DECL_UIDs would not be stable wrt garbage collection.  */

tree
build_complex_type (tree component_type, bool named)
{
  gcc_assert (INTEGRAL_TYPE_P (component_type)
	      || SCALAR_FLOAT_TYPE_P (component_type)
	      || FIXED_POINT_TYPE_P (component_type));

  /* Make a node of the sort we want.  */
  tree probe = make_node (COMPLEX_TYPE);

  TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);

  /* If we already have such a type, use the old one.  */
  hashval_t hash = type_hash_canon_hash (probe);
  tree t = type_hash_canon (hash, probe);

  if (t == probe)
    {
      /* We created a new type.  The hash insertion will have laid
	 out the type.  We need to check the canonicalization and
	 maybe set the name.  */
      gcc_checking_assert (COMPLETE_TYPE_P (t)
			   && !TYPE_NAME (t)
			   && TYPE_CANONICAL (t) == t);

      if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
	SET_TYPE_STRUCTURAL_EQUALITY (t);
      else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
	TYPE_CANONICAL (t)
	  = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);

      /* We need to create a name, since complex is a fundamental type.  */
      if (named)
	{
	  const char *name = NULL;

	  if (TREE_TYPE (t) == char_type_node)
	    name = "complex char";
	  else if (TREE_TYPE (t) == signed_char_type_node)
	    name = "complex signed char";
	  else if (TREE_TYPE (t) == unsigned_char_type_node)
	    name = "complex unsigned char";
	  else if (TREE_TYPE (t) == short_integer_type_node)
	    name = "complex short int";
	  else if (TREE_TYPE (t) == short_unsigned_type_node)
	    name = "complex short unsigned int";
	  else if (TREE_TYPE (t) == integer_type_node)
	    name = "complex int";
	  else if (TREE_TYPE (t) == unsigned_type_node)
	    name = "complex unsigned int";
	  else if (TREE_TYPE (t) == long_integer_type_node)
	    name = "complex long int";
	  else if (TREE_TYPE (t) == long_unsigned_type_node)
	    name = "complex long unsigned int";
	  else if (TREE_TYPE (t) == long_long_integer_type_node)
	    name = "complex long long int";
	  else if (TREE_TYPE (t) == long_long_unsigned_type_node)
	    name = "complex long long unsigned int";

	  if (name != NULL)
	    TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
					get_identifier (name), t);
	}
    }

  return build_qualified_type (t, TYPE_QUALS (component_type));
}

/* If TYPE is a real or complex floating-point type and the target
   does not directly support arithmetic on TYPE then return the wider
   type to be used for arithmetic on TYPE.  Otherwise, return
   NULL_TREE.  */

tree
excess_precision_type (tree type)
{
  /* The target can give two different responses to the question of
     which excess precision mode it would like depending on whether we
     are in -fexcess-precision=standard or -fexcess-precision=fast.  */

  enum excess_precision_type requested_type
    = (flag_excess_precision == EXCESS_PRECISION_FAST
       ? EXCESS_PRECISION_TYPE_FAST
       : (flag_excess_precision == EXCESS_PRECISION_FLOAT16
	  ? EXCESS_PRECISION_TYPE_FLOAT16 :EXCESS_PRECISION_TYPE_STANDARD));

  enum flt_eval_method target_flt_eval_method
    = targetm.c.excess_precision (requested_type);

  /* The target should not ask for unpredictable float evaluation (though
     it might advertise that implicitly the evaluation is unpredictable,
     but we don't care about that here, it will have been reported
     elsewhere).  If it does ask for unpredictable evaluation, we have
     nothing to do here.  */
  gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);

  /* Nothing to do.  The target has asked for all types we know about
     to be computed with their native precision and range.  */
  if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
    return NULL_TREE;

  /* The target will promote this type in a target-dependent way, so excess
     precision ought to leave it alone.  */
  if (targetm.promoted_type (type) != NULL_TREE)
    return NULL_TREE;

  machine_mode float16_type_mode = (float16_type_node
				    ? TYPE_MODE (float16_type_node)
				    : VOIDmode);
  machine_mode float_type_mode = TYPE_MODE (float_type_node);
  machine_mode double_type_mode = TYPE_MODE (double_type_node);

  switch (TREE_CODE (type))
    {
    case REAL_TYPE:
      {
	machine_mode type_mode = TYPE_MODE (type);
	switch (target_flt_eval_method)
	  {
	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
	    if (type_mode == float16_type_mode)
	      return float_type_node;
	    break;
	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
	    if (type_mode == float16_type_mode
		|| type_mode == float_type_mode)
	      return double_type_node;
	    break;
	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
	    if (type_mode == float16_type_mode
		|| type_mode == float_type_mode
		|| type_mode == double_type_mode)
	      return long_double_type_node;
	    break;
	  default:
	    gcc_unreachable ();
	  }
	break;
      }
    case COMPLEX_TYPE:
      {
	if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
	  return NULL_TREE;
	machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
	switch (target_flt_eval_method)
	  {
	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
	    if (type_mode == float16_type_mode)
	      return complex_float_type_node;
	    break;
	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
	    if (type_mode == float16_type_mode
		|| type_mode == float_type_mode)
	      return complex_double_type_node;
	    break;
	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
	    if (type_mode == float16_type_mode
		|| type_mode == float_type_mode
		|| type_mode == double_type_mode)
	      return complex_long_double_type_node;
	    break;
	  default:
	    gcc_unreachable ();
	  }
	break;
      }
    default:
      break;
    }

  return NULL_TREE;
}

/* Return OP, stripped of any conversions to wider types as much as is safe.
   Converting the value back to OP's type makes a value equivalent to OP.

   If FOR_TYPE is nonzero, we return a value which, if converted to
   type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.

   OP must have integer, real or enumeral type.  Pointers are not allowed!

   There are some cases where the obvious value we could return
   would regenerate to OP if converted to OP's type,
   but would not extend like OP to wider types.
   If FOR_TYPE indicates such extension is contemplated, we eschew such values.
   For example, if OP is (unsigned short)(signed char)-1,
   we avoid returning (signed char)-1 if FOR_TYPE is int,
   even though extending that to an unsigned short would regenerate OP,
   since the result of extending (signed char)-1 to (int)
   is different from (int) OP.  */

tree
get_unwidened (tree op, tree for_type)
{
  /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
  tree type = TREE_TYPE (op);
  unsigned final_prec
    = TYPE_PRECISION (for_type != 0 ? for_type : type);
  int uns
    = (for_type != 0 && for_type != type
       && final_prec > TYPE_PRECISION (type)
       && TYPE_UNSIGNED (type));
  tree win = op;

  while (CONVERT_EXPR_P (op))
    {
      int bitschange;

      /* TYPE_PRECISION on vector types has different meaning
	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
	 so avoid them here.  */
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
	break;

      bitschange = TYPE_PRECISION (TREE_TYPE (op))
		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));

      /* Truncations are many-one so cannot be removed.
	 Unless we are later going to truncate down even farther.  */
      if (bitschange < 0
	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
	break;

      /* See what's inside this conversion.  If we decide to strip it,
	 we will set WIN.  */
      op = TREE_OPERAND (op, 0);

      /* If we have not stripped any zero-extensions (uns is 0),
	 we can strip any kind of extension.
	 If we have previously stripped a zero-extension,
	 only zero-extensions can safely be stripped.
	 Any extension can be stripped if the bits it would produce
	 are all going to be discarded later by truncating to FOR_TYPE.  */

      if (bitschange > 0)
	{
	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
	    win = op;
	  /* TYPE_UNSIGNED says whether this is a zero-extension.
	     Let's avoid computing it if it does not affect WIN
	     and if UNS will not be needed again.  */
	  if ((uns
	       || CONVERT_EXPR_P (op))
	      && TYPE_UNSIGNED (TREE_TYPE (op)))
	    {
	      uns = 1;
	      win = op;
	    }
	}
    }

  /* If we finally reach a constant see if it fits in sth smaller and
     in that case convert it.  */
  if (TREE_CODE (win) == INTEGER_CST)
    {
      tree wtype = TREE_TYPE (win);
      unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
      if (for_type)
	prec = MAX (prec, final_prec);
      if (prec < TYPE_PRECISION (wtype))
	{
	  tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
	  if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
	    win = fold_convert (t, win);
	}
    }

  return win;
}

/* Return OP or a simpler expression for a narrower value
   which can be sign-extended or zero-extended to give back OP.
   Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
   or 0 if the value should be sign-extended.  */

tree
get_narrower (tree op, int *unsignedp_ptr)
{
  int uns = 0;
  int first = 1;
  tree win = op;
  bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));

  if (TREE_CODE (op) == COMPOUND_EXPR)
    {
      do
	op = TREE_OPERAND (op, 1);
      while (TREE_CODE (op) == COMPOUND_EXPR);
      tree ret = get_narrower (op, unsignedp_ptr);
      if (ret == op)
	return win;
      auto_vec <tree, 16> v;
      unsigned int i;
      for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
	   op = TREE_OPERAND (op, 1))
	v.safe_push (op);
      FOR_EACH_VEC_ELT_REVERSE (v, i, op)
	ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
			  TREE_TYPE (ret), TREE_OPERAND (op, 0),
			  ret);
      return ret;
    }
  while (TREE_CODE (op) == NOP_EXPR)
    {
      int bitschange
	= (TYPE_PRECISION (TREE_TYPE (op))
	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));

      /* Truncations are many-one so cannot be removed.  */
      if (bitschange < 0)
	break;

      /* See what's inside this conversion.  If we decide to strip it,
	 we will set WIN.  */

      if (bitschange > 0)
	{
	  op = TREE_OPERAND (op, 0);
	  /* An extension: the outermost one can be stripped,
	     but remember whether it is zero or sign extension.  */
	  if (first)
	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
	  /* Otherwise, if a sign extension has been stripped,
	     only sign extensions can now be stripped;
	     if a zero extension has been stripped, only zero-extensions.  */
	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
	    break;
	  first = 0;
	}
      else /* bitschange == 0 */
	{
	  /* A change in nominal type can always be stripped, but we must
	     preserve the unsignedness.  */
	  if (first)
	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
	  first = 0;
	  op = TREE_OPERAND (op, 0);
	  /* Keep trying to narrow, but don't assign op to win if it
	     would turn an integral type into something else.  */
	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
	    continue;
	}

      win = op;
    }

  if (TREE_CODE (op) == COMPONENT_REF
      /* Since type_for_size always gives an integer type.  */
      && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
      && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
      /* Ensure field is laid out already.  */
      && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
      && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
    {
      unsigned HOST_WIDE_INT innerprec
	= tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
      int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
      tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);

      /* We can get this structure field in a narrower type that fits it,
	 but the resulting extension to its nominal type (a fullword type)
	 must satisfy the same conditions as for other extensions.

	 Do this only for fields that are aligned (not bit-fields),
	 because when bit-field insns will be used there is no
	 advantage in doing this.  */

      if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
	  && type != 0)
	{
	  if (first)
	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
	  win = fold_convert (type, op);
	}
    }

  *unsignedp_ptr = uns;
  return win;
}

/* Return true if integer constant C has a value that is permissible
   for TYPE, an integral type.  */

bool
int_fits_type_p (const_tree c, const_tree type)
{
  tree type_low_bound, type_high_bound;
  bool ok_for_low_bound, ok_for_high_bound;
  signop sgn_c = TYPE_SIGN (TREE_TYPE (c));

  /* Non-standard boolean types can have arbitrary precision but various
     transformations assume that they can only take values 0 and +/-1.  */
  if (TREE_CODE (type) == BOOLEAN_TYPE)
    return wi::fits_to_boolean_p (wi::to_wide (c), type);

retry:
  type_low_bound = TYPE_MIN_VALUE (type);
  type_high_bound = TYPE_MAX_VALUE (type);

  /* If at least one bound of the type is a constant integer, we can check
     ourselves and maybe make a decision. If no such decision is possible, but
     this type is a subtype, try checking against that.  Otherwise, use
     fits_to_tree_p, which checks against the precision.

     Compute the status for each possibly constant bound, and return if we see
     one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
     for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
     for "constant known to fit".  */

  /* Check if c >= type_low_bound.  */
  if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
    {
      if (tree_int_cst_lt (c, type_low_bound))
	return false;
      ok_for_low_bound = true;
    }
  else
    ok_for_low_bound = false;

  /* Check if c <= type_high_bound.  */
  if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
    {
      if (tree_int_cst_lt (type_high_bound, c))
	return false;
      ok_for_high_bound = true;
    }
  else
    ok_for_high_bound = false;

  /* If the constant fits both bounds, the result is known.  */
  if (ok_for_low_bound && ok_for_high_bound)
    return true;

  /* Perform some generic filtering which may allow making a decision
     even if the bounds are not constant.  First, negative integers
     never fit in unsigned types, */
  if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
    return false;

  /* Second, narrower types always fit in wider ones.  */
  if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
    return true;

  /* Third, unsigned integers with top bit set never fit signed types.  */
  if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
    {
      int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
      if (prec < TYPE_PRECISION (TREE_TYPE (c)))
	{
	  /* When a tree_cst is converted to a wide-int, the precision
	     is taken from the type.  However, if the precision of the
	     mode underneath the type is smaller than that, it is
	     possible that the value will not fit.  The test below
	     fails if any bit is set between the sign bit of the
	     underlying mode and the top bit of the type.  */
	  if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
	    return false;
	}
      else if (wi::neg_p (wi::to_wide (c)))
	return false;
    }

  /* If we haven't been able to decide at this point, there nothing more we
     can check ourselves here.  Look at the base type if we have one and it
     has the same precision.  */
  if (TREE_CODE (type) == INTEGER_TYPE
      && TREE_TYPE (type) != 0
      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
    {
      type = TREE_TYPE (type);
      goto retry;
    }

  /* Or to fits_to_tree_p, if nothing else.  */
  return wi::fits_to_tree_p (wi::to_wide (c), type);
}

/* Stores bounds of an integer TYPE in MIN and MAX.  If TYPE has non-constant
   bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
   represented (assuming two's-complement arithmetic) within the bit
   precision of the type are returned instead.  */

void
get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
{
  if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
      && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
    wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
  else
    {
      if (TYPE_UNSIGNED (type))
	mpz_set_ui (min, 0);
      else
	{
	  wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
	  wi::to_mpz (mn, min, SIGNED);
	}
    }

  if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
      && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
    wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
  else
    {
      wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
      wi::to_mpz (mn, max, TYPE_SIGN (type));
    }
}

/* Return true if VAR is an automatic variable.  */

bool
auto_var_p (const_tree var)
{
  return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
	    || TREE_CODE (var) == PARM_DECL)
	   && ! TREE_STATIC (var))
	  || TREE_CODE (var) == RESULT_DECL);
}

/* Return true if VAR is an automatic variable defined in function FN.  */

bool
auto_var_in_fn_p (const_tree var, const_tree fn)
{
  return (DECL_P (var) && DECL_CONTEXT (var) == fn
	  && (auto_var_p (var)
	      || TREE_CODE (var) == LABEL_DECL));
}

/* Subprogram of following function.  Called by walk_tree.

   Return *TP if it is an automatic variable or parameter of the
   function passed in as DATA.  */

static tree
find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
{
  tree fn = (tree) data;

  if (TYPE_P (*tp))
    *walk_subtrees = 0;

  else if (DECL_P (*tp)
	   && auto_var_in_fn_p (*tp, fn))
    return *tp;

  return NULL_TREE;
}

/* Returns true if T is, contains, or refers to a type with variable
   size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
   arguments, but not the return type.  If FN is nonzero, only return
   true if a modifier of the type or position of FN is a variable or
   parameter inside FN.

   This concept is more general than that of C99 'variably modified types':
   in C99, a struct type is never variably modified because a VLA may not
   appear as a structure member.  However, in GNU C code like:

     struct S { int i[f()]; };

   is valid, and other languages may define similar constructs.  */

bool
variably_modified_type_p (tree type, tree fn)
{
  tree t;

/* Test if T is either variable (if FN is zero) or an expression containing
   a variable in FN.  If TYPE isn't gimplified, return true also if
   gimplify_one_sizepos would gimplify the expression into a local
   variable.  */
#define RETURN_TRUE_IF_VAR(T)						\
  do { tree _t = (T);							\
    if (_t != NULL_TREE							\
	&& _t != error_mark_node					\
	&& !CONSTANT_CLASS_P (_t)					\
	&& TREE_CODE (_t) != PLACEHOLDER_EXPR				\
	&& (!fn								\
	    || (!TYPE_SIZES_GIMPLIFIED (type)				\
		&& (TREE_CODE (_t) != VAR_DECL				\
		    && !CONTAINS_PLACEHOLDER_P (_t)))			\
	    || walk_tree (&_t, find_var_from_fn, fn, NULL)))		\
      return true;  } while (0)

  if (type == error_mark_node)
    return false;

  /* If TYPE itself has variable size, it is variably modified.  */
  RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
  RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));

  switch (TREE_CODE (type))
    {
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case VECTOR_TYPE:
      /* Ada can have pointer types refering to themselves indirectly.  */
      if (TREE_VISITED (type))
	return false;
      TREE_VISITED (type) = true;
      if (variably_modified_type_p (TREE_TYPE (type), fn))
	{
	  TREE_VISITED (type) = false;
	  return true;
	}
      TREE_VISITED (type) = false;
      break;

    case FUNCTION_TYPE:
    case METHOD_TYPE:
      /* If TYPE is a function type, it is variably modified if the
	 return type is variably modified.  */
      if (variably_modified_type_p (TREE_TYPE (type), fn))
	  return true;
      break;

    case INTEGER_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
      /* Scalar types are variably modified if their end points
	 aren't constant.  */
      RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
      RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
      break;

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      /* We can't see if any of the fields are variably-modified by the
	 definition we normally use, since that would produce infinite
	 recursion via pointers.  */
      /* This is variably modified if some field's type is.  */
      for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
	if (TREE_CODE (t) == FIELD_DECL)
	  {
	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));

	    /* If the type is a qualified union, then the DECL_QUALIFIER
	       of fields can also be an expression containing a variable.  */
	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));

	    /* If the field is a qualified union, then it's only a container
	       for what's inside so we look into it.  That's necessary in LTO
	       mode because the sizes of the field tested above have been set
	       to PLACEHOLDER_EXPRs by free_lang_data.  */
	    if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
		&& variably_modified_type_p (TREE_TYPE (t), fn))
	      return true;
	  }
      break;

    case ARRAY_TYPE:
      /* Do not call ourselves to avoid infinite recursion.  This is
	 variably modified if the element type is.  */
      RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
      RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
      break;

    default:
      break;
    }

  /* The current language may have other cases to check, but in general,
     all other types are not variably modified.  */
  return lang_hooks.tree_inlining.var_mod_type_p (type, fn);

#undef RETURN_TRUE_IF_VAR
}

/* Given a DECL or TYPE, return the scope in which it was declared, or
   NULL_TREE if there is no containing scope.  */

tree
get_containing_scope (const_tree t)
{
  return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
}

/* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL.  */

const_tree
get_ultimate_context (const_tree decl)
{
  while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
    {
      if (TREE_CODE (decl) == BLOCK)
	decl = BLOCK_SUPERCONTEXT (decl);
      else
	decl = get_containing_scope (decl);
    }
  return decl;
}

/* Return the innermost context enclosing DECL that is
   a FUNCTION_DECL, or zero if none.  */

tree
decl_function_context (const_tree decl)
{
  tree context;

  if (TREE_CODE (decl) == ERROR_MARK)
    return 0;

  /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
     where we look up the function at runtime.  Such functions always take
     a first argument of type 'pointer to real context'.

     C++ should really be fixed to use DECL_CONTEXT for the real context,
     and use something else for the "virtual context".  */
  else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
    context
      = TYPE_MAIN_VARIANT
	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
  else
    context = DECL_CONTEXT (decl);

  while (context && TREE_CODE (context) != FUNCTION_DECL)
    {
      if (TREE_CODE (context) == BLOCK)
	context = BLOCK_SUPERCONTEXT (context);
      else
	context = get_containing_scope (context);
    }

  return context;
}

/* Return the innermost context enclosing DECL that is
   a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
   TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */

tree
decl_type_context (const_tree decl)
{
  tree context = DECL_CONTEXT (decl);

  while (context)
    switch (TREE_CODE (context))
      {
      case NAMESPACE_DECL:
      case TRANSLATION_UNIT_DECL:
	return NULL_TREE;

      case RECORD_TYPE:
      case UNION_TYPE:
      case QUAL_UNION_TYPE:
	return context;

      case TYPE_DECL:
      case FUNCTION_DECL:
	context = DECL_CONTEXT (context);
	break;

      case BLOCK:
	context = BLOCK_SUPERCONTEXT (context);
	break;

      default:
	gcc_unreachable ();
      }

  return NULL_TREE;
}

/* CALL is a CALL_EXPR.  Return the declaration for the function
   called, or NULL_TREE if the called function cannot be
   determined.  */

tree
get_callee_fndecl (const_tree call)
{
  tree addr;

  if (call == error_mark_node)
    return error_mark_node;

  /* It's invalid to call this function with anything but a
     CALL_EXPR.  */
  gcc_assert (TREE_CODE (call) == CALL_EXPR);

  /* The first operand to the CALL is the address of the function
     called.  */
  addr = CALL_EXPR_FN (call);

  /* If there is no function, return early.  */
  if (addr == NULL_TREE)
    return NULL_TREE;

  STRIP_NOPS (addr);

  /* If this is a readonly function pointer, extract its initial value.  */
  if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
      && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
      && DECL_INITIAL (addr))
    addr = DECL_INITIAL (addr);

  /* If the address is just `&f' for some function `f', then we know
     that `f' is being called.  */
  if (TREE_CODE (addr) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
    return TREE_OPERAND (addr, 0);

  /* We couldn't figure out what was being called.  */
  return NULL_TREE;
}

/* If CALL_EXPR CALL calls a normal built-in function or an internal function,
   return the associated function code, otherwise return CFN_LAST.  */

combined_fn
get_call_combined_fn (const_tree call)
{
  /* It's invalid to call this function with anything but a CALL_EXPR.  */
  gcc_assert (TREE_CODE (call) == CALL_EXPR);

  if (!CALL_EXPR_FN (call))
    return as_combined_fn (CALL_EXPR_IFN (call));

  tree fndecl = get_callee_fndecl (call);
  if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
    return as_combined_fn (DECL_FUNCTION_CODE (fndecl));

  return CFN_LAST;
}

/* Comparator of indices based on tree_node_counts.  */

static int
tree_nodes_cmp (const void *p1, const void *p2)
{
  const unsigned *n1 = (const unsigned *)p1;
  const unsigned *n2 = (const unsigned *)p2;

  return tree_node_counts[*n1] - tree_node_counts[*n2];
}

/* Comparator of indices based on tree_code_counts.  */

static int
tree_codes_cmp (const void *p1, const void *p2)
{
  const unsigned *n1 = (const unsigned *)p1;
  const unsigned *n2 = (const unsigned *)p2;

  return tree_code_counts[*n1] - tree_code_counts[*n2];
}

#define TREE_MEM_USAGE_SPACES 40

/* Print debugging information about tree nodes generated during the compile,
   and any language-specific information.  */

void
dump_tree_statistics (void)
{
  if (GATHER_STATISTICS)
    {
      uint64_t total_nodes, total_bytes;
      fprintf (stderr, "\nKind                   Nodes      Bytes\n");
      mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
      total_nodes = total_bytes = 0;

      {
	auto_vec<unsigned> indices (all_kinds);
	for (unsigned i = 0; i < all_kinds; i++)
	  indices.quick_push (i);
	indices.qsort (tree_nodes_cmp);

	for (unsigned i = 0; i < (int) all_kinds; i++)
	  {
	    unsigned j = indices[i];
	    fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
		     tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
		     SIZE_AMOUNT (tree_node_sizes[j]));
	    total_nodes += tree_node_counts[j];
	    total_bytes += tree_node_sizes[j];
	  }
	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
	fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
		 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
      }

      {
	fprintf (stderr, "Code                              Nodes\n");
	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);

	auto_vec<unsigned> indices (MAX_TREE_CODES);
	for (unsigned i = 0; i < MAX_TREE_CODES; i++)
	  indices.quick_push (i);
	indices.qsort (tree_codes_cmp);

	for (unsigned i = 0; i < MAX_TREE_CODES; i++)
	  {
	    unsigned j = indices[i];
	    fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
		     get_tree_code_name ((enum tree_code) j),
		     SIZE_AMOUNT (tree_code_counts[j]));
	  }
	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
	fprintf (stderr, "\n");
	ssanames_print_statistics ();
	fprintf (stderr, "\n");
	phinodes_print_statistics ();
	fprintf (stderr, "\n");
      }
    }
  else
    fprintf (stderr, "(No per-node statistics)\n");

  print_type_hash_statistics ();
  print_debug_expr_statistics ();
  print_value_expr_statistics ();
  lang_hooks.print_statistics ();
}

#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"

/* Generate a crc32 of the low BYTES bytes of VALUE.  */

unsigned
crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
{
  /* This relies on the raw feedback's top 4 bits being zero.  */
#define FEEDBACK(X) ((X) * 0x04c11db7)
#define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
		     ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
  static const unsigned syndromes[16] =
    {
      SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
      SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
      SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
      SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
    };
#undef FEEDBACK
#undef SYNDROME

  value <<= (32 - bytes * 8);
  for (unsigned ix = bytes * 2; ix--; value <<= 4)
    {
      unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];

      chksum = (chksum << 4) ^ feedback;
    }

  return chksum;
}

/* Generate a crc32 of a string.  */

unsigned
crc32_string (unsigned chksum, const char *string)
{
  do
    chksum = crc32_byte (chksum, *string);
  while (*string++);
  return chksum;
}

/* P is a string that will be used in a symbol.  Mask out any characters
   that are not valid in that context.  */

void
clean_symbol_name (char *p)
{
  for (; *p; p++)
    if (! (ISALNUM (*p)
#ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
	    || *p == '$'
#endif
#ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
	    || *p == '.'
#endif
	   ))
      *p = '_';
}

static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH.  */

/* Create a unique anonymous identifier.  The identifier is still a
   valid assembly label.  */

tree
make_anon_name ()
{
  const char *fmt = 
#if !defined (NO_DOT_IN_LABEL)
    "."
#elif !defined (NO_DOLLAR_IN_LABEL)
    "$"
#else
    "_"
#endif
    "_anon_%d";

  char buf[24];
  int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
  gcc_checking_assert (len < int (sizeof (buf)));

  tree id = get_identifier_with_length (buf, len);
  IDENTIFIER_ANON_P (id) = true;

  return id;
}

/* Generate a name for a special-purpose function.
   The generated name may need to be unique across the whole link.
   Changes to this function may also require corresponding changes to
   xstrdup_mask_random.
   TYPE is some string to identify the purpose of this function to the
   linker or collect2; it must start with an uppercase letter,
   one of:
   I - for constructors
   D - for destructors
   N - for C++ anonymous namespaces
   F - for DWARF unwind frame information.  */

tree
get_file_function_name (const char *type)
{
  char *buf;
  const char *p;
  char *q;

  /* If we already have a name we know to be unique, just use that.  */
  if (first_global_object_name)
    p = q = ASTRDUP (first_global_object_name);
  /* If the target is handling the constructors/destructors, they
     will be local to this file and the name is only necessary for
     debugging purposes. 
     We also assign sub_I and sub_D sufixes to constructors called from
     the global static constructors.  These are always local.  */
  else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
	   || (startswith (type, "sub_")
	       && (type[4] == 'I' || type[4] == 'D')))
    {
      const char *file = main_input_filename;
      if (! file)
	file = LOCATION_FILE (input_location);
      /* Just use the file's basename, because the full pathname
	 might be quite long.  */
      p = q = ASTRDUP (lbasename (file));
    }
  else
    {
      /* Otherwise, the name must be unique across the entire link.
	 We don't have anything that we know to be unique to this translation
	 unit, so use what we do have and throw in some randomness.  */
      unsigned len;
      const char *name = weak_global_object_name;
      const char *file = main_input_filename;

      if (! name)
	name = "";
      if (! file)
	file = LOCATION_FILE (input_location);

      len = strlen (file);
      q = (char *) alloca (9 + 19 + len + 1);
      memcpy (q, file, len + 1);

      snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
		crc32_string (0, name), get_random_seed (false));

      p = q;
    }

  clean_symbol_name (q);
  buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
			 + strlen (type));

  /* Set up the name of the file-level functions we may need.
     Use a global object (which is already required to be unique over
     the program) rather than the file name (which imposes extra
     constraints).  */
  sprintf (buf, FILE_FUNCTION_FORMAT, type, p);

  return get_identifier (buf);
}

#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)

/* Complain that the tree code of NODE does not match the expected 0
   terminated list of trailing codes. The trailing code list can be
   empty, for a more vague error message.  FILE, LINE, and FUNCTION
   are of the caller.  */

void
tree_check_failed (const_tree node, const char *file,
		   int line, const char *function, ...)
{
  va_list args;
  const char *buffer;
  unsigned length = 0;
  enum tree_code code;

  va_start (args, function);
  while ((code = (enum tree_code) va_arg (args, int)))
    length += 4 + strlen (get_tree_code_name (code));
  va_end (args);
  if (length)
    {
      char *tmp;
      va_start (args, function);
      length += strlen ("expected ");
      buffer = tmp = (char *) alloca (length);
      length = 0;
      while ((code = (enum tree_code) va_arg (args, int)))
	{
	  const char *prefix = length ? " or " : "expected ";

	  strcpy (tmp + length, prefix);
	  length += strlen (prefix);
	  strcpy (tmp + length, get_tree_code_name (code));
	  length += strlen (get_tree_code_name (code));
	}
      va_end (args);
    }
  else
    buffer = "unexpected node";

  internal_error ("tree check: %s, have %s in %s, at %s:%d",
		  buffer, get_tree_code_name (TREE_CODE (node)),
		  function, trim_filename (file), line);
}

/* Complain that the tree code of NODE does match the expected 0
   terminated list of trailing codes. FILE, LINE, and FUNCTION are of
   the caller.  */

void
tree_not_check_failed (const_tree node, const char *file,
		       int line, const char *function, ...)
{
  va_list args;
  char *buffer;
  unsigned length = 0;
  enum tree_code code;

  va_start (args, function);
  while ((code = (enum tree_code) va_arg (args, int)))
    length += 4 + strlen (get_tree_code_name (code));
  va_end (args);
  va_start (args, function);
  buffer = (char *) alloca (length);
  length = 0;
  while ((code = (enum tree_code) va_arg (args, int)))
    {
      if (length)
	{
	  strcpy (buffer + length, " or ");
	  length += 4;
	}
      strcpy (buffer + length, get_tree_code_name (code));
      length += strlen (get_tree_code_name (code));
    }
  va_end (args);

  internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
		  buffer, get_tree_code_name (TREE_CODE (node)),
		  function, trim_filename (file), line);
}

/* Similar to tree_check_failed, except that we check for a class of tree
   code, given in CL.  */

void
tree_class_check_failed (const_tree node, const enum tree_code_class cl,
			 const char *file, int line, const char *function)
{
  internal_error
    ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
     TREE_CODE_CLASS_STRING (cl),
     TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
     get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
}

/* Similar to tree_check_failed, except that instead of specifying a
   dozen codes, use the knowledge that they're all sequential.  */

void
tree_range_check_failed (const_tree node, const char *file, int line,
			 const char *function, enum tree_code c1,
			 enum tree_code c2)
{
  char *buffer;
  unsigned length = 0;
  unsigned int c;

  for (c = c1; c <= c2; ++c)
    length += 4 + strlen (get_tree_code_name ((enum tree_code) c));

  length += strlen ("expected ");
  buffer = (char *) alloca (length);
  length = 0;

  for (c = c1; c <= c2; ++c)
    {
      const char *prefix = length ? " or " : "expected ";

      strcpy (buffer + length, prefix);
      length += strlen (prefix);
      strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
      length += strlen (get_tree_code_name ((enum tree_code) c));
    }

  internal_error ("tree check: %s, have %s in %s, at %s:%d",
		  buffer, get_tree_code_name (TREE_CODE (node)),
		  function, trim_filename (file), line);
}


/* Similar to tree_check_failed, except that we check that a tree does
   not have the specified code, given in CL.  */

void
tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
			     const char *file, int line, const char *function)
{
  internal_error
    ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
     TREE_CODE_CLASS_STRING (cl),
     TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
     get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
}


/* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */

void
omp_clause_check_failed (const_tree node, const char *file, int line,
                         const char *function, enum omp_clause_code code)
{
  internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
		  "in %s, at %s:%d",
		  omp_clause_code_name[code],
		  get_tree_code_name (TREE_CODE (node)),
		  function, trim_filename (file), line);
}


/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */

void
omp_clause_range_check_failed (const_tree node, const char *file, int line,
			       const char *function, enum omp_clause_code c1,
			       enum omp_clause_code c2)
{
  char *buffer;
  unsigned length = 0;
  unsigned int c;

  for (c = c1; c <= c2; ++c)
    length += 4 + strlen (omp_clause_code_name[c]);

  length += strlen ("expected ");
  buffer = (char *) alloca (length);
  length = 0;

  for (c = c1; c <= c2; ++c)
    {
      const char *prefix = length ? " or " : "expected ";

      strcpy (buffer + length, prefix);
      length += strlen (prefix);
      strcpy (buffer + length, omp_clause_code_name[c]);
      length += strlen (omp_clause_code_name[c]);
    }

  internal_error ("tree check: %s, have %s in %s, at %s:%d",
		  buffer, omp_clause_code_name[TREE_CODE (node)],
		  function, trim_filename (file), line);
}


#undef DEFTREESTRUCT
#define DEFTREESTRUCT(VAL, NAME) NAME,

static const char *ts_enum_names[] = {
#include "treestruct.def"
};
#undef DEFTREESTRUCT

#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])

/* Similar to tree_class_check_failed, except that we check for
   whether CODE contains the tree structure identified by EN.  */

void
tree_contains_struct_check_failed (const_tree node,
				   const enum tree_node_structure_enum en,
				   const char *file, int line,
				   const char *function)
{
  internal_error
    ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
     TS_ENUM_NAME (en),
     get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
}


/* Similar to above, except that the check is for the bounds of a TREE_VEC's
   (dynamically sized) vector.  */

void
tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
			       const char *function)
{
  internal_error
    ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
     "at %s:%d",
     idx + 1, len, function, trim_filename (file), line);
}

/* Similar to above, except that the check is for the bounds of a TREE_VEC's
   (dynamically sized) vector.  */

void
tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
			   const char *function)
{
  internal_error
    ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
     idx + 1, len, function, trim_filename (file), line);
}

/* Similar to above, except that the check is for the bounds of the operand
   vector of an expression node EXP.  */

void
tree_operand_check_failed (int idx, const_tree exp, const char *file,
			   int line, const char *function)
{
  enum tree_code code = TREE_CODE (exp);
  internal_error
    ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
     idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
     function, trim_filename (file), line);
}

/* Similar to above, except that the check is for the number of
   operands of an OMP_CLAUSE node.  */

void
omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
			         int line, const char *function)
{
  internal_error
    ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
     "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
     omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
     trim_filename (file), line);
}
#endif /* ENABLE_TREE_CHECKING */

/* Create a new vector type node holding NUNITS units of type INNERTYPE,
   and mapped to the machine mode MODE.  Initialize its fields and build
   the information necessary for debugging output.  */

static tree
make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
{
  tree t;
  tree mv_innertype = TYPE_MAIN_VARIANT (innertype);

  t = make_node (VECTOR_TYPE);
  TREE_TYPE (t) = mv_innertype;
  SET_TYPE_VECTOR_SUBPARTS (t, nunits);
  SET_TYPE_MODE (t, mode);

  if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else if ((TYPE_CANONICAL (mv_innertype) != innertype
	    || mode != VOIDmode)
	   && !VECTOR_BOOLEAN_TYPE_P (t))
    TYPE_CANONICAL (t)
      = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);

  layout_type (t);

  hashval_t hash = type_hash_canon_hash (t);
  t = type_hash_canon (hash, t);

  /* We have built a main variant, based on the main variant of the
     inner type. Use it to build the variant we return.  */
  if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
      && TREE_TYPE (t) != innertype)
    return build_type_attribute_qual_variant (t,
					      TYPE_ATTRIBUTES (innertype),
					      TYPE_QUALS (innertype));

  return t;
}

static tree
make_or_reuse_type (unsigned size, int unsignedp)
{
  int i;

  if (size == INT_TYPE_SIZE)
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (size == CHAR_TYPE_SIZE)
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (size == SHORT_TYPE_SIZE)
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (size == LONG_TYPE_SIZE)
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (size == LONG_LONG_TYPE_SIZE)
    return (unsignedp ? long_long_unsigned_type_node
            : long_long_integer_type_node);

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (size == int_n_data[i].bitsize
	&& int_n_enabled_p[i])
      return (unsignedp ? int_n_trees[i].unsigned_type
	      : int_n_trees[i].signed_type);

  if (unsignedp)
    return make_unsigned_type (size);
  else
    return make_signed_type (size);
}

/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP.  */

static tree
make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
{
  if (satp)
    {
      if (size == SHORT_FRACT_TYPE_SIZE)
	return unsignedp ? sat_unsigned_short_fract_type_node
			 : sat_short_fract_type_node;
      if (size == FRACT_TYPE_SIZE)
	return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
      if (size == LONG_FRACT_TYPE_SIZE)
	return unsignedp ? sat_unsigned_long_fract_type_node
			 : sat_long_fract_type_node;
      if (size == LONG_LONG_FRACT_TYPE_SIZE)
	return unsignedp ? sat_unsigned_long_long_fract_type_node
			 : sat_long_long_fract_type_node;
    }
  else
    {
      if (size == SHORT_FRACT_TYPE_SIZE)
	return unsignedp ? unsigned_short_fract_type_node
			 : short_fract_type_node;
      if (size == FRACT_TYPE_SIZE)
	return unsignedp ? unsigned_fract_type_node : fract_type_node;
      if (size == LONG_FRACT_TYPE_SIZE)
	return unsignedp ? unsigned_long_fract_type_node
			 : long_fract_type_node;
      if (size == LONG_LONG_FRACT_TYPE_SIZE)
	return unsignedp ? unsigned_long_long_fract_type_node
			 : long_long_fract_type_node;
    }

  return make_fract_type (size, unsignedp, satp);
}

/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP.  */

static tree
make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
{
  if (satp)
    {
      if (size == SHORT_ACCUM_TYPE_SIZE)
	return unsignedp ? sat_unsigned_short_accum_type_node
			 : sat_short_accum_type_node;
      if (size == ACCUM_TYPE_SIZE)
	return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
      if (size == LONG_ACCUM_TYPE_SIZE)
	return unsignedp ? sat_unsigned_long_accum_type_node
			 : sat_long_accum_type_node;
      if (size == LONG_LONG_ACCUM_TYPE_SIZE)
	return unsignedp ? sat_unsigned_long_long_accum_type_node
			 : sat_long_long_accum_type_node;
    }
  else
    {
      if (size == SHORT_ACCUM_TYPE_SIZE)
	return unsignedp ? unsigned_short_accum_type_node
			 : short_accum_type_node;
      if (size == ACCUM_TYPE_SIZE)
	return unsignedp ? unsigned_accum_type_node : accum_type_node;
      if (size == LONG_ACCUM_TYPE_SIZE)
	return unsignedp ? unsigned_long_accum_type_node
			 : long_accum_type_node;
      if (size == LONG_LONG_ACCUM_TYPE_SIZE)
	return unsignedp ? unsigned_long_long_accum_type_node
			 : long_long_accum_type_node;
    }

  return make_accum_type (size, unsignedp, satp);
}


/* Create an atomic variant node for TYPE.  This routine is called
   during initialization of data types to create the 5 basic atomic
   types. The generic build_variant_type function requires these to
   already be set up in order to function properly, so cannot be
   called from there.  If ALIGN is non-zero, then ensure alignment is
   overridden to this value.  */

static tree
build_atomic_base (tree type, unsigned int align)
{
  tree t;

  /* Make sure its not already registered.  */
  if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
    return t;
  
  t = build_variant_type_copy (type);
  set_type_quals (t, TYPE_QUAL_ATOMIC);

  if (align)
    SET_TYPE_ALIGN (t, align);

  return t;
}

/* Information about the _FloatN and _FloatNx types.  This must be in
   the same order as the corresponding TI_* enum values.  */
const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
  {
    { 16, false },
    { 32, false },
    { 64, false },
    { 128, false },
    { 32, true },
    { 64, true },
    { 128, true },
  };


/* Create nodes for all integer types (and error_mark_node) using the sizes
   of C datatypes.  SIGNED_CHAR specifies whether char is signed.  */

void
build_common_tree_nodes (bool signed_char)
{
  int i;

  error_mark_node = make_node (ERROR_MARK);
  TREE_TYPE (error_mark_node) = error_mark_node;

  initialize_sizetypes ();

  /* Define both `signed char' and `unsigned char'.  */
  signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
  TYPE_STRING_FLAG (signed_char_type_node) = 1;
  unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
  TYPE_STRING_FLAG (unsigned_char_type_node) = 1;

  /* Define `char', which is like either `signed char' or `unsigned char'
     but not the same as either.  */
  char_type_node
    = (signed_char
       ? make_signed_type (CHAR_TYPE_SIZE)
       : make_unsigned_type (CHAR_TYPE_SIZE));
  TYPE_STRING_FLAG (char_type_node) = 1;

  short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
  short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
  integer_type_node = make_signed_type (INT_TYPE_SIZE);
  unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
  long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
  long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
  long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
  long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    {
      int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
      int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);

      if (int_n_enabled_p[i])
	{
	  integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
	  integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
	}
    }

  /* Define a boolean type.  This type only represents boolean values but
     may be larger than char depending on the value of BOOL_TYPE_SIZE.  */
  boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
  TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
  TYPE_PRECISION (boolean_type_node) = 1;
  TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);

  /* Define what type to use for size_t.  */
  if (strcmp (SIZE_TYPE, "unsigned int") == 0)
    size_type_node = unsigned_type_node;
  else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
    size_type_node = long_unsigned_type_node;
  else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
    size_type_node = long_long_unsigned_type_node;
  else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
    size_type_node = short_unsigned_type_node;
  else
    {
      int i;

      size_type_node = NULL_TREE;
      for (i = 0; i < NUM_INT_N_ENTS; i++)
	if (int_n_enabled_p[i])
	  {
	    char name[50], altname[50];
	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
	    sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);

	    if (strcmp (name, SIZE_TYPE) == 0
		|| strcmp (altname, SIZE_TYPE) == 0)
	      {
		size_type_node = int_n_trees[i].unsigned_type;
	      }
	  }
      if (size_type_node == NULL_TREE)
	gcc_unreachable ();
    }

  /* Define what type to use for ptrdiff_t.  */
  if (strcmp (PTRDIFF_TYPE, "int") == 0)
    ptrdiff_type_node = integer_type_node;
  else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
    ptrdiff_type_node = long_integer_type_node;
  else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
    ptrdiff_type_node = long_long_integer_type_node;
  else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
    ptrdiff_type_node = short_integer_type_node;
  else
    {
      ptrdiff_type_node = NULL_TREE;
      for (int i = 0; i < NUM_INT_N_ENTS; i++)
	if (int_n_enabled_p[i])
	  {
	    char name[50], altname[50];
	    sprintf (name, "__int%d", int_n_data[i].bitsize);
	    sprintf (altname, "__int%d__", int_n_data[i].bitsize);

	    if (strcmp (name, PTRDIFF_TYPE) == 0
		|| strcmp (altname, PTRDIFF_TYPE) == 0)
	      ptrdiff_type_node = int_n_trees[i].signed_type;
	  }
      if (ptrdiff_type_node == NULL_TREE)
	gcc_unreachable ();
    }

  /* Fill in the rest of the sized types.  Reuse existing type nodes
     when possible.  */
  intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
  intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
  intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
  intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
  intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);

  unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
  unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
  unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
  unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
  unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);

  /* Don't call build_qualified type for atomics.  That routine does
     special processing for atomics, and until they are initialized
     it's better not to make that call.
     
     Check to see if there is a target override for atomic types.  */

  atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
					targetm.atomic_align_for_mode (QImode));
  atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
					targetm.atomic_align_for_mode (HImode));
  atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
					targetm.atomic_align_for_mode (SImode));
  atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
					targetm.atomic_align_for_mode (DImode));
  atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
					targetm.atomic_align_for_mode (TImode));
  	
  access_public_node = get_identifier ("public");
  access_protected_node = get_identifier ("protected");
  access_private_node = get_identifier ("private");

  /* Define these next since types below may used them.  */
  integer_zero_node = build_int_cst (integer_type_node, 0);
  integer_one_node = build_int_cst (integer_type_node, 1);
  integer_three_node = build_int_cst (integer_type_node, 3);
  integer_minus_one_node = build_int_cst (integer_type_node, -1);

  size_zero_node = size_int (0);
  size_one_node = size_int (1);
  bitsize_zero_node = bitsize_int (0);
  bitsize_one_node = bitsize_int (1);
  bitsize_unit_node = bitsize_int (BITS_PER_UNIT);

  boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
  boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);

  void_type_node = make_node (VOID_TYPE);
  layout_type (void_type_node);

  /* We are not going to have real types in C with less than byte alignment,
     so we might as well not have any types that claim to have it.  */
  SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
  TYPE_USER_ALIGN (void_type_node) = 0;

  void_node = make_node (VOID_CST);
  TREE_TYPE (void_node) = void_type_node;

  null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
  layout_type (TREE_TYPE (null_pointer_node));

  ptr_type_node = build_pointer_type (void_type_node);
  const_ptr_type_node
    = build_pointer_type (build_type_variant (void_type_node, 1, 0));
  for (unsigned i = 0;
       i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
       ++i)
    builtin_structptr_types[i].node = builtin_structptr_types[i].base;

  pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);

  float_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
  layout_type (float_type_node);

  double_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
  layout_type (double_type_node);

  long_double_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
  layout_type (long_double_type_node);

  for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
    {
      int n = floatn_nx_types[i].n;
      bool extended = floatn_nx_types[i].extended;
      scalar_float_mode mode;
      if (!targetm.floatn_mode (n, extended).exists (&mode))
	continue;
      int precision = GET_MODE_PRECISION (mode);
      /* Work around the rs6000 KFmode having precision 113 not
	 128.  */
      const struct real_format *fmt = REAL_MODE_FORMAT (mode);
      gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
      int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
      if (!extended)
	gcc_assert (min_precision == n);
      if (precision < min_precision)
	precision = min_precision;
      FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
      TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
      layout_type (FLOATN_NX_TYPE_NODE (i));
      SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
    }

  float_ptr_type_node = build_pointer_type (float_type_node);
  double_ptr_type_node = build_pointer_type (double_type_node);
  long_double_ptr_type_node = build_pointer_type (long_double_type_node);
  integer_ptr_type_node = build_pointer_type (integer_type_node);

  /* Fixed size integer types.  */
  uint16_type_node = make_or_reuse_type (16, 1);
  uint32_type_node = make_or_reuse_type (32, 1);
  uint64_type_node = make_or_reuse_type (64, 1);
  if (targetm.scalar_mode_supported_p (TImode))
    uint128_type_node = make_or_reuse_type (128, 1);

  /* Decimal float types. */
  if (targetm.decimal_float_supported_p ())
    {
      dfloat32_type_node = make_node (REAL_TYPE);
      TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
      SET_TYPE_MODE (dfloat32_type_node, SDmode);
      layout_type (dfloat32_type_node);

      dfloat64_type_node = make_node (REAL_TYPE);
      TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
      SET_TYPE_MODE (dfloat64_type_node, DDmode);
      layout_type (dfloat64_type_node);

      dfloat128_type_node = make_node (REAL_TYPE);
      TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
      SET_TYPE_MODE (dfloat128_type_node, TDmode);
      layout_type (dfloat128_type_node);
    }

  complex_integer_type_node = build_complex_type (integer_type_node, true);
  complex_float_type_node = build_complex_type (float_type_node, true);
  complex_double_type_node = build_complex_type (double_type_node, true);
  complex_long_double_type_node = build_complex_type (long_double_type_node,
						      true);

  for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
    {
      if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
	COMPLEX_FLOATN_NX_TYPE_NODE (i)
	  = build_complex_type (FLOATN_NX_TYPE_NODE (i));
    }

/* Make fixed-point nodes based on sat/non-sat and signed/unsigned.  */
#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
  sat_ ## KIND ## _type_node = \
    make_sat_signed_ ## KIND ## _type (SIZE); \
  sat_unsigned_ ## KIND ## _type_node = \
    make_sat_unsigned_ ## KIND ## _type (SIZE); \
  KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
  unsigned_ ## KIND ## _type_node = \
    make_unsigned_ ## KIND ## _type (SIZE);

#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
  sat_ ## WIDTH ## KIND ## _type_node = \
    make_sat_signed_ ## KIND ## _type (SIZE); \
  sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
    make_sat_unsigned_ ## KIND ## _type (SIZE); \
  WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
  unsigned_ ## WIDTH ## KIND ## _type_node = \
    make_unsigned_ ## KIND ## _type (SIZE);

/* Make fixed-point type nodes based on four different widths.  */
#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
  MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
  MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
  MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
  MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)

/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned.  */
#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
  NAME ## _type_node = \
    make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
  u ## NAME ## _type_node = \
    make_or_reuse_unsigned_ ## KIND ## _type \
      (GET_MODE_BITSIZE (U ## MODE ## mode)); \
  sat_ ## NAME ## _type_node = \
    make_or_reuse_sat_signed_ ## KIND ## _type \
      (GET_MODE_BITSIZE (MODE ## mode)); \
  sat_u ## NAME ## _type_node = \
    make_or_reuse_sat_unsigned_ ## KIND ## _type \
      (GET_MODE_BITSIZE (U ## MODE ## mode));

  /* Fixed-point type and mode nodes.  */
  MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
  MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
  MAKE_FIXED_MODE_NODE (fract, qq, QQ)
  MAKE_FIXED_MODE_NODE (fract, hq, HQ)
  MAKE_FIXED_MODE_NODE (fract, sq, SQ)
  MAKE_FIXED_MODE_NODE (fract, dq, DQ)
  MAKE_FIXED_MODE_NODE (fract, tq, TQ)
  MAKE_FIXED_MODE_NODE (accum, ha, HA)
  MAKE_FIXED_MODE_NODE (accum, sa, SA)
  MAKE_FIXED_MODE_NODE (accum, da, DA)
  MAKE_FIXED_MODE_NODE (accum, ta, TA)

  {
    tree t = targetm.build_builtin_va_list ();

    /* Many back-ends define record types without setting TYPE_NAME.
       If we copied the record type here, we'd keep the original
       record type without a name.  This breaks name mangling.  So,
       don't copy record types and let c_common_nodes_and_builtins()
       declare the type to be __builtin_va_list.  */
    if (TREE_CODE (t) != RECORD_TYPE)
      t = build_variant_type_copy (t);

    va_list_type_node = t;
  }

  /* SCEV analyzer global shared trees.  */
  chrec_dont_know = make_node (SCEV_NOT_KNOWN);
  TREE_TYPE (chrec_dont_know) = void_type_node;
  chrec_known = make_node (SCEV_KNOWN);
  TREE_TYPE (chrec_known) = void_type_node;
}

/* Modify DECL for given flags.
   TM_PURE attribute is set only on types, so the function will modify
   DECL's type when ECF_TM_PURE is used.  */

void
set_call_expr_flags (tree decl, int flags)
{
  if (flags & ECF_NOTHROW)
    TREE_NOTHROW (decl) = 1;
  if (flags & ECF_CONST)
    TREE_READONLY (decl) = 1;
  if (flags & ECF_PURE)
    DECL_PURE_P (decl) = 1;
  if (flags & ECF_LOOPING_CONST_OR_PURE)
    DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
  if (flags & ECF_NOVOPS)
    DECL_IS_NOVOPS (decl) = 1;
  if (flags & ECF_NORETURN)
    TREE_THIS_VOLATILE (decl) = 1;
  if (flags & ECF_MALLOC)
    DECL_IS_MALLOC (decl) = 1;
  if (flags & ECF_RETURNS_TWICE)
    DECL_IS_RETURNS_TWICE (decl) = 1;
  if (flags & ECF_LEAF)
    DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
					NULL, DECL_ATTRIBUTES (decl));
  if (flags & ECF_COLD)
    DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
					NULL, DECL_ATTRIBUTES (decl));
  if (flags & ECF_RET1)
    DECL_ATTRIBUTES (decl)
      = tree_cons (get_identifier ("fn spec"),
		   build_tree_list (NULL_TREE, build_string (2, "1 ")),
		   DECL_ATTRIBUTES (decl));
  if ((flags & ECF_TM_PURE) && flag_tm)
    apply_tm_attr (decl, get_identifier ("transaction_pure"));
  /* Looping const or pure is implied by noreturn.
     There is currently no way to declare looping const or looping pure alone.  */
  gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
	      || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
}


/* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */

static void
local_define_builtin (const char *name, tree type, enum built_in_function code,
                      const char *library_name, int ecf_flags)
{
  tree decl;

  decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
			       library_name, NULL_TREE);
  set_call_expr_flags (decl, ecf_flags);

  set_builtin_decl (code, decl, true);
}

/* Call this function after instantiating all builtins that the language
   front end cares about.  This will build the rest of the builtins
   and internal functions that are relied upon by the tree optimizers and
   the middle-end.  */

void
build_common_builtin_nodes (void)
{
  tree tmp, ftype;
  int ecf_flags;

  if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_PADDING))
    {
      ftype = build_function_type_list (void_type_node,
					ptr_type_node,
					ptr_type_node,
					integer_type_node,
					NULL_TREE);
      local_define_builtin ("__builtin_clear_padding", ftype,
			    BUILT_IN_CLEAR_PADDING,
			    "__builtin_clear_padding",
			      ECF_LEAF | ECF_NOTHROW);
    }

  if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
      || !builtin_decl_explicit_p (BUILT_IN_ABORT))
    {
      ftype = build_function_type (void_type_node, void_list_node);
      if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
	local_define_builtin ("__builtin_unreachable", ftype,
			      BUILT_IN_UNREACHABLE,
			      "__builtin_unreachable",
			      ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
			      | ECF_CONST | ECF_COLD);
      if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
	local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
			      "abort",
			      ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
    }

  if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
      || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
    {
      ftype = build_function_type_list (ptr_type_node,
					ptr_type_node, const_ptr_type_node,
					size_type_node, NULL_TREE);

      if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
			      "memcpy", ECF_NOTHROW | ECF_LEAF);
      if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
			      "memmove", ECF_NOTHROW | ECF_LEAF);
    }

  if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
    {
      ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
					const_ptr_type_node, size_type_node,
					NULL_TREE);
      local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
			    "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
    }

  if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
    {
      ftype = build_function_type_list (ptr_type_node,
					ptr_type_node, integer_type_node,
					size_type_node, NULL_TREE);
      local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
			    "memset", ECF_NOTHROW | ECF_LEAF);
    }

  /* If we're checking the stack, `alloca' can throw.  */
  const int alloca_flags
    = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);

  if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
    {
      ftype = build_function_type_list (ptr_type_node,
					size_type_node, NULL_TREE);
      local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
			    "alloca", alloca_flags);
    }

  ftype = build_function_type_list (ptr_type_node, size_type_node,
				    size_type_node, NULL_TREE);
  local_define_builtin ("__builtin_alloca_with_align", ftype,
			BUILT_IN_ALLOCA_WITH_ALIGN,
			"__builtin_alloca_with_align",
			alloca_flags);

  ftype = build_function_type_list (ptr_type_node, size_type_node,
				    size_type_node, size_type_node, NULL_TREE);
  local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
			BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
			"__builtin_alloca_with_align_and_max",
			alloca_flags);

  ftype = build_function_type_list (void_type_node,
				    ptr_type_node, ptr_type_node,
				    ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_init_trampoline", ftype,
			BUILT_IN_INIT_TRAMPOLINE,
			"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
  local_define_builtin ("__builtin_init_heap_trampoline", ftype,
			BUILT_IN_INIT_HEAP_TRAMPOLINE,
			"__builtin_init_heap_trampoline",
			ECF_NOTHROW | ECF_LEAF);
  local_define_builtin ("__builtin_init_descriptor", ftype,
			BUILT_IN_INIT_DESCRIPTOR,
			"__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);

  ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_adjust_trampoline", ftype,
			BUILT_IN_ADJUST_TRAMPOLINE,
			"__builtin_adjust_trampoline",
			ECF_CONST | ECF_NOTHROW);
  local_define_builtin ("__builtin_adjust_descriptor", ftype,
			BUILT_IN_ADJUST_DESCRIPTOR,
			"__builtin_adjust_descriptor",
			ECF_CONST | ECF_NOTHROW);

  ftype = build_function_type_list (void_type_node,
				    ptr_type_node, ptr_type_node, NULL_TREE);
  if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_CACHE))
    local_define_builtin ("__builtin___clear_cache", ftype,
			  BUILT_IN_CLEAR_CACHE,
			  "__clear_cache",
			  ECF_NOTHROW);

  local_define_builtin ("__builtin_nonlocal_goto", ftype,
			BUILT_IN_NONLOCAL_GOTO,
			"__builtin_nonlocal_goto",
			ECF_NORETURN | ECF_NOTHROW);

  ftype = build_function_type_list (void_type_node,
				    ptr_type_node, ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_setjmp_setup", ftype,
			BUILT_IN_SETJMP_SETUP,
			"__builtin_setjmp_setup", ECF_NOTHROW);

  ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_setjmp_receiver", ftype,
			BUILT_IN_SETJMP_RECEIVER,
			"__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);

  ftype = build_function_type_list (ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
			"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);

  ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_stack_restore", ftype,
			BUILT_IN_STACK_RESTORE,
			"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);

  ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
				    const_ptr_type_node, size_type_node,
				    NULL_TREE);
  local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
			"__builtin_memcmp_eq",
			ECF_PURE | ECF_NOTHROW | ECF_LEAF);

  local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
			"__builtin_strncmp_eq",
			ECF_PURE | ECF_NOTHROW | ECF_LEAF);

  local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
			"__builtin_strcmp_eq",
			ECF_PURE | ECF_NOTHROW | ECF_LEAF);

  /* If there's a possibility that we might use the ARM EABI, build the
    alternate __cxa_end_cleanup node used to resume from C++.  */
  if (targetm.arm_eabi_unwinder)
    {
      ftype = build_function_type_list (void_type_node, NULL_TREE);
      local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
			    BUILT_IN_CXA_END_CLEANUP,
			    "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
    }

  ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
  local_define_builtin ("__builtin_unwind_resume", ftype,
			BUILT_IN_UNWIND_RESUME,
			((targetm_common.except_unwind_info (&global_options)
			  == UI_SJLJ)
			 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
			ECF_NORETURN);

  if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
    {
      ftype = build_function_type_list (ptr_type_node, integer_type_node,
					NULL_TREE);
      local_define_builtin ("__builtin_return_address", ftype,
			    BUILT_IN_RETURN_ADDRESS,
			    "__builtin_return_address",
			    ECF_NOTHROW);
    }

  if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
      || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
    {
      ftype = build_function_type_list (void_type_node, ptr_type_node,
					ptr_type_node, NULL_TREE);
      if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
	local_define_builtin ("__cyg_profile_func_enter", ftype,
			      BUILT_IN_PROFILE_FUNC_ENTER,
			      "__cyg_profile_func_enter", 0);
      if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
	local_define_builtin ("__cyg_profile_func_exit", ftype,
			      BUILT_IN_PROFILE_FUNC_EXIT,
			      "__cyg_profile_func_exit", 0);
    }

  /* The exception object and filter values from the runtime.  The argument
     must be zero before exception lowering, i.e. from the front end.  After
     exception lowering, it will be the region number for the exception
     landing pad.  These functions are PURE instead of CONST to prevent
     them from being hoisted past the exception edge that will initialize
     its value in the landing pad.  */
  ftype = build_function_type_list (ptr_type_node,
				    integer_type_node, NULL_TREE);
  ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
  /* Only use TM_PURE if we have TM language support.  */
  if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
    ecf_flags |= ECF_TM_PURE;
  local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
			"__builtin_eh_pointer", ecf_flags);

  tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
  ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
  local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
			"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);

  ftype = build_function_type_list (void_type_node,
				    integer_type_node, integer_type_node,
				    NULL_TREE);
  local_define_builtin ("__builtin_eh_copy_values", ftype,
			BUILT_IN_EH_COPY_VALUES,
			"__builtin_eh_copy_values", ECF_NOTHROW);

  /* Complex multiplication and division.  These are handled as builtins
     rather than optabs because emit_library_call_value doesn't support
     complex.  Further, we can do slightly better with folding these
     beasties if the real and complex parts of the arguments are separate.  */
  {
    int mode;

    for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
      {
	char mode_name_buf[4], *q;
	const char *p;
	enum built_in_function mcode, dcode;
	tree type, inner_type;
	const char *prefix = "__";

	if (targetm.libfunc_gnu_prefix)
	  prefix = "__gnu_";

	type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
	if (type == NULL)
	  continue;
	inner_type = TREE_TYPE (type);

	ftype = build_function_type_list (type, inner_type, inner_type,
					  inner_type, inner_type, NULL_TREE);

        mcode = ((enum built_in_function)
		 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
        dcode = ((enum built_in_function)
		 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));

        for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
	  *q = TOLOWER (*p);
	*q = '\0';

	/* For -ftrapping-math these should throw from a former
	   -fnon-call-exception stmt.  */
	built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
					NULL);
        local_define_builtin (built_in_names[mcode], ftype, mcode,
			      built_in_names[mcode],
			      ECF_CONST | ECF_LEAF);

	built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
					NULL);
        local_define_builtin (built_in_names[dcode], ftype, dcode,
			      built_in_names[dcode],
			      ECF_CONST | ECF_LEAF);
      }
  }

  init_internal_fns ();
}

/* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
   better way.

   If we requested a pointer to a vector, build up the pointers that
   we stripped off while looking for the inner type.  Similarly for
   return values from functions.

   The argument TYPE is the top of the chain, and BOTTOM is the
   new type which we will point to.  */

tree
reconstruct_complex_type (tree type, tree bottom)
{
  tree inner, outer;

  if (TREE_CODE (type) == POINTER_TYPE)
    {
      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
      outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
					   TYPE_REF_CAN_ALIAS_ALL (type));
    }
  else if (TREE_CODE (type) == REFERENCE_TYPE)
    {
      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
      outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
					     TYPE_REF_CAN_ALIAS_ALL (type));
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    {
      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
      outer = build_array_type (inner, TYPE_DOMAIN (type));
    }
  else if (TREE_CODE (type) == FUNCTION_TYPE)
    {
      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
      outer = build_function_type (inner, TYPE_ARG_TYPES (type));
    }
  else if (TREE_CODE (type) == METHOD_TYPE)
    {
      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
      /* The build_method_type_directly() routine prepends 'this' to argument list,
         so we must compensate by getting rid of it.  */
      outer
	= build_method_type_directly
	    (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
	     inner,
	     TREE_CHAIN (TYPE_ARG_TYPES (type)));
    }
  else if (TREE_CODE (type) == OFFSET_TYPE)
    {
      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
      outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
    }
  else
    return bottom;

  return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
					    TYPE_QUALS (type));
}

/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
   the inner type.  */
tree
build_vector_type_for_mode (tree innertype, machine_mode mode)
{
  poly_int64 nunits;
  unsigned int bitsize;

  switch (GET_MODE_CLASS (mode))
    {
    case MODE_VECTOR_BOOL:
    case MODE_VECTOR_INT:
    case MODE_VECTOR_FLOAT:
    case MODE_VECTOR_FRACT:
    case MODE_VECTOR_UFRACT:
    case MODE_VECTOR_ACCUM:
    case MODE_VECTOR_UACCUM:
      nunits = GET_MODE_NUNITS (mode);
      break;

    case MODE_INT:
      /* Check that there are no leftover bits.  */
      bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
      gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
      nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
      break;

    default:
      gcc_unreachable ();
    }

  return make_vector_type (innertype, nunits, mode);
}

/* Similarly, but takes the inner type and number of units, which must be
   a power of two.  */

tree
build_vector_type (tree innertype, poly_int64 nunits)
{
  return make_vector_type (innertype, nunits, VOIDmode);
}

/* Build a truth vector with NUNITS units, giving it mode MASK_MODE.  */

tree
build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
{
  gcc_assert (mask_mode != BLKmode);

  unsigned HOST_WIDE_INT esize;
  if (VECTOR_MODE_P (mask_mode))
    {
      poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
      esize = vector_element_size (vsize, nunits);
    }
  else
    esize = 1;

  tree bool_type = build_nonstandard_boolean_type (esize);

  return make_vector_type (bool_type, nunits, mask_mode);
}

/* Build a vector type that holds one boolean result for each element of
   vector type VECTYPE.  The public interface for this operation is
   truth_type_for.  */

static tree
build_truth_vector_type_for (tree vectype)
{
  machine_mode vector_mode = TYPE_MODE (vectype);
  poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);

  machine_mode mask_mode;
  if (VECTOR_MODE_P (vector_mode)
      && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
    return build_truth_vector_type_for_mode (nunits, mask_mode);

  poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
  unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
  tree bool_type = build_nonstandard_boolean_type (esize);

  return make_vector_type (bool_type, nunits, VOIDmode);
}

/* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
   set.  */

tree
build_opaque_vector_type (tree innertype, poly_int64 nunits)
{
  tree t = make_vector_type (innertype, nunits, VOIDmode);
  tree cand;
  /* We always build the non-opaque variant before the opaque one,
     so if it already exists, it is TYPE_NEXT_VARIANT of this one.  */
  cand = TYPE_NEXT_VARIANT (t);
  if (cand
      && TYPE_VECTOR_OPAQUE (cand)
      && check_qualified_type (cand, t, TYPE_QUALS (t)))
    return cand;
  /* Othewise build a variant type and make sure to queue it after
     the non-opaque type.  */
  cand = build_distinct_type_copy (t);
  TYPE_VECTOR_OPAQUE (cand) = true;
  TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
  TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
  TYPE_NEXT_VARIANT (t) = cand;
  TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
  return cand;
}

/* Return the value of element I of VECTOR_CST T as a wide_int.  */

static poly_wide_int
vector_cst_int_elt (const_tree t, unsigned int i)
{
  /* First handle elements that are directly encoded.  */
  unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
  if (i < encoded_nelts)
    return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, i));

  /* Identify the pattern that contains element I and work out the index of
     the last encoded element for that pattern.  */
  unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
  unsigned int pattern = i % npatterns;
  unsigned int count = i / npatterns;
  unsigned int final_i = encoded_nelts - npatterns + pattern;

  /* If there are no steps, the final encoded value is the right one.  */
  if (!VECTOR_CST_STEPPED_P (t))
    return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, final_i));

  /* Otherwise work out the value from the last two encoded elements.  */
  tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
  tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
  poly_wide_int diff = wi::to_poly_wide (v2) - wi::to_poly_wide (v1);
  return wi::to_poly_wide (v2) + (count - 2) * diff;
}

/* Return the value of element I of VECTOR_CST T.  */

tree
vector_cst_elt (const_tree t, unsigned int i)
{
  /* First handle elements that are directly encoded.  */
  unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
  if (i < encoded_nelts)
    return VECTOR_CST_ENCODED_ELT (t, i);

  /* If there are no steps, the final encoded value is the right one.  */
  if (!VECTOR_CST_STEPPED_P (t))
    {
      /* Identify the pattern that contains element I and work out the index of
	 the last encoded element for that pattern.  */
      unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
      unsigned int pattern = i % npatterns;
      unsigned int final_i = encoded_nelts - npatterns + pattern;
      return VECTOR_CST_ENCODED_ELT (t, final_i);
    }

  /* Otherwise work out the value from the last two encoded elements.  */
  return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
			   vector_cst_int_elt (t, i));
}

/* Given an initializer INIT, return TRUE if INIT is zero or some
   aggregate of zeros.  Otherwise return FALSE.  If NONZERO is not
   null, set *NONZERO if and only if INIT is known not to be all
   zeros.  The combination of return value of false and *NONZERO
   false implies that INIT may but need not be all zeros.  Other
   combinations indicate definitive answers.  */

bool
initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
{
  bool dummy;
  if (!nonzero)
    nonzero = &dummy;

  /* Conservatively clear NONZERO and set it only if INIT is definitely
     not all zero.  */
  *nonzero = false;

  STRIP_NOPS (init);

  unsigned HOST_WIDE_INT off = 0;

  switch (TREE_CODE (init))
    {
    case INTEGER_CST:
      if (integer_zerop (init))
	return true;

      *nonzero = true;
      return false;

    case REAL_CST:
      /* ??? Note that this is not correct for C4X float formats.  There,
	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
	 negative exponent.  */
      if (real_zerop (init)
	  && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
	return true;

      *nonzero = true;
      return false;

    case FIXED_CST:
      if (fixed_zerop (init))
	return true;

      *nonzero = true;
      return false;

    case COMPLEX_CST:
      if (integer_zerop (init)
	  || (real_zerop (init)
	      && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
	      && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
	return true;

      *nonzero = true;
      return false;

    case VECTOR_CST:
      if (VECTOR_CST_NPATTERNS (init) == 1
	  && VECTOR_CST_DUPLICATE_P (init)
	  && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
	return true;

      *nonzero = true;
      return false;

    case CONSTRUCTOR:
      {
	if (TREE_CLOBBER_P (init))
	  return false;

	unsigned HOST_WIDE_INT idx;
	tree elt;

	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
	  if (!initializer_zerop (elt, nonzero))
	    return false;

	return true;
      }

    case MEM_REF:
      {
	tree arg = TREE_OPERAND (init, 0);
	if (TREE_CODE (arg) != ADDR_EXPR)
	  return false;
	tree offset = TREE_OPERAND (init, 1);
	if (TREE_CODE (offset) != INTEGER_CST
	    || !tree_fits_uhwi_p (offset))
	  return false;
	off = tree_to_uhwi (offset);
	if (INT_MAX < off)
	  return false;
	arg = TREE_OPERAND (arg, 0);
	if (TREE_CODE (arg) != STRING_CST)
	  return false;
	init = arg;
      }
      /* Fall through.  */

    case STRING_CST:
      {
	gcc_assert (off <= INT_MAX);

	int i = off;
	int n = TREE_STRING_LENGTH (init);
	if (n <= i)
	  return false;

	/* We need to loop through all elements to handle cases like
	   "\0" and "\0foobar".  */
	for (i = 0; i < n; ++i)
	  if (TREE_STRING_POINTER (init)[i] != '\0')
	    {
	      *nonzero = true;
	      return false;
	    }

	return true;
      }

    default:
      return false;
    }
}

/* Return true if EXPR is an initializer expression in which every element
   is a constant that is numerically equal to 0 or 1.  The elements do not
   need to be equal to each other.  */

bool
initializer_each_zero_or_onep (const_tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);

  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      return integer_zerop (expr) || integer_onep (expr);

    case REAL_CST:
      return real_zerop (expr) || real_onep (expr);

    case VECTOR_CST:
      {
	unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
	if (VECTOR_CST_STEPPED_P (expr)
	    && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
	  return false;

	for (unsigned int i = 0; i < nelts; ++i)
	  {
	    tree elt = vector_cst_elt (expr, i);
	    if (!initializer_each_zero_or_onep (elt))
	      return false;
	  }

	return true;
      }

    default:
      return false;
    }
}

/* Check if vector VEC consists of all the equal elements and
   that the number of elements corresponds to the type of VEC.
   The function returns first element of the vector
   or NULL_TREE if the vector is not uniform.  */
tree
uniform_vector_p (const_tree vec)
{
  tree first, t;
  unsigned HOST_WIDE_INT i, nelts;

  if (vec == NULL_TREE)
    return NULL_TREE;

  gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));

  if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
    return TREE_OPERAND (vec, 0);

  else if (TREE_CODE (vec) == VECTOR_CST)
    {
      if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
	return VECTOR_CST_ENCODED_ELT (vec, 0);
      return NULL_TREE;
    }

  else if (TREE_CODE (vec) == CONSTRUCTOR
	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
    {
      first = error_mark_node;

      FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
        {
          if (i == 0)
            {
              first = t;
              continue;
            }
	  if (!operand_equal_p (first, t, 0))
	    return NULL_TREE;
        }
      if (i != nelts)
	return NULL_TREE;

      return first;
    }

  return NULL_TREE;
}

/* If the argument is INTEGER_CST, return it.  If the argument is vector
   with all elements the same INTEGER_CST, return that INTEGER_CST.  Otherwise
   return NULL_TREE.
   Look through location wrappers. */

tree
uniform_integer_cst_p (tree t)
{
  STRIP_ANY_LOCATION_WRAPPER (t);

  if (TREE_CODE (t) == INTEGER_CST)
    return t;

  if (VECTOR_TYPE_P (TREE_TYPE (t)))
    {
      t = uniform_vector_p (t);
      if (t && TREE_CODE (t) == INTEGER_CST)
	return t;
    }

  return NULL_TREE;
}

/* If VECTOR_CST T has a single nonzero element, return the index of that
   element, otherwise return -1.  */

int
single_nonzero_element (const_tree t)
{
  unsigned HOST_WIDE_INT nelts;
  unsigned int repeat_nelts;
  if (VECTOR_CST_NELTS (t).is_constant (&nelts))
    repeat_nelts = nelts;
  else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
    {
      nelts = vector_cst_encoded_nelts (t);
      repeat_nelts = VECTOR_CST_NPATTERNS (t);
    }
  else
    return -1;

  int res = -1;
  for (unsigned int i = 0; i < nelts; ++i)
    {
      tree elt = vector_cst_elt (t, i);
      if (!integer_zerop (elt) && !real_zerop (elt))
	{
	  if (res >= 0 || i >= repeat_nelts)
	    return -1;
	  res = i;
	}
    }
  return res;
}

/* Build an empty statement at location LOC.  */

tree
build_empty_stmt (location_t loc)
{
  tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
  SET_EXPR_LOCATION (t, loc);
  return t;
}


/* Build an OMP clause with code CODE.  LOC is the location of the
   clause.  */

tree
build_omp_clause (location_t loc, enum omp_clause_code code)
{
  tree t;
  int size, length;

  length = omp_clause_num_ops[code];
  size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));

  record_node_allocation_statistics (OMP_CLAUSE, size);

  t = (tree) ggc_internal_alloc (size);
  memset (t, 0, size);
  TREE_SET_CODE (t, OMP_CLAUSE);
  OMP_CLAUSE_SET_CODE (t, code);
  OMP_CLAUSE_LOCATION (t) = loc;

  return t;
}

/* Build a tcc_vl_exp object with code CODE and room for LEN operands.  LEN
   includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
   Except for the CODE and operand count field, other storage for the
   object is initialized to zeros.  */

tree
build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
{
  tree t;
  int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);

  gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
  gcc_assert (len >= 1);

  record_node_allocation_statistics (code, length);

  t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);

  TREE_SET_CODE (t, code);

  /* Can't use TREE_OPERAND to store the length because if checking is
     enabled, it will try to check the length before we store it.  :-P  */
  t->exp.operands[0] = build_int_cst (sizetype, len);

  return t;
}

/* Helper function for build_call_* functions; build a CALL_EXPR with
   indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
   the argument slots.  */

static tree
build_call_1 (tree return_type, tree fn, int nargs)
{
  tree t;

  t = build_vl_exp (CALL_EXPR, nargs + 3);
  TREE_TYPE (t) = return_type;
  CALL_EXPR_FN (t) = fn;
  CALL_EXPR_STATIC_CHAIN (t) = NULL;

  return t;
}

/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
   FN and a null static chain slot.  NARGS is the number of call arguments
   which are specified as "..." arguments.  */

tree
build_call_nary (tree return_type, tree fn, int nargs, ...)
{
  tree ret;
  va_list args;
  va_start (args, nargs);
  ret = build_call_valist (return_type, fn, nargs, args);
  va_end (args);
  return ret;
}

/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
   FN and a null static chain slot.  NARGS is the number of call arguments
   which are specified as a va_list ARGS.  */

tree
build_call_valist (tree return_type, tree fn, int nargs, va_list args)
{
  tree t;
  int i;

  t = build_call_1 (return_type, fn, nargs);
  for (i = 0; i < nargs; i++)
    CALL_EXPR_ARG (t, i) = va_arg (args, tree);
  process_call_operands (t);
  return t;
}

/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
   FN and a null static chain slot.  NARGS is the number of call arguments
   which are specified as a tree array ARGS.  */

tree
build_call_array_loc (location_t loc, tree return_type, tree fn,
		      int nargs, const tree *args)
{
  tree t;
  int i;

  t = build_call_1 (return_type, fn, nargs);
  for (i = 0; i < nargs; i++)
    CALL_EXPR_ARG (t, i) = args[i];
  process_call_operands (t);
  SET_EXPR_LOCATION (t, loc);
  return t;
}

/* Like build_call_array, but takes a vec.  */

tree
build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
{
  tree ret, t;
  unsigned int ix;

  ret = build_call_1 (return_type, fn, vec_safe_length (args));
  FOR_EACH_VEC_SAFE_ELT (args, ix, t)
    CALL_EXPR_ARG (ret, ix) = t;
  process_call_operands (ret);
  return ret;
}

/* Conveniently construct a function call expression.  FNDECL names the
   function to be called and N arguments are passed in the array
   ARGARRAY.  */

tree
build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
{
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
 
  return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
}

/* Conveniently construct a function call expression.  FNDECL names the
   function to be called and the arguments are passed in the vector
   VEC.  */

tree
build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
{
  return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
				    vec_safe_address (vec));
}


/* Conveniently construct a function call expression.  FNDECL names the
   function to be called, N is the number of arguments, and the "..."
   parameters are the argument expressions.  */

tree
build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
{
  va_list ap;
  tree *argarray = XALLOCAVEC (tree, n);
  int i;

  va_start (ap, n);
  for (i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
  va_end (ap);
  return build_call_expr_loc_array (loc, fndecl, n, argarray);
}

/* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
   varargs macros aren't supported by all bootstrap compilers.  */

tree
build_call_expr (tree fndecl, int n, ...)
{
  va_list ap;
  tree *argarray = XALLOCAVEC (tree, n);
  int i;

  va_start (ap, n);
  for (i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
  va_end (ap);
  return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
}

/* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
   type TYPE.  This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
   It will get gimplified later into an ordinary internal function.  */

tree
build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
				    tree type, int n, const tree *args)
{
  tree t = build_call_1 (type, NULL_TREE, n);
  for (int i = 0; i < n; ++i)
    CALL_EXPR_ARG (t, i) = args[i];
  SET_EXPR_LOCATION (t, loc);
  CALL_EXPR_IFN (t) = ifn;
  process_call_operands (t);
  return t;
}

/* Build internal call expression.  This is just like CALL_EXPR, except
   its CALL_EXPR_FN is NULL.  It will get gimplified later into ordinary
   internal function.  */

tree
build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
			      tree type, int n, ...)
{
  va_list ap;
  tree *argarray = XALLOCAVEC (tree, n);
  int i;

  va_start (ap, n);
  for (i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
  va_end (ap);
  return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
}

/* Return a function call to FN, if the target is guaranteed to support it,
   or null otherwise.

   N is the number of arguments, passed in the "...", and TYPE is the
   type of the return value.  */

tree
maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
			   int n, ...)
{
  va_list ap;
  tree *argarray = XALLOCAVEC (tree, n);
  int i;

  va_start (ap, n);
  for (i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
  va_end (ap);
  if (internal_fn_p (fn))
    {
      internal_fn ifn = as_internal_fn (fn);
      if (direct_internal_fn_p (ifn))
	{
	  tree_pair types = direct_internal_fn_types (ifn, type, argarray);
	  if (!direct_internal_fn_supported_p (ifn, types,
					       OPTIMIZE_FOR_BOTH))
	    return NULL_TREE;
	}
      return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
    }
  else
    {
      tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
      if (!fndecl)
	return NULL_TREE;
      return build_call_expr_loc_array (loc, fndecl, n, argarray);
    }
}

/* Return a function call to the appropriate builtin alloca variant.

   SIZE is the size to be allocated.  ALIGN, if non-zero, is the requested
   alignment of the allocated area.  MAX_SIZE, if non-negative, is an upper
   bound for SIZE in case it is not a fixed value.  */

tree
build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
{
  if (max_size >= 0)
    {
      tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
      return
	build_call_expr (t, 3, size, size_int (align), size_int (max_size));
    }
  else if (align > 0)
    {
      tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
      return build_call_expr (t, 2, size, size_int (align));
    }
  else
    {
      tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
      return build_call_expr (t, 1, size);
    }
}

/* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
   if SIZE == -1) and return a tree node representing char* pointer to
   it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)).  When STR is nonnull
   the STRING_CST value is the LEN bytes at STR (the representation
   of the string, which may be wide).  Otherwise it's all zeros.  */

tree
build_string_literal (unsigned len, const char *str /* = NULL */,
		      tree eltype /* = char_type_node */,
		      unsigned HOST_WIDE_INT size /* = -1 */)
{
  tree t = build_string (len, str);
  /* Set the maximum valid index based on the string length or SIZE.  */
  unsigned HOST_WIDE_INT maxidx
    = (size == HOST_WIDE_INT_M1U ? len : size) - 1;

  tree index = build_index_type (size_int (maxidx));
  eltype = build_type_variant (eltype, 1, 0);
  tree type = build_array_type (eltype, index);
  TREE_TYPE (t) = type;
  TREE_CONSTANT (t) = 1;
  TREE_READONLY (t) = 1;
  TREE_STATIC (t) = 1;

  type = build_pointer_type (eltype);
  t = build1 (ADDR_EXPR, type,
	      build4 (ARRAY_REF, eltype,
		      t, integer_zero_node, NULL_TREE, NULL_TREE));
  return t;
}



/* Return true if T (assumed to be a DECL) must be assigned a memory
   location.  */

bool
needs_to_live_in_memory (const_tree t)
{
  return (TREE_ADDRESSABLE (t)
	  || is_global_var (t)
	  || (TREE_CODE (t) == RESULT_DECL
	      && !DECL_BY_REFERENCE (t)
	      && aggregate_value_p (t, current_function_decl)));
}

/* Return value of a constant X and sign-extend it.  */

HOST_WIDE_INT
int_cst_value (const_tree x)
{
  unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
  unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);

  /* Make sure the sign-extended value will fit in a HOST_WIDE_INT.  */
  gcc_assert (cst_and_fits_in_hwi (x));

  if (bits < HOST_BITS_PER_WIDE_INT)
    {
      bool negative = ((val >> (bits - 1)) & 1) != 0;
      if (negative)
	val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
      else
	val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
    }

  return val;
}

/* If TYPE is an integral or pointer type, return an integer type with
   the same precision which is unsigned iff UNSIGNEDP is true, or itself
   if TYPE is already an integer type of signedness UNSIGNEDP.
   If TYPE is a floating-point type, return an integer type with the same
   bitsize and with the signedness given by UNSIGNEDP; this is useful
   when doing bit-level operations on a floating-point value.  */

tree
signed_or_unsigned_type_for (int unsignedp, tree type)
{
  if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
    return type;

  if (TREE_CODE (type) == VECTOR_TYPE)
    {
      tree inner = TREE_TYPE (type);
      tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
      if (!inner2)
	return NULL_TREE;
      if (inner == inner2)
	return type;
      return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
    }

  if (TREE_CODE (type) == COMPLEX_TYPE)
    {
      tree inner = TREE_TYPE (type);
      tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
      if (!inner2)
	return NULL_TREE;
      if (inner == inner2)
	return type;
      return build_complex_type (inner2);
    }

  unsigned int bits;
  if (INTEGRAL_TYPE_P (type)
      || POINTER_TYPE_P (type)
      || TREE_CODE (type) == OFFSET_TYPE)
    bits = TYPE_PRECISION (type);
  else if (TREE_CODE (type) == REAL_TYPE)
    bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
  else
    return NULL_TREE;

  return build_nonstandard_integer_type (bits, unsignedp);
}

/* If TYPE is an integral or pointer type, return an integer type with
   the same precision which is unsigned, or itself if TYPE is already an
   unsigned integer type.  If TYPE is a floating-point type, return an
   unsigned integer type with the same bitsize as TYPE.  */

tree
unsigned_type_for (tree type)
{
  return signed_or_unsigned_type_for (1, type);
}

/* If TYPE is an integral or pointer type, return an integer type with
   the same precision which is signed, or itself if TYPE is already a
   signed integer type.  If TYPE is a floating-point type, return a
   signed integer type with the same bitsize as TYPE.  */

tree
signed_type_for (tree type)
{
  return signed_or_unsigned_type_for (0, type);
}

/* - For VECTOR_TYPEs:
    - The truth type must be a VECTOR_BOOLEAN_TYPE.
    - The number of elements must match (known_eq).
    - targetm.vectorize.get_mask_mode exists, and exactly
      the same mode as the truth type.
   - Otherwise, the truth type must be a BOOLEAN_TYPE
     or useless_type_conversion_p to BOOLEAN_TYPE.  */
bool
is_truth_type_for (tree type, tree truth_type)
{
  machine_mode mask_mode = TYPE_MODE (truth_type);
  machine_mode vmode = TYPE_MODE (type);
  machine_mode tmask_mode;

  if (TREE_CODE (type) == VECTOR_TYPE)
    {
      if (VECTOR_BOOLEAN_TYPE_P (truth_type)
	  && known_eq (TYPE_VECTOR_SUBPARTS (type),
		       TYPE_VECTOR_SUBPARTS (truth_type))
	  && targetm.vectorize.get_mask_mode (vmode).exists (&tmask_mode)
	  && tmask_mode == mask_mode)
	return true;

      return false;
    }

  return useless_type_conversion_p (boolean_type_node, truth_type);
}

/* If TYPE is a vector type, return a signed integer vector type with the
   same width and number of subparts. Otherwise return boolean_type_node.  */

tree
truth_type_for (tree type)
{
  if (TREE_CODE (type) == VECTOR_TYPE)
    {
      if (VECTOR_BOOLEAN_TYPE_P (type))
	return type;
      return build_truth_vector_type_for (type);
    }
  else
    return boolean_type_node;
}

/* Returns the largest value obtainable by casting something in INNER type to
   OUTER type.  */

tree
upper_bound_in_type (tree outer, tree inner)
{
  unsigned int det = 0;
  unsigned oprec = TYPE_PRECISION (outer);
  unsigned iprec = TYPE_PRECISION (inner);
  unsigned prec;

  /* Compute a unique number for every combination.  */
  det |= (oprec > iprec) ? 4 : 0;
  det |= TYPE_UNSIGNED (outer) ? 2 : 0;
  det |= TYPE_UNSIGNED (inner) ? 1 : 0;

  /* Determine the exponent to use.  */
  switch (det)
    {
    case 0:
    case 1:
      /* oprec <= iprec, outer: signed, inner: don't care.  */
      prec = oprec - 1;
      break;
    case 2:
    case 3:
      /* oprec <= iprec, outer: unsigned, inner: don't care.  */
      prec = oprec;
      break;
    case 4:
      /* oprec > iprec, outer: signed, inner: signed.  */
      prec = iprec - 1;
      break;
    case 5:
      /* oprec > iprec, outer: signed, inner: unsigned.  */
      prec = iprec;
      break;
    case 6:
      /* oprec > iprec, outer: unsigned, inner: signed.  */
      prec = oprec;
      break;
    case 7:
      /* oprec > iprec, outer: unsigned, inner: unsigned.  */
      prec = iprec;
      break;
    default:
      gcc_unreachable ();
    }

  return wide_int_to_tree (outer,
			   wi::mask (prec, false, TYPE_PRECISION (outer)));
}

/* Returns the smallest value obtainable by casting something in INNER type to
   OUTER type.  */

tree
lower_bound_in_type (tree outer, tree inner)
{
  unsigned oprec = TYPE_PRECISION (outer);
  unsigned iprec = TYPE_PRECISION (inner);

  /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
     and obtain 0.  */
  if (TYPE_UNSIGNED (outer)
      /* If we are widening something of an unsigned type, OUTER type
	 contains all values of INNER type.  In particular, both INNER
	 and OUTER types have zero in common.  */
      || (oprec > iprec && TYPE_UNSIGNED (inner)))
    return build_int_cst (outer, 0);
  else
    {
      /* If we are widening a signed type to another signed type, we
	 want to obtain -2^^(iprec-1).  If we are keeping the
	 precision or narrowing to a signed type, we want to obtain
	 -2^(oprec-1).  */
      unsigned prec = oprec > iprec ? iprec : oprec;
      return wide_int_to_tree (outer,
			       wi::mask (prec - 1, true,
					 TYPE_PRECISION (outer)));
    }
}

/* Return nonzero if two operands that are suitable for PHI nodes are
   necessarily equal.  Specifically, both ARG0 and ARG1 must be either
   SSA_NAME or invariant.  Note that this is strictly an optimization.
   That is, callers of this function can directly call operand_equal_p
   and get the same result, only slower.  */

int
operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
{
  if (arg0 == arg1)
    return 1;
  if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
    return 0;
  return operand_equal_p (arg0, arg1, 0);
}

/* Returns number of zeros at the end of binary representation of X.  */

tree
num_ending_zeros (const_tree x)
{
  return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
}


#define WALK_SUBTREE(NODE)				\
  do							\
    {							\
      result = walk_tree_1 (&(NODE), func, data, pset, lh);	\
      if (result)					\
	return result;					\
    }							\
  while (0)

/* This is a subroutine of walk_tree that walks field of TYPE that are to
   be walked whenever a type is seen in the tree.  Rest of operands and return
   value are as for walk_tree.  */

static tree
walk_type_fields (tree type, walk_tree_fn func, void *data,
		  hash_set<tree> *pset, walk_tree_lh lh)
{
  tree result = NULL_TREE;

  switch (TREE_CODE (type))
    {
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case VECTOR_TYPE:
      /* We have to worry about mutually recursive pointers.  These can't
	 be written in C.  They can in Ada.  It's pathological, but
	 there's an ACATS test (c38102a) that checks it.  Deal with this
	 by checking if we're pointing to another pointer, that one
	 points to another pointer, that one does too, and we have no htab.
	 If so, get a hash table.  We check three levels deep to avoid
	 the cost of the hash table if we don't need one.  */
      if (POINTER_TYPE_P (TREE_TYPE (type))
	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
	  && !pset)
	{
	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
						 func, data);
	  if (result)
	    return result;

	  break;
	}

      /* fall through */

    case COMPLEX_TYPE:
      WALK_SUBTREE (TREE_TYPE (type));
      break;

    case METHOD_TYPE:
      WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));

      /* Fall through.  */

    case FUNCTION_TYPE:
      WALK_SUBTREE (TREE_TYPE (type));
      {
	tree arg;

	/* We never want to walk into default arguments.  */
	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
	  WALK_SUBTREE (TREE_VALUE (arg));
      }
      break;

    case ARRAY_TYPE:
      /* Don't follow this nodes's type if a pointer for fear that
	 we'll have infinite recursion.  If we have a PSET, then we
	 need not fear.  */
      if (pset
	  || (!POINTER_TYPE_P (TREE_TYPE (type))
	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
	WALK_SUBTREE (TREE_TYPE (type));
      WALK_SUBTREE (TYPE_DOMAIN (type));
      break;

    case OFFSET_TYPE:
      WALK_SUBTREE (TREE_TYPE (type));
      WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
      break;

    default:
      break;
    }

  return NULL_TREE;
}

/* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
   called with the DATA and the address of each sub-tree.  If FUNC returns a
   non-NULL value, the traversal is stopped, and the value returned by FUNC
   is returned.  If PSET is non-NULL it is used to record the nodes visited,
   and to avoid visiting a node more than once.  */

tree
walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
	     hash_set<tree> *pset, walk_tree_lh lh)
{
  enum tree_code code;
  int walk_subtrees;
  tree result;

#define WALK_SUBTREE_TAIL(NODE)				\
  do							\
    {							\
       tp = & (NODE);					\
       goto tail_recurse;				\
    }							\
  while (0)

 tail_recurse:
  /* Skip empty subtrees.  */
  if (!*tp)
    return NULL_TREE;

  /* Don't walk the same tree twice, if the user has requested
     that we avoid doing so.  */
  if (pset && pset->add (*tp))
    return NULL_TREE;

  /* Call the function.  */
  walk_subtrees = 1;
  result = (*func) (tp, &walk_subtrees, data);

  /* If we found something, return it.  */
  if (result)
    return result;

  code = TREE_CODE (*tp);

  /* Even if we didn't, FUNC may have decided that there was nothing
     interesting below this point in the tree.  */
  if (!walk_subtrees)
    {
      /* But we still need to check our siblings.  */
      if (code == TREE_LIST)
	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
      else if (code == OMP_CLAUSE)
	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
      else
	return NULL_TREE;
    }

  if (lh)
    {
      result = (*lh) (tp, &walk_subtrees, func, data, pset);
      if (result || !walk_subtrees)
        return result;
    }

  switch (code)
    {
    case ERROR_MARK:
    case IDENTIFIER_NODE:
    case INTEGER_CST:
    case REAL_CST:
    case FIXED_CST:
    case STRING_CST:
    case BLOCK:
    case PLACEHOLDER_EXPR:
    case SSA_NAME:
    case FIELD_DECL:
    case RESULT_DECL:
      /* None of these have subtrees other than those already walked
	 above.  */
      break;

    case TREE_LIST:
      WALK_SUBTREE (TREE_VALUE (*tp));
      WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
      break;

    case TREE_VEC:
      {
	int len = TREE_VEC_LENGTH (*tp);

	if (len == 0)
	  break;

	/* Walk all elements but the first.  */
	while (--len)
	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));

	/* Now walk the first one as a tail call.  */
	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
      }

    case VECTOR_CST:
      {
	unsigned len = vector_cst_encoded_nelts (*tp);
	if (len == 0)
	  break;
	/* Walk all elements but the first.  */
	while (--len)
	  WALK_SUBTREE (VECTOR_CST_ENCODED_ELT (*tp, len));
	/* Now walk the first one as a tail call.  */
	WALK_SUBTREE_TAIL (VECTOR_CST_ENCODED_ELT (*tp, 0));
      }

    case COMPLEX_CST:
      WALK_SUBTREE (TREE_REALPART (*tp));
      WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));

    case CONSTRUCTOR:
      {
	unsigned HOST_WIDE_INT idx;
	constructor_elt *ce;

	for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
	     idx++)
	  WALK_SUBTREE (ce->value);
      }
      break;

    case SAVE_EXPR:
      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));

    case BIND_EXPR:
      {
	tree decl;
	for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
	  {
	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
	       into declarations that are just mentioned, rather than
	       declared; they don't really belong to this part of the tree.
	       And, we can see cycles: the initializer for a declaration
	       can refer to the declaration itself.  */
	    WALK_SUBTREE (DECL_INITIAL (decl));
	    WALK_SUBTREE (DECL_SIZE (decl));
	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
	  }
	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
      }

    case STATEMENT_LIST:
      {
	tree_stmt_iterator i;
	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
	  WALK_SUBTREE (*tsi_stmt_ptr (i));
      }
      break;

    case OMP_CLAUSE:
      {
	int len = omp_clause_num_ops[OMP_CLAUSE_CODE (*tp)];
	for (int i = 0; i < len; i++)
	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
      }
      break;

    case TARGET_EXPR:
      {
	int i, len;

	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
	   But, we only want to walk once.  */
	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
	for (i = 0; i < len; ++i)
	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
      }

    case DECL_EXPR:
      /* If this is a TYPE_DECL, walk into the fields of the type that it's
	 defining.  We only want to walk into these fields of a type in this
	 case and not in the general case of a mere reference to the type.

	 The criterion is as follows: if the field can be an expression, it
	 must be walked only here.  This should be in keeping with the fields
	 that are directly gimplified in gimplify_type_sizes in order for the
	 mark/copy-if-shared/unmark machinery of the gimplifier to work with
	 variable-sized types.

	 Note that DECLs get walked as part of processing the BIND_EXPR.  */
      if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
	{
	  /* Call the function for the decl so e.g. copy_tree_body_r can
	     replace it with the remapped one.  */
	  result = (*func) (&DECL_EXPR_DECL (*tp), &walk_subtrees, data);
	  if (result || !walk_subtrees)
	    return result;

	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
	  if (TREE_CODE (*type_p) == ERROR_MARK)
	    return NULL_TREE;

	  /* Call the function for the type.  See if it returns anything or
	     doesn't want us to continue.  If we are to continue, walk both
	     the normal fields and those for the declaration case.  */
	  result = (*func) (type_p, &walk_subtrees, data);
	  if (result || !walk_subtrees)
	    return result;

	  /* But do not walk a pointed-to type since it may itself need to
	     be walked in the declaration case if it isn't anonymous.  */
	  if (!POINTER_TYPE_P (*type_p))
	    {
	      result = walk_type_fields (*type_p, func, data, pset, lh);
	      if (result)
		return result;
	    }

	  /* If this is a record type, also walk the fields.  */
	  if (RECORD_OR_UNION_TYPE_P (*type_p))
	    {
	      tree field;

	      for (field = TYPE_FIELDS (*type_p); field;
		   field = DECL_CHAIN (field))
		{
		  /* We'd like to look at the type of the field, but we can
		     easily get infinite recursion.  So assume it's pointed
		     to elsewhere in the tree.  Also, ignore things that
		     aren't fields.  */
		  if (TREE_CODE (field) != FIELD_DECL)
		    continue;

		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
		  WALK_SUBTREE (DECL_SIZE (field));
		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
		    WALK_SUBTREE (DECL_QUALIFIER (field));
		}
	    }

	  /* Same for scalar types.  */
	  else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
		   || TREE_CODE (*type_p) == ENUMERAL_TYPE
		   || TREE_CODE (*type_p) == INTEGER_TYPE
		   || TREE_CODE (*type_p) == FIXED_POINT_TYPE
		   || TREE_CODE (*type_p) == REAL_TYPE)
	    {
	      WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
	      WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
	    }

	  WALK_SUBTREE (TYPE_SIZE (*type_p));
	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
	}
      /* FALLTHRU */

    default:
      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
	{
	  int i, len;

	  /* Walk over all the sub-trees of this operand.  */
	  len = TREE_OPERAND_LENGTH (*tp);

	  /* Go through the subtrees.  We need to do this in forward order so
	     that the scope of a FOR_EXPR is handled properly.  */
	  if (len)
	    {
	      for (i = 0; i < len - 1; ++i)
		WALK_SUBTREE (TREE_OPERAND (*tp, i));
	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
	    }
	}
      /* If this is a type, walk the needed fields in the type.  */
      else if (TYPE_P (*tp))
	return walk_type_fields (*tp, func, data, pset, lh);
      break;
    }

  /* We didn't find what we were looking for.  */
  return NULL_TREE;

#undef WALK_SUBTREE_TAIL
}
#undef WALK_SUBTREE

/* Like walk_tree, but does not walk duplicate nodes more than once.  */

tree
walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
				walk_tree_lh lh)
{
  tree result;

  hash_set<tree> pset;
  result = walk_tree_1 (tp, func, data, &pset, lh);
  return result;
}


tree
tree_block (tree t)
{
  const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));

  if (IS_EXPR_CODE_CLASS (c))
    return LOCATION_BLOCK (t->exp.locus);
  gcc_unreachable ();
  return NULL;
}

void
tree_set_block (tree t, tree b)
{
  const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));

  if (IS_EXPR_CODE_CLASS (c))
    {
      t->exp.locus = set_block (t->exp.locus, b);
    }
  else
    gcc_unreachable ();
}

/* Create a nameless artificial label and put it in the current
   function context.  The label has a location of LOC.  Returns the
   newly created label.  */

tree
create_artificial_label (location_t loc)
{
  tree lab = build_decl (loc,
      			 LABEL_DECL, NULL_TREE, void_type_node);

  DECL_ARTIFICIAL (lab) = 1;
  DECL_IGNORED_P (lab) = 1;
  DECL_CONTEXT (lab) = current_function_decl;
  return lab;
}

/*  Given a tree, try to return a useful variable name that we can use
    to prefix a temporary that is being assigned the value of the tree.
    I.E. given  <temp> = &A, return A.  */

const char *
get_name (tree t)
{
  tree stripped_decl;

  stripped_decl = t;
  STRIP_NOPS (stripped_decl);
  if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
    return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
  else if (TREE_CODE (stripped_decl) == SSA_NAME)
    {
      tree name = SSA_NAME_IDENTIFIER (stripped_decl);
      if (!name)
	return NULL;
      return IDENTIFIER_POINTER (name);
    }
  else
    {
      switch (TREE_CODE (stripped_decl))
	{
	case ADDR_EXPR:
	  return get_name (TREE_OPERAND (stripped_decl, 0));
	default:
	  return NULL;
	}
    }
}

/* Return true if TYPE has a variable argument list.  */

bool
stdarg_p (const_tree fntype)
{
  function_args_iterator args_iter;
  tree n = NULL_TREE, t;

  if (!fntype)
    return false;

  FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
    {
      n = t;
    }

  return n != NULL_TREE && n != void_type_node;
}

/* Return true if TYPE has a prototype.  */

bool
prototype_p (const_tree fntype)
{
  tree t;

  gcc_assert (fntype != NULL_TREE);

  t = TYPE_ARG_TYPES (fntype);
  return (t != NULL_TREE);
}

/* If BLOCK is inlined from an __attribute__((__artificial__))
   routine, return pointer to location from where it has been
   called.  */
location_t *
block_nonartificial_location (tree block)
{
  location_t *ret = NULL;

  while (block && TREE_CODE (block) == BLOCK
	 && BLOCK_ABSTRACT_ORIGIN (block))
    {
      tree ao = BLOCK_ABSTRACT_ORIGIN (block);
      if (TREE_CODE (ao) == FUNCTION_DECL)
	{
	  /* If AO is an artificial inline, point RET to the
	     call site locus at which it has been inlined and continue
	     the loop, in case AO's caller is also an artificial
	     inline.  */
	  if (DECL_DECLARED_INLINE_P (ao)
	      && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
	    ret = &BLOCK_SOURCE_LOCATION (block);
	  else
	    break;
	}
      else if (TREE_CODE (ao) != BLOCK)
	break;

      block = BLOCK_SUPERCONTEXT (block);
    }
  return ret;
}


/* If EXP is inlined from an __attribute__((__artificial__))
   function, return the location of the original call expression.  */

location_t
tree_nonartificial_location (tree exp)
{
  location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));

  if (loc)
    return *loc;
  else
    return EXPR_LOCATION (exp);
}

/* Return the location into which EXP has been inlined.  Analogous
   to tree_nonartificial_location() above but not limited to artificial
   functions declared inline.  If SYSTEM_HEADER is true, return
   the macro expansion point of the location if it's in a system header */

location_t
tree_inlined_location (tree exp, bool system_header /* = true */)
{
  location_t loc = UNKNOWN_LOCATION;

  tree block = TREE_BLOCK (exp);

  while (block && TREE_CODE (block) == BLOCK
	 && BLOCK_ABSTRACT_ORIGIN (block))
    {
      tree ao = BLOCK_ABSTRACT_ORIGIN (block);
      if (TREE_CODE (ao) == FUNCTION_DECL)
	loc = BLOCK_SOURCE_LOCATION (block);
      else if (TREE_CODE (ao) != BLOCK)
	break;

      block = BLOCK_SUPERCONTEXT (block);
    }

  if (loc == UNKNOWN_LOCATION)
    {
      loc = EXPR_LOCATION (exp);
      if (system_header)
	/* Only consider macro expansion when the block traversal failed
	   to find a location.  Otherwise it's not relevant.  */
	return expansion_point_location_if_in_system_header (loc);
    }

  return loc;
}

/* These are the hash table functions for the hash table of OPTIMIZATION_NODE
   nodes.  */

/* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code.  */

hashval_t
cl_option_hasher::hash (tree x)
{
  const_tree const t = x;

  if (TREE_CODE (t) == OPTIMIZATION_NODE)
    return cl_optimization_hash (TREE_OPTIMIZATION (t));
  else if (TREE_CODE (t) == TARGET_OPTION_NODE)
    return cl_target_option_hash (TREE_TARGET_OPTION (t));
  else
    gcc_unreachable ();
}

/* Return nonzero if the value represented by *X (an OPTIMIZATION or
   TARGET_OPTION tree node) is the same as that given by *Y, which is the
   same.  */

bool
cl_option_hasher::equal (tree x, tree y)
{
  const_tree const xt = x;
  const_tree const yt = y;

  if (TREE_CODE (xt) != TREE_CODE (yt))
    return 0;

  if (TREE_CODE (xt) == OPTIMIZATION_NODE)
    return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
				      TREE_OPTIMIZATION (yt));
  else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
    return cl_target_option_eq (TREE_TARGET_OPTION (xt),
				TREE_TARGET_OPTION (yt));
  else
    gcc_unreachable ();
}

/* Build an OPTIMIZATION_NODE based on the options in OPTS and OPTS_SET.  */

tree
build_optimization_node (struct gcc_options *opts,
			 struct gcc_options *opts_set)
{
  tree t;

  /* Use the cache of optimization nodes.  */

  cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
			opts, opts_set);

  tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
  t = *slot;
  if (!t)
    {
      /* Insert this one into the hash table.  */
      t = cl_optimization_node;
      *slot = t;

      /* Make a new node for next time round.  */
      cl_optimization_node = make_node (OPTIMIZATION_NODE);
    }

  return t;
}

/* Build a TARGET_OPTION_NODE based on the options in OPTS and OPTS_SET.  */

tree
build_target_option_node (struct gcc_options *opts,
			  struct gcc_options *opts_set)
{
  tree t;

  /* Use the cache of optimization nodes.  */

  cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
			 opts, opts_set);

  tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
  t = *slot;
  if (!t)
    {
      /* Insert this one into the hash table.  */
      t = cl_target_option_node;
      *slot = t;

      /* Make a new node for next time round.  */
      cl_target_option_node = make_node (TARGET_OPTION_NODE);
    }

  return t;
}

/* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
   so that they aren't saved during PCH writing.  */

void
prepare_target_option_nodes_for_pch (void)
{
  hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
  for (; iter != cl_option_hash_table->end (); ++iter)
    if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
      TREE_TARGET_GLOBALS (*iter) = NULL;
}

/* Determine the "ultimate origin" of a block.  */

tree
block_ultimate_origin (const_tree block)
{
  tree origin = BLOCK_ABSTRACT_ORIGIN (block);

  if (origin == NULL_TREE)
    return NULL_TREE;
  else
    {
      gcc_checking_assert ((DECL_P (origin)
			    && DECL_ORIGIN (origin) == origin)
			   || BLOCK_ORIGIN (origin) == origin);
      return origin;
    }
}

/* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
   no instruction.  */

bool
tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
{
  /* Do not strip casts into or out of differing address spaces.  */
  if (POINTER_TYPE_P (outer_type)
      && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
    {
      if (!POINTER_TYPE_P (inner_type)
	  || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
	      != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
	return false;
    }
  else if (POINTER_TYPE_P (inner_type)
	   && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
    {
      /* We already know that outer_type is not a pointer with
	 a non-generic address space.  */
      return false;
    }

  /* Use precision rather then machine mode when we can, which gives
     the correct answer even for submode (bit-field) types.  */
  if ((INTEGRAL_TYPE_P (outer_type)
       || POINTER_TYPE_P (outer_type)
       || TREE_CODE (outer_type) == OFFSET_TYPE)
      && (INTEGRAL_TYPE_P (inner_type)
	  || POINTER_TYPE_P (inner_type)
	  || TREE_CODE (inner_type) == OFFSET_TYPE))
    return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);

  /* Otherwise fall back on comparing machine modes (e.g. for
     aggregate types, floats).  */
  return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
}

/* Return true iff conversion in EXP generates no instruction.  Mark
   it inline so that we fully inline into the stripping functions even
   though we have two uses of this function.  */

static inline bool
tree_nop_conversion (const_tree exp)
{
  tree outer_type, inner_type;

  if (location_wrapper_p (exp))
    return true;
  if (!CONVERT_EXPR_P (exp)
      && TREE_CODE (exp) != NON_LVALUE_EXPR)
    return false;

  outer_type = TREE_TYPE (exp);
  inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
  if (!inner_type || inner_type == error_mark_node)
    return false;

  return tree_nop_conversion_p (outer_type, inner_type);
}

/* Return true iff conversion in EXP generates no instruction.  Don't
   consider conversions changing the signedness.  */

static bool
tree_sign_nop_conversion (const_tree exp)
{
  tree outer_type, inner_type;

  if (!tree_nop_conversion (exp))
    return false;

  outer_type = TREE_TYPE (exp);
  inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));

  return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
	  && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
}

/* Strip conversions from EXP according to tree_nop_conversion and
   return the resulting expression.  */

tree
tree_strip_nop_conversions (tree exp)
{
  while (tree_nop_conversion (exp))
    exp = TREE_OPERAND (exp, 0);
  return exp;
}

/* Strip conversions from EXP according to tree_sign_nop_conversion
   and return the resulting expression.  */

tree
tree_strip_sign_nop_conversions (tree exp)
{
  while (tree_sign_nop_conversion (exp))
    exp = TREE_OPERAND (exp, 0);
  return exp;
}

/* Avoid any floating point extensions from EXP.  */
tree
strip_float_extensions (tree exp)
{
  tree sub, expt, subt;

  /*  For floating point constant look up the narrowest type that can hold
      it properly and handle it like (type)(narrowest_type)constant.
      This way we can optimize for instance a=a*2.0 where "a" is float
      but 2.0 is double constant.  */
  if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
    {
      REAL_VALUE_TYPE orig;
      tree type = NULL;

      orig = TREE_REAL_CST (exp);
      if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
	type = float_type_node;
      else if (TYPE_PRECISION (TREE_TYPE (exp))
	       > TYPE_PRECISION (double_type_node)
	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
	type = double_type_node;
      if (type)
	return build_real_truncate (type, orig);
    }

  if (!CONVERT_EXPR_P (exp))
    return exp;

  sub = TREE_OPERAND (exp, 0);
  subt = TREE_TYPE (sub);
  expt = TREE_TYPE (exp);

  if (!FLOAT_TYPE_P (subt))
    return exp;

  if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
    return exp;

  if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
    return exp;

  return strip_float_extensions (sub);
}

/* Strip out all handled components that produce invariant
   offsets.  */

const_tree
strip_invariant_refs (const_tree op)
{
  while (handled_component_p (op))
    {
      switch (TREE_CODE (op))
	{
	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  if (!is_gimple_constant (TREE_OPERAND (op, 1))
	      || TREE_OPERAND (op, 2) != NULL_TREE
	      || TREE_OPERAND (op, 3) != NULL_TREE)
	    return NULL;
	  break;

	case COMPONENT_REF:
	  if (TREE_OPERAND (op, 2) != NULL_TREE)
	    return NULL;
	  break;

	default:;
	}
      op = TREE_OPERAND (op, 0);
    }

  return op;
}

static GTY(()) tree gcc_eh_personality_decl;

/* Return the GCC personality function decl.  */

tree
lhd_gcc_personality (void)
{
  if (!gcc_eh_personality_decl)
    gcc_eh_personality_decl = build_personality_function ("gcc");
  return gcc_eh_personality_decl;
}

/* TARGET is a call target of GIMPLE call statement
   (obtained by gimple_call_fn).  Return true if it is
   OBJ_TYPE_REF representing an virtual call of C++ method.
   (As opposed to OBJ_TYPE_REF representing objc calls
   through a cast where middle-end devirtualization machinery
   can't apply.)  FOR_DUMP_P is true when being called from
   the dump routines.  */

bool
virtual_method_call_p (const_tree target, bool for_dump_p)
{
  if (TREE_CODE (target) != OBJ_TYPE_REF)
    return false;
  tree t = TREE_TYPE (target);
  gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
  t = TREE_TYPE (t);
  if (TREE_CODE (t) == FUNCTION_TYPE)
    return false;
  gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
  /* If we do not have BINFO associated, it means that type was built
     without devirtualization enabled.  Do not consider this a virtual
     call.  */
  if (!TYPE_BINFO (obj_type_ref_class (target, for_dump_p)))
    return false;
  return true;
}

/* Lookup sub-BINFO of BINFO of TYPE at offset POS.  */

static tree
lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
{
  unsigned int i;
  tree base_binfo, b;

  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
	&& types_same_for_odr (TREE_TYPE (base_binfo), type))
      return base_binfo;
    else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
      return b;
  return NULL;
}

/* Try to find a base info of BINFO that would have its field decl at offset
   OFFSET within the BINFO type and which is of EXPECTED_TYPE.  If it can be
   found, return, otherwise return NULL_TREE.  */

tree
get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
{
  tree type = BINFO_TYPE (binfo);

  while (true)
    {
      HOST_WIDE_INT pos, size;
      tree fld;
      int i;

      if (types_same_for_odr (type, expected_type))
	  return binfo;
      if (maybe_lt (offset, 0))
	return NULL_TREE;

      for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
	{
	  if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
	    continue;

	  pos = int_bit_position (fld);
	  size = tree_to_uhwi (DECL_SIZE (fld));
	  if (known_in_range_p (offset, pos, size))
	    break;
	}
      if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
	return NULL_TREE;

      /* Offset 0 indicates the primary base, whose vtable contents are
	 represented in the binfo for the derived class.  */
      else if (maybe_ne (offset, 0))
	{
	  tree found_binfo = NULL, base_binfo;
	  /* Offsets in BINFO are in bytes relative to the whole structure
	     while POS is in bits relative to the containing field.  */
	  int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
			     / BITS_PER_UNIT);

	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
	    if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
		&& types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
	      {
		found_binfo = base_binfo;
		break;
	      }
	  if (found_binfo)
	    binfo = found_binfo;
	  else
	    binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
					    binfo_offset);
	 }

      type = TREE_TYPE (fld);
      offset -= pos;
    }
}

/* Returns true if X is a typedef decl.  */

bool
is_typedef_decl (const_tree x)
{
  return (x && TREE_CODE (x) == TYPE_DECL
          && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
}

/* Returns true iff TYPE is a type variant created for a typedef. */

bool
typedef_variant_p (const_tree type)
{
  return is_typedef_decl (TYPE_NAME (type));
}

/* PR 84195: Replace control characters in "unescaped" with their
   escaped equivalents.  Allow newlines if -fmessage-length has
   been set to a non-zero value.  This is done here, rather than
   where the attribute is recorded as the message length can
   change between these two locations.  */

void
escaped_string::escape (const char *unescaped)
{
  char *escaped;
  size_t i, new_i, len;

  if (m_owned)
    free (m_str);

  m_str = const_cast<char *> (unescaped);
  m_owned = false;

  if (unescaped == NULL || *unescaped == 0)
    return;

  len = strlen (unescaped);
  escaped = NULL;
  new_i = 0;

  for (i = 0; i < len; i++)
    {
      char c = unescaped[i];

      if (!ISCNTRL (c))
	{
	  if (escaped)
	    escaped[new_i++] = c;
	  continue;
	}

      if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
	{
	  if (escaped == NULL)
	    {
	      /* We only allocate space for a new string if we
		 actually encounter a control character that
		 needs replacing.  */
	      escaped = (char *) xmalloc (len * 2 + 1);
	      strncpy (escaped, unescaped, i);
	      new_i = i;
	    }

	  escaped[new_i++] = '\\';

	  switch (c)
	    {
	    case '\a': escaped[new_i++] = 'a'; break;
	    case '\b': escaped[new_i++] = 'b'; break;
	    case '\f': escaped[new_i++] = 'f'; break;
	    case '\n': escaped[new_i++] = 'n'; break;
	    case '\r': escaped[new_i++] = 'r'; break;
	    case '\t': escaped[new_i++] = 't'; break;
	    case '\v': escaped[new_i++] = 'v'; break;
	    default:   escaped[new_i++] = '?'; break;
	    }
	}
      else if (escaped)
	escaped[new_i++] = c;
    }

  if (escaped)
    {
      escaped[new_i] = 0;
      m_str = escaped;
      m_owned = true;
    }
}

/* Warn about a use of an identifier which was marked deprecated.  Returns
   whether a warning was given.  */

bool
warn_deprecated_use (tree node, tree attr)
{
  escaped_string msg;

  if (node == 0 || !warn_deprecated_decl)
    return false;

  if (!attr)
    {
      if (DECL_P (node))
	attr = DECL_ATTRIBUTES (node);
      else if (TYPE_P (node))
	{
	  tree decl = TYPE_STUB_DECL (node);
	  if (decl)
	    attr = lookup_attribute ("deprecated",
				     TYPE_ATTRIBUTES (TREE_TYPE (decl)));
	}
    }

  if (attr)
    attr = lookup_attribute ("deprecated", attr);

  if (attr)
    msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));

  bool w = false;
  if (DECL_P (node))
    {
      auto_diagnostic_group d;
      if (msg)
	w = warning (OPT_Wdeprecated_declarations,
		     "%qD is deprecated: %s", node, (const char *) msg);
      else
	w = warning (OPT_Wdeprecated_declarations,
		     "%qD is deprecated", node);
      if (w)
	inform (DECL_SOURCE_LOCATION (node), "declared here");
    }
  else if (TYPE_P (node))
    {
      tree what = NULL_TREE;
      tree decl = TYPE_STUB_DECL (node);

      if (TYPE_NAME (node))
	{
	  if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
	    what = TYPE_NAME (node);
	  else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
		   && DECL_NAME (TYPE_NAME (node)))
	    what = DECL_NAME (TYPE_NAME (node));
	}

      auto_diagnostic_group d;
      if (what)
	{
	  if (msg)
	    w = warning (OPT_Wdeprecated_declarations,
			 "%qE is deprecated: %s", what, (const char *) msg);
	  else
	    w = warning (OPT_Wdeprecated_declarations,
			 "%qE is deprecated", what);
	}
      else
	{
	  if (msg)
	    w = warning (OPT_Wdeprecated_declarations,
			 "type is deprecated: %s", (const char *) msg);
	  else
	    w = warning (OPT_Wdeprecated_declarations,
			 "type is deprecated");
	}

      if (w && decl)
	inform (DECL_SOURCE_LOCATION (decl), "declared here");
    }

  return w;
}

/* Error out with an identifier which was marked 'unavailable'. */
void
error_unavailable_use (tree node, tree attr)
{
  escaped_string msg;

  if (node == 0)
    return;

  if (!attr)
    {
      if (DECL_P (node))
	attr = DECL_ATTRIBUTES (node);
      else if (TYPE_P (node))
	{
	  tree decl = TYPE_STUB_DECL (node);
	  if (decl)
	    attr = lookup_attribute ("unavailable",
				     TYPE_ATTRIBUTES (TREE_TYPE (decl)));
	}
    }

  if (attr)
    attr = lookup_attribute ("unavailable", attr);

  if (attr)
    msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));

  if (DECL_P (node))
    {
      auto_diagnostic_group d;
      if (msg)
	error ("%qD is unavailable: %s", node, (const char *) msg);
      else
	error ("%qD is unavailable", node);
      inform (DECL_SOURCE_LOCATION (node), "declared here");
    }
  else if (TYPE_P (node))
    {
      tree what = NULL_TREE;
      tree decl = TYPE_STUB_DECL (node);

      if (TYPE_NAME (node))
	{
	  if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
	    what = TYPE_NAME (node);
	  else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
		   && DECL_NAME (TYPE_NAME (node)))
	    what = DECL_NAME (TYPE_NAME (node));
	}

      auto_diagnostic_group d;
      if (what)
	{
	  if (msg)
	    error ("%qE is unavailable: %s", what, (const char *) msg);
	  else
	    error ("%qE is unavailable", what);
	}
      else
	{
	  if (msg)
	    error ("type is unavailable: %s", (const char *) msg);
	  else
	    error ("type is unavailable");
	}

      if (decl)
	inform (DECL_SOURCE_LOCATION (decl), "declared here");
    }
}

/* Return true if REF has a COMPONENT_REF with a bit-field field declaration
   somewhere in it.  */

bool
contains_bitfld_component_ref_p (const_tree ref)
{
  while (handled_component_p (ref))
    {
      if (TREE_CODE (ref) == COMPONENT_REF
          && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
        return true;
      ref = TREE_OPERAND (ref, 0);
    }

  return false;
}

/* Try to determine whether a TRY_CATCH expression can fall through.
   This is a subroutine of block_may_fallthru.  */

static bool
try_catch_may_fallthru (const_tree stmt)
{
  tree_stmt_iterator i;

  /* If the TRY block can fall through, the whole TRY_CATCH can
     fall through.  */
  if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
    return true;

  i = tsi_start (TREE_OPERAND (stmt, 1));
  switch (TREE_CODE (tsi_stmt (i)))
    {
    case CATCH_EXPR:
      /* We expect to see a sequence of CATCH_EXPR trees, each with a
	 catch expression and a body.  The whole TRY_CATCH may fall
	 through iff any of the catch bodies falls through.  */
      for (; !tsi_end_p (i); tsi_next (&i))
	{
	  if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
	    return true;
	}
      return false;

    case EH_FILTER_EXPR:
      /* The exception filter expression only matters if there is an
	 exception.  If the exception does not match EH_FILTER_TYPES,
	 we will execute EH_FILTER_FAILURE, and we will fall through
	 if that falls through.  If the exception does match
	 EH_FILTER_TYPES, the stack unwinder will continue up the
	 stack, so we will not fall through.  We don't know whether we
	 will throw an exception which matches EH_FILTER_TYPES or not,
	 so we just ignore EH_FILTER_TYPES and assume that we might
	 throw an exception which doesn't match.  */
      return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));

    default:
      /* This case represents statements to be executed when an
	 exception occurs.  Those statements are implicitly followed
	 by a RESX statement to resume execution after the exception.
	 So in this case the TRY_CATCH never falls through.  */
      return false;
    }
}

/* Try to determine if we can fall out of the bottom of BLOCK.  This guess
   need not be 100% accurate; simply be conservative and return true if we
   don't know.  This is used only to avoid stupidly generating extra code.
   If we're wrong, we'll just delete the extra code later.  */

bool
block_may_fallthru (const_tree block)
{
  /* This CONST_CAST is okay because expr_last returns its argument
     unmodified and we assign it to a const_tree.  */
  const_tree stmt = expr_last (CONST_CAST_TREE (block));

  switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
    {
    case GOTO_EXPR:
    case RETURN_EXPR:
      /* Easy cases.  If the last statement of the block implies
	 control transfer, then we can't fall through.  */
      return false;

    case SWITCH_EXPR:
      /* If there is a default: label or case labels cover all possible
	 SWITCH_COND values, then the SWITCH_EXPR will transfer control
	 to some case label in all cases and all we care is whether the
	 SWITCH_BODY falls through.  */
      if (SWITCH_ALL_CASES_P (stmt))
	return block_may_fallthru (SWITCH_BODY (stmt));
      return true;

    case COND_EXPR:
      if (block_may_fallthru (COND_EXPR_THEN (stmt)))
	return true;
      return block_may_fallthru (COND_EXPR_ELSE (stmt));

    case BIND_EXPR:
      return block_may_fallthru (BIND_EXPR_BODY (stmt));

    case TRY_CATCH_EXPR:
      return try_catch_may_fallthru (stmt);

    case TRY_FINALLY_EXPR:
      /* The finally clause is always executed after the try clause,
	 so if it does not fall through, then the try-finally will not
	 fall through.  Otherwise, if the try clause does not fall
	 through, then when the finally clause falls through it will
	 resume execution wherever the try clause was going.  So the
	 whole try-finally will only fall through if both the try
	 clause and the finally clause fall through.  */
      return (block_may_fallthru (TREE_OPERAND (stmt, 0))
	      && block_may_fallthru (TREE_OPERAND (stmt, 1)));

    case EH_ELSE_EXPR:
      return block_may_fallthru (TREE_OPERAND (stmt, 0));

    case MODIFY_EXPR:
      if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
	stmt = TREE_OPERAND (stmt, 1);
      else
	return true;
      /* FALLTHRU */

    case CALL_EXPR:
      /* Functions that do not return do not fall through.  */
      return (call_expr_flags (stmt) & ECF_NORETURN) == 0;

    case CLEANUP_POINT_EXPR:
      return block_may_fallthru (TREE_OPERAND (stmt, 0));

    case TARGET_EXPR:
      return block_may_fallthru (TREE_OPERAND (stmt, 1));

    case ERROR_MARK:
      return true;

    default:
      return lang_hooks.block_may_fallthru (stmt);
    }
}

/* True if we are using EH to handle cleanups.  */
static bool using_eh_for_cleanups_flag = false;

/* This routine is called from front ends to indicate eh should be used for
   cleanups.  */
void
using_eh_for_cleanups (void)
{
  using_eh_for_cleanups_flag = true;
}

/* Query whether EH is used for cleanups.  */
bool
using_eh_for_cleanups_p (void)
{
  return using_eh_for_cleanups_flag;
}

/* Wrapper for tree_code_name to ensure that tree code is valid */
const char *
get_tree_code_name (enum tree_code code)
{
  const char *invalid = "<invalid tree code>";

  /* The tree_code enum promotes to signed, but we could be getting
     invalid values, so force an unsigned comparison.  */
  if (unsigned (code) >= MAX_TREE_CODES)
    {
      if ((unsigned)code == 0xa5a5)
	return "ggc_freed";
      return invalid;
    }

  return tree_code_name[code];
}

/* Drops the TREE_OVERFLOW flag from T.  */

tree
drop_tree_overflow (tree t)
{
  gcc_checking_assert (TREE_OVERFLOW (t));

  /* For tree codes with a sharing machinery re-build the result.  */
  if (poly_int_tree_p (t))
    return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));

  /* For VECTOR_CST, remove the overflow bits from the encoded elements
     and canonicalize the result.  */
  if (TREE_CODE (t) == VECTOR_CST)
    {
      tree_vector_builder builder;
      builder.new_unary_operation (TREE_TYPE (t), t, true);
      unsigned int count = builder.encoded_nelts ();
      for (unsigned int i = 0; i < count; ++i)
	{
	  tree elt = VECTOR_CST_ELT (t, i);
	  if (TREE_OVERFLOW (elt))
	    elt = drop_tree_overflow (elt);
	  builder.quick_push (elt);
	}
      return builder.build ();
    }

  /* Otherwise, as all tcc_constants are possibly shared, copy the node
     and drop the flag.  */
  t = copy_node (t);
  TREE_OVERFLOW (t) = 0;

  /* For constants that contain nested constants, drop the flag
     from those as well.  */
  if (TREE_CODE (t) == COMPLEX_CST)
    {
      if (TREE_OVERFLOW (TREE_REALPART (t)))
	TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
      if (TREE_OVERFLOW (TREE_IMAGPART (t)))
	TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
    }

  return t;
}

/* Given a memory reference expression T, return its base address.
   The base address of a memory reference expression is the main
   object being referenced.  For instance, the base address for
   'array[i].fld[j]' is 'array'.  You can think of this as stripping
   away the offset part from a memory address.

   This function calls handled_component_p to strip away all the inner
   parts of the memory reference until it reaches the base object.  */

tree
get_base_address (tree t)
{
  if (TREE_CODE (t) == WITH_SIZE_EXPR)
    t = TREE_OPERAND (t, 0);
  while (handled_component_p (t))
    t = TREE_OPERAND (t, 0);

  if ((TREE_CODE (t) == MEM_REF
       || TREE_CODE (t) == TARGET_MEM_REF)
      && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
    t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);

  return t;
}

/* Return a tree of sizetype representing the size, in bytes, of the element
   of EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */

tree
array_ref_element_size (tree exp)
{
  tree aligned_size = TREE_OPERAND (exp, 3);
  tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
  location_t loc = EXPR_LOCATION (exp);

  /* If a size was specified in the ARRAY_REF, it's the size measured
     in alignment units of the element type.  So multiply by that value.  */
  if (aligned_size)
    {
      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
	 sizetype from another type of the same width and signedness.  */
      if (TREE_TYPE (aligned_size) != sizetype)
	aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
      return size_binop_loc (loc, MULT_EXPR, aligned_size,
			     size_int (TYPE_ALIGN_UNIT (elmt_type)));
    }

  /* Otherwise, take the size from that of the element type.  Substitute
     any PLACEHOLDER_EXPR that we have.  */
  else
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
}

/* Return a tree representing the lower bound of the array mentioned in
   EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */

tree
array_ref_low_bound (tree exp)
{
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));

  /* If a lower bound is specified in EXP, use it.  */
  if (TREE_OPERAND (exp, 2))
    return TREE_OPERAND (exp, 2);

  /* Otherwise, if there is a domain type and it has a lower bound, use it,
     substituting for a PLACEHOLDER_EXPR as needed.  */
  if (domain_type && TYPE_MIN_VALUE (domain_type))
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);

  /* Otherwise, return a zero of the appropriate type.  */
  tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
  return (idxtype == error_mark_node
	  ? integer_zero_node : build_int_cst (idxtype, 0));
}

/* Return a tree representing the upper bound of the array mentioned in
   EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */

tree
array_ref_up_bound (tree exp)
{
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));

  /* If there is a domain type and it has an upper bound, use it, substituting
     for a PLACEHOLDER_EXPR as needed.  */
  if (domain_type && TYPE_MAX_VALUE (domain_type))
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);

  /* Otherwise fail.  */
  return NULL_TREE;
}

/* Returns true if REF is an array reference, component reference,
   or memory reference to an array at the end of a structure.
   If this is the case, the array may be allocated larger
   than its upper bound implies.  */

bool
array_at_struct_end_p (tree ref)
{
  tree atype;

  if (TREE_CODE (ref) == ARRAY_REF
      || TREE_CODE (ref) == ARRAY_RANGE_REF)
    {
      atype = TREE_TYPE (TREE_OPERAND (ref, 0));
      ref = TREE_OPERAND (ref, 0);
    }
  else if (TREE_CODE (ref) == COMPONENT_REF
	   && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
    atype = TREE_TYPE (TREE_OPERAND (ref, 1));
  else if (TREE_CODE (ref) == MEM_REF)
    {
      tree arg = TREE_OPERAND (ref, 0);
      if (TREE_CODE (arg) == ADDR_EXPR)
	arg = TREE_OPERAND (arg, 0);
      tree argtype = TREE_TYPE (arg);
      if (TREE_CODE (argtype) == RECORD_TYPE)
	{
	  if (tree fld = last_field (argtype))
	    {
	      atype = TREE_TYPE (fld);
	      if (TREE_CODE (atype) != ARRAY_TYPE)
		return false;
	      if (VAR_P (arg) && DECL_SIZE (fld))
		return false;
	    }
	  else
	    return false;
	}
      else
	return false;
    }
  else
    return false;

  if (TREE_CODE (ref) == STRING_CST)
    return false;

  tree ref_to_array = ref;
  while (handled_component_p (ref))
    {
      /* If the reference chain contains a component reference to a
         non-union type and there follows another field the reference
	 is not at the end of a structure.  */
      if (TREE_CODE (ref) == COMPONENT_REF)
	{
	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
	    {
	      tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
	      while (nextf && TREE_CODE (nextf) != FIELD_DECL)
		nextf = DECL_CHAIN (nextf);
	      if (nextf)
		return false;
	    }
	}
      /* If we have a multi-dimensional array we do not consider
         a non-innermost dimension as flex array if the whole
	 multi-dimensional array is at struct end.
	 Same for an array of aggregates with a trailing array
	 member.  */
      else if (TREE_CODE (ref) == ARRAY_REF)
	return false;
      else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
	;
      /* If we view an underlying object as sth else then what we
         gathered up to now is what we have to rely on.  */
      else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
	break;
      else
	gcc_unreachable ();

      ref = TREE_OPERAND (ref, 0);
    }

  /* The array now is at struct end.  Treat flexible arrays as
     always subject to extend, even into just padding constrained by
     an underlying decl.  */
  if (! TYPE_SIZE (atype)
      || ! TYPE_DOMAIN (atype)
      || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
    return true;

  /* If the reference is based on a declared entity, the size of the array
     is constrained by its given domain.  (Do not trust commons PR/69368).  */
  ref = get_base_address (ref);
  if (ref
      && DECL_P (ref)
      && !(flag_unconstrained_commons
	   && VAR_P (ref) && DECL_COMMON (ref))
      && DECL_SIZE_UNIT (ref)
      && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
    {
      /* Check whether the array domain covers all of the available
         padding.  */
      poly_int64 offset;
      if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
	  || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
          || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
	return true;
      if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
	return true;

      /* If at least one extra element fits it is a flexarray.  */
      if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
		     - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
		     + 2)
		    * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
		    wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
	return true;

      return false;
    }

  return true;
}

/* Return a tree representing the offset, in bytes, of the field referenced
   by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */

tree
component_ref_field_offset (tree exp)
{
  tree aligned_offset = TREE_OPERAND (exp, 2);
  tree field = TREE_OPERAND (exp, 1);
  location_t loc = EXPR_LOCATION (exp);

  /* If an offset was specified in the COMPONENT_REF, it's the offset measured
     in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
     value.  */
  if (aligned_offset)
    {
      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
	 sizetype from another type of the same width and signedness.  */
      if (TREE_TYPE (aligned_offset) != sizetype)
	aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
      return size_binop_loc (loc, MULT_EXPR, aligned_offset,
			     size_int (DECL_OFFSET_ALIGN (field)
				       / BITS_PER_UNIT));
    }

  /* Otherwise, take the offset from that of the field.  Substitute
     any PLACEHOLDER_EXPR that we have.  */
  else
    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
}

/* Given the initializer INIT, return the initializer for the field
   DECL if it exists, otherwise null.  Used to obtain the initializer
   for a flexible array member and determine its size.  */

static tree
get_initializer_for (tree init, tree decl)
{
  STRIP_NOPS (init);

  tree fld, fld_init;
  unsigned HOST_WIDE_INT i;
  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
    {
      if (decl == fld)
	return fld_init;

      if (TREE_CODE (fld) == CONSTRUCTOR)
	{
	  fld_init = get_initializer_for (fld_init, decl);
	  if (fld_init)
	    return fld_init;
	}
    }

  return NULL_TREE;
}

/* Determines the size of the member referenced by the COMPONENT_REF
   REF, using its initializer expression if necessary in order to
   determine the size of an initialized flexible array member.
   If non-null, set *ARK when REF refers to an interior zero-length
   array or a trailing one-element array.
   Returns the size as sizetype (which might be zero for an object
   with an uninitialized flexible array member) or null if the size
   cannot be determined.  */

tree
component_ref_size (tree ref, special_array_member *sam /* = NULL */)
{
  gcc_assert (TREE_CODE (ref) == COMPONENT_REF);

  special_array_member sambuf;
  if (!sam)
    sam = &sambuf;
  *sam = special_array_member::none;

  /* The object/argument referenced by the COMPONENT_REF and its type.  */
  tree arg = TREE_OPERAND (ref, 0);
  tree argtype = TREE_TYPE (arg);
  /* The referenced member.  */
  tree member = TREE_OPERAND (ref, 1);

  tree memsize = DECL_SIZE_UNIT (member);
  if (memsize)
    {
      tree memtype = TREE_TYPE (member);
      if (TREE_CODE (memtype) != ARRAY_TYPE)
	/* DECL_SIZE may be less than TYPE_SIZE in C++ when referring
	   to the type of a class with a virtual base which doesn't
	   reflect the size of the virtual's members (see pr97595).
	   If that's the case fail for now and implement something
	   more robust in the future.  */
	return (tree_int_cst_equal (memsize, TYPE_SIZE_UNIT (memtype))
		? memsize : NULL_TREE);

      bool trailing = array_at_struct_end_p (ref);
      bool zero_length = integer_zerop (memsize);
      if (!trailing && !zero_length)
	/* MEMBER is either an interior array or is an array with
	   more than one element.  */
	return memsize;

      if (zero_length)
	{
	  if (trailing)
	    *sam = special_array_member::trail_0;
	  else
	    {
	      *sam = special_array_member::int_0;
	      memsize = NULL_TREE;
	    }
	}

      if (!zero_length)
	if (tree dom = TYPE_DOMAIN (memtype))
	  if (tree min = TYPE_MIN_VALUE (dom))
	    if (tree max = TYPE_MAX_VALUE (dom))
	      if (TREE_CODE (min) == INTEGER_CST
		  && TREE_CODE (max) == INTEGER_CST)
		{
		  offset_int minidx = wi::to_offset (min);
		  offset_int maxidx = wi::to_offset (max);
		  offset_int neltsm1 = maxidx - minidx;
		  if (neltsm1 > 0)
		    /* MEMBER is an array with more than one element.  */
		    return memsize;

		  if (neltsm1 == 0)
		    *sam = special_array_member::trail_1;
		}

      /* For a reference to a zero- or one-element array member of a union
	 use the size of the union instead of the size of the member.  */
      if (TREE_CODE (argtype) == UNION_TYPE)
	memsize = TYPE_SIZE_UNIT (argtype);
    }

  /* MEMBER is either a bona fide flexible array member, or a zero-length
     array member, or an array of length one treated as such.  */

  /* If the reference is to a declared object and the member a true
     flexible array, try to determine its size from its initializer.  */
  poly_int64 baseoff = 0;
  tree base = get_addr_base_and_unit_offset (ref, &baseoff);
  if (!base || !VAR_P (base))
    {
      if (*sam != special_array_member::int_0)
	return NULL_TREE;

      if (TREE_CODE (arg) != COMPONENT_REF)
	return NULL_TREE;

      base = arg;
      while (TREE_CODE (base) == COMPONENT_REF)
	base = TREE_OPERAND (base, 0);
      baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
    }

  /* BASE is the declared object of which MEMBER is either a member
     or that is cast to ARGTYPE (e.g., a char buffer used to store
     an ARGTYPE object).  */
  tree basetype = TREE_TYPE (base);

  /* Determine the base type of the referenced object.  If it's
     the same as ARGTYPE and MEMBER has a known size, return it.  */
  tree bt = basetype;
  if (*sam != special_array_member::int_0)
    while (TREE_CODE (bt) == ARRAY_TYPE)
      bt = TREE_TYPE (bt);
  bool typematch = useless_type_conversion_p (argtype, bt);
  if (memsize && typematch)
    return memsize;

  memsize = NULL_TREE;

  if (typematch)
    /* MEMBER is a true flexible array member.  Compute its size from
       the initializer of the BASE object if it has one.  */
    if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
      if (init != error_mark_node)
	{
	  init = get_initializer_for (init, member);
	  if (init)
	    {
	      memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
	      if (tree refsize = TYPE_SIZE_UNIT (argtype))
		{
		  /* Use the larger of the initializer size and the tail
		     padding in the enclosing struct.  */
		  poly_int64 rsz = tree_to_poly_int64 (refsize);
		  rsz -= baseoff;
		  if (known_lt (tree_to_poly_int64 (memsize), rsz))
		    memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
		}

	      baseoff = 0;
	    }
	}

  if (!memsize)
    {
      if (typematch)
	{
	  if (DECL_P (base)
	      && DECL_EXTERNAL (base)
	      && bt == basetype
	      && *sam != special_array_member::int_0)
	    /* The size of a flexible array member of an extern struct
	       with no initializer cannot be determined (it's defined
	       in another translation unit and can have an initializer
	       with an arbitrary number of elements).  */
	    return NULL_TREE;

	  /* Use the size of the base struct or, for interior zero-length
	     arrays, the size of the enclosing type.  */
	  memsize = TYPE_SIZE_UNIT (bt);
	}
      else if (DECL_P (base))
	/* Use the size of the BASE object (possibly an array of some
	   other type such as char used to store the struct).  */
	memsize = DECL_SIZE_UNIT (base);
      else
	return NULL_TREE;
    }

  /* If the flexible array member has a known size use the greater
     of it and the tail padding in the enclosing struct.
     Otherwise, when the size of the flexible array member is unknown
     and the referenced object is not a struct, use the size of its
     type when known.  This detects sizes of array buffers when cast
     to struct types with flexible array members.  */
  if (memsize)
    {
      poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
      if (known_lt (baseoff, memsz64))
	{
	  memsz64 -= baseoff;
	  return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
	}
      return size_zero_node;
    }

  /* Return "don't know" for an external non-array object since its
     flexible array member can be initialized to have any number of
     elements.  Otherwise, return zero because the flexible array
     member has no elements.  */
  return (DECL_P (base)
	  && DECL_EXTERNAL (base)
	  && (!typematch
	      || TREE_CODE (basetype) != ARRAY_TYPE)
	  ? NULL_TREE : size_zero_node);
}

/* Return the machine mode of T.  For vectors, returns the mode of the
   inner type.  The main use case is to feed the result to HONOR_NANS,
   avoiding the BLKmode that a direct TYPE_MODE (T) might return.  */

machine_mode
element_mode (const_tree t)
{
  if (!TYPE_P (t))
    t = TREE_TYPE (t);
  if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
    t = TREE_TYPE (t);
  return TYPE_MODE (t);
}

/* Vector types need to re-check the target flags each time we report
   the machine mode.  We need to do this because attribute target can
   change the result of vector_mode_supported_p and have_regs_of_mode
   on a per-function basis.  Thus the TYPE_MODE of a VECTOR_TYPE can
   change on a per-function basis.  */
/* ??? Possibly a better solution is to run through all the types
   referenced by a function and re-compute the TYPE_MODE once, rather
   than make the TYPE_MODE macro call a function.  */

machine_mode
vector_type_mode (const_tree t)
{
  machine_mode mode;

  gcc_assert (TREE_CODE (t) == VECTOR_TYPE);

  mode = t->type_common.mode;
  if (VECTOR_MODE_P (mode)
      && (!targetm.vector_mode_supported_p (mode)
	  || !have_regs_of_mode[mode]))
    {
      scalar_int_mode innermode;

      /* For integers, try mapping it to a same-sized scalar mode.  */
      if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
	{
	  poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
			     * GET_MODE_BITSIZE (innermode));
	  scalar_int_mode mode;
	  if (int_mode_for_size (size, 0).exists (&mode)
	      && have_regs_of_mode[mode])
	    return mode;
	}

      return BLKmode;
    }

  return mode;
}

/* Return the size in bits of each element of vector type TYPE.  */

unsigned int
vector_element_bits (const_tree type)
{
  gcc_checking_assert (VECTOR_TYPE_P (type));
  if (VECTOR_BOOLEAN_TYPE_P (type))
    return TYPE_PRECISION (TREE_TYPE (type));
  return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
}

/* Calculate the size in bits of each element of vector type TYPE
   and return the result as a tree of type bitsizetype.  */

tree
vector_element_bits_tree (const_tree type)
{
  gcc_checking_assert (VECTOR_TYPE_P (type));
  if (VECTOR_BOOLEAN_TYPE_P (type))
    return bitsize_int (vector_element_bits (type));
  return TYPE_SIZE (TREE_TYPE (type));
}

/* Verify that basic properties of T match TV and thus T can be a variant of
   TV.  TV should be the more specified variant (i.e. the main variant).  */

static bool
verify_type_variant (const_tree t, tree tv)
{
  /* Type variant can differ by:

     - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
                   ENCODE_QUAL_ADDR_SPACE. 
     - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
       in this case some values may not be set in the variant types
       (see TYPE_COMPLETE_P checks).
     - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
     - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
     - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
     - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
     - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
       this is necessary to make it possible to merge types form different TUs
     - arrays, pointers and references may have TREE_TYPE that is a variant
       of TREE_TYPE of their main variants.
     - aggregates may have new TYPE_FIELDS list that list variants of
       the main variant TYPE_FIELDS.
     - vector types may differ by TYPE_VECTOR_OPAQUE
   */

  /* Convenience macro for matching individual fields.  */
#define verify_variant_match(flag)					    \
  do {									    \
    if (flag (tv) != flag (t))						    \
      {									    \
	error ("type variant differs by %s", #flag);			    \
	debug_tree (tv);						    \
	return false;							    \
      }									    \
  } while (false)

  /* tree_base checks.  */

  verify_variant_match (TREE_CODE);
  /* FIXME: Ada builds non-artificial variants of artificial types.  */
#if 0
  if (TYPE_ARTIFICIAL (tv))
    verify_variant_match (TYPE_ARTIFICIAL);
#endif
  if (POINTER_TYPE_P (tv))
    verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
  /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build.  */
  verify_variant_match (TYPE_UNSIGNED);
  verify_variant_match (TYPE_PACKED);
  if (TREE_CODE (t) == REFERENCE_TYPE)
    verify_variant_match (TYPE_REF_IS_RVALUE);
  if (AGGREGATE_TYPE_P (t))
    verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
  else
    verify_variant_match (TYPE_SATURATING);
  /* FIXME: This check trigger during libstdc++ build.  */
#if 0
  if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t))
    verify_variant_match (TYPE_FINAL_P);
#endif

  /* tree_type_common checks.  */

  if (COMPLETE_TYPE_P (t))
    {
      verify_variant_match (TYPE_MODE);
      if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
	  && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
	verify_variant_match (TYPE_SIZE);
      if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
	  && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
	  && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
	{
	  gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
					TYPE_SIZE_UNIT (tv), 0));
	  error ("type variant has different %<TYPE_SIZE_UNIT%>");
	  debug_tree (tv);
	  error ("type variant%'s %<TYPE_SIZE_UNIT%>");
	  debug_tree (TYPE_SIZE_UNIT (tv));
	  error ("type%'s %<TYPE_SIZE_UNIT%>");
	  debug_tree (TYPE_SIZE_UNIT (t));
	  return false;
	}
      verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
    }
  verify_variant_match (TYPE_PRECISION);
  if (RECORD_OR_UNION_TYPE_P (t))
    verify_variant_match (TYPE_TRANSPARENT_AGGR);
  else if (TREE_CODE (t) == ARRAY_TYPE)
    verify_variant_match (TYPE_NONALIASED_COMPONENT);
  /* During LTO we merge variant lists from diferent translation units
     that may differ BY TYPE_CONTEXT that in turn may point 
     to TRANSLATION_UNIT_DECL.
     Ada also builds variants of types with different TYPE_CONTEXT.   */
#if 0
  if (!in_lto_p || !TYPE_FILE_SCOPE_P (t))
    verify_variant_match (TYPE_CONTEXT);
#endif
  if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
    verify_variant_match (TYPE_STRING_FLAG);
  if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
    verify_variant_match (TYPE_CXX_ODR_P);
  if (TYPE_ALIAS_SET_KNOWN_P (t))
    {
      error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
      debug_tree (tv);
      return false;
    }

  /* tree_type_non_common checks.  */

  /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
     and dangle the pointer from time to time.  */
  if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
      && (in_lto_p || !TYPE_VFIELD (tv)
	  || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
    {
      error ("type variant has different %<TYPE_VFIELD%>");
      debug_tree (tv);
      return false;
    }
  if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
       || TREE_CODE (t) == INTEGER_TYPE
       || TREE_CODE (t) == BOOLEAN_TYPE
       || TREE_CODE (t) == REAL_TYPE
       || TREE_CODE (t) == FIXED_POINT_TYPE)
    {
      verify_variant_match (TYPE_MAX_VALUE);
      verify_variant_match (TYPE_MIN_VALUE);
    }
  if (TREE_CODE (t) == METHOD_TYPE)
    verify_variant_match (TYPE_METHOD_BASETYPE);
  if (TREE_CODE (t) == OFFSET_TYPE)
    verify_variant_match (TYPE_OFFSET_BASETYPE);
  if (TREE_CODE (t) == ARRAY_TYPE)
    verify_variant_match (TYPE_ARRAY_MAX_SIZE);
  /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
     or even type's main variant.  This is needed to make bootstrap pass
     and the bug seems new in GCC 5.
     C++ FE should be updated to make this consistent and we should check
     that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
     is a match with main variant.

     Also disable the check for Java for now because of parser hack that builds
     first an dummy BINFO and then sometimes replace it by real BINFO in some
     of the copies.  */
  if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
      && TYPE_BINFO (t) != TYPE_BINFO (tv)
      /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
	 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
	 at LTO time only.  */
      && (in_lto_p && odr_type_p (t)))
    {
      error ("type variant has different %<TYPE_BINFO%>");
      debug_tree (tv);
      error ("type variant%'s %<TYPE_BINFO%>");
      debug_tree (TYPE_BINFO (tv));
      error ("type%'s %<TYPE_BINFO%>");
      debug_tree (TYPE_BINFO (t));
      return false;
    }

  /* Check various uses of TYPE_VALUES_RAW.  */
  if (TREE_CODE (t) == ENUMERAL_TYPE
      && TYPE_VALUES (t))
    verify_variant_match (TYPE_VALUES);
  else if (TREE_CODE (t) == ARRAY_TYPE)
    verify_variant_match (TYPE_DOMAIN);
  /* Permit incomplete variants of complete type.  While FEs may complete
     all variants, this does not happen for C++ templates in all cases.  */
  else if (RECORD_OR_UNION_TYPE_P (t)
	   && COMPLETE_TYPE_P (t)
	   && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
    {
      tree f1, f2;

      /* Fortran builds qualified variants as new records with items of
	 qualified type. Verify that they looks same.  */
      for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
	   f1 && f2;
	   f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
	if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
	    || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
		 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
		/* FIXME: gfc_nonrestricted_type builds all types as variants
		   with exception of pointer types.  It deeply copies the type
		   which means that we may end up with a variant type
		   referring non-variant pointer.  We may change it to
		   produce types as variants, too, like
		   objc_get_protocol_qualified_type does.  */
		&& !POINTER_TYPE_P (TREE_TYPE (f1)))
	    || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
	    || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
	  break;
      if (f1 || f2)
	{
	  error ("type variant has different %<TYPE_FIELDS%>");
	  debug_tree (tv);
	  error ("first mismatch is field");
	  debug_tree (f1);
	  error ("and field");
	  debug_tree (f2);
          return false;
	}
    }
  else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
    verify_variant_match (TYPE_ARG_TYPES);
  /* For C++ the qualified variant of array type is really an array type
     of qualified TREE_TYPE.
     objc builds variants of pointer where pointer to type is a variant, too
     in objc_get_protocol_qualified_type.  */
  if (TREE_TYPE (t) != TREE_TYPE (tv)
      && ((TREE_CODE (t) != ARRAY_TYPE
	   && !POINTER_TYPE_P (t))
	  || TYPE_MAIN_VARIANT (TREE_TYPE (t))
	     != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
    {
      error ("type variant has different %<TREE_TYPE%>");
      debug_tree (tv);
      error ("type variant%'s %<TREE_TYPE%>");
      debug_tree (TREE_TYPE (tv));
      error ("type%'s %<TREE_TYPE%>");
      debug_tree (TREE_TYPE (t));
      return false;
    }
  if (type_with_alias_set_p (t)
      && !gimple_canonical_types_compatible_p (t, tv, false))
    {
      error ("type is not compatible with its variant");
      debug_tree (tv);
      error ("type variant%'s %<TREE_TYPE%>");
      debug_tree (TREE_TYPE (tv));
      error ("type%'s %<TREE_TYPE%>");
      debug_tree (TREE_TYPE (t));
      return false;
    }
  return true;
#undef verify_variant_match
}


/* The TYPE_CANONICAL merging machinery.  It should closely resemble
   the middle-end types_compatible_p function.  It needs to avoid
   claiming types are different for types that should be treated
   the same with respect to TBAA.  Canonical types are also used
   for IL consistency checks via the useless_type_conversion_p
   predicate which does not handle all type kinds itself but falls
   back to pointer-comparison of TYPE_CANONICAL for aggregates
   for example.  */

/* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
   type calculation because we need to allow inter-operability between signed
   and unsigned variants.  */

bool
type_with_interoperable_signedness (const_tree type)
{
  /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
     signed char and unsigned char.  Similarly fortran FE builds
     C_SIZE_T as signed type, while C defines it unsigned.  */

  return tree_code_for_canonical_type_merging (TREE_CODE (type))
	   == INTEGER_TYPE
         && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
	     || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
}

/* Return true iff T1 and T2 are structurally identical for what
   TBAA is concerned.  
   This function is used both by lto.c canonical type merging and by the
   verifier.  If TRUST_TYPE_CANONICAL we do not look into structure of types
   that have TYPE_CANONICAL defined and assume them equivalent.  This is useful
   only for LTO because only in these cases TYPE_CANONICAL equivalence
   correspond to one defined by gimple_canonical_types_compatible_p.  */

bool
gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
				     bool trust_type_canonical)
{
  /* Type variants should be same as the main variant.  When not doing sanity
     checking to verify this fact, go to main variants and save some work.  */
  if (trust_type_canonical)
    {
      t1 = TYPE_MAIN_VARIANT (t1);
      t2 = TYPE_MAIN_VARIANT (t2);
    }

  /* Check first for the obvious case of pointer identity.  */
  if (t1 == t2)
    return true;

  /* Check that we have two types to compare.  */
  if (t1 == NULL_TREE || t2 == NULL_TREE)
    return false;

  /* We consider complete types always compatible with incomplete type.
     This does not make sense for canonical type calculation and thus we
     need to ensure that we are never called on it.

     FIXME: For more correctness the function probably should have three modes
	1) mode assuming that types are complete mathcing their structure
	2) mode allowing incomplete types but producing equivalence classes
	   and thus ignoring all info from complete types
	3) mode allowing incomplete types to match complete but checking
	   compatibility between complete types.

     1 and 2 can be used for canonical type calculation. 3 is the real
     definition of type compatibility that can be used i.e. for warnings during
     declaration merging.  */

  gcc_assert (!trust_type_canonical
	      || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));

  /* If the types have been previously registered and found equal
     they still are.  */

  if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
      && trust_type_canonical)
    {
      /* Do not use TYPE_CANONICAL of pointer types.  For LTO streamed types
	 they are always NULL, but they are set to non-NULL for types
	 constructed by build_pointer_type and variants.  In this case the
	 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
	 all pointers are considered equal.  Be sure to not return false
	 negatives.  */
      gcc_checking_assert (canonical_type_used_p (t1)
			   && canonical_type_used_p (t2));
      return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
    }

  /* For types where we do ODR based TBAA the canonical type is always
     set correctly, so we know that types are different if their
     canonical types does not match.  */
  if (trust_type_canonical
      && (odr_type_p (t1) && odr_based_tbaa_p (t1))
	  != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
    return false;

  /* Can't be the same type if the types don't have the same code.  */
  enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
  if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
    return false;

  /* Qualifiers do not matter for canonical type comparison purposes.  */

  /* Void types and nullptr types are always the same.  */
  if (TREE_CODE (t1) == VOID_TYPE
      || TREE_CODE (t1) == NULLPTR_TYPE)
    return true;

  /* Can't be the same type if they have different mode.  */
  if (TYPE_MODE (t1) != TYPE_MODE (t2))
    return false;

  /* Non-aggregate types can be handled cheaply.  */
  if (INTEGRAL_TYPE_P (t1)
      || SCALAR_FLOAT_TYPE_P (t1)
      || FIXED_POINT_TYPE_P (t1)
      || TREE_CODE (t1) == VECTOR_TYPE
      || TREE_CODE (t1) == COMPLEX_TYPE
      || TREE_CODE (t1) == OFFSET_TYPE
      || POINTER_TYPE_P (t1))
    {
      /* Can't be the same type if they have different recision.  */
      if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
	return false;

      /* In some cases the signed and unsigned types are required to be
	 inter-operable.  */
      if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
	  && !type_with_interoperable_signedness (t1))
	return false;

      /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
	 interoperable with "signed char".  Unless all frontends are revisited
	 to agree on these types, we must ignore the flag completely.  */

      /* Fortran standard define C_PTR type that is compatible with every
 	 C pointer.  For this reason we need to glob all pointers into one.
	 Still pointers in different address spaces are not compatible.  */
      if (POINTER_TYPE_P (t1))
	{
	  if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
	      != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
	    return false;
	}

      /* Tail-recurse to components.  */
      if (TREE_CODE (t1) == VECTOR_TYPE
	  || TREE_CODE (t1) == COMPLEX_TYPE)
	return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
						    TREE_TYPE (t2),
						    trust_type_canonical);

      return true;
    }

  /* Do type-specific comparisons.  */
  switch (TREE_CODE (t1))
    {
    case ARRAY_TYPE:
      /* Array types are the same if the element types are the same and
	 the number of elements are the same.  */
      if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
						trust_type_canonical)
	  || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
	  || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
	  || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
	return false;
      else
	{
	  tree i1 = TYPE_DOMAIN (t1);
	  tree i2 = TYPE_DOMAIN (t2);

	  /* For an incomplete external array, the type domain can be
 	     NULL_TREE.  Check this condition also.  */
	  if (i1 == NULL_TREE && i2 == NULL_TREE)
	    return true;
	  else if (i1 == NULL_TREE || i2 == NULL_TREE)
	    return false;
	  else
	    {
	      tree min1 = TYPE_MIN_VALUE (i1);
	      tree min2 = TYPE_MIN_VALUE (i2);
	      tree max1 = TYPE_MAX_VALUE (i1);
	      tree max2 = TYPE_MAX_VALUE (i2);

	      /* The minimum/maximum values have to be the same.  */
	      if ((min1 == min2
		   || (min1 && min2
		       && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
			    && TREE_CODE (min2) == PLACEHOLDER_EXPR)
		           || operand_equal_p (min1, min2, 0))))
		  && (max1 == max2
		      || (max1 && max2
			  && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
			       && TREE_CODE (max2) == PLACEHOLDER_EXPR)
			      || operand_equal_p (max1, max2, 0)))))
		return true;
	      else
		return false;
	    }
	}

    case METHOD_TYPE:
    case FUNCTION_TYPE:
      /* Function types are the same if the return type and arguments types
	 are the same.  */
      if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
						trust_type_canonical))
	return false;

      if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
	return true;
      else
	{
	  tree parms1, parms2;

	  for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
	       parms1 && parms2;
	       parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
	    {
	      if (!gimple_canonical_types_compatible_p
		     (TREE_VALUE (parms1), TREE_VALUE (parms2),
		      trust_type_canonical))
		return false;
	    }

	  if (parms1 || parms2)
	    return false;

	  return true;
	}

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree f1, f2;

	/* Don't try to compare variants of an incomplete type, before
	   TYPE_FIELDS has been copied around.  */
	if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
	  return true;


	if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
	  return false;

	/* For aggregate types, all the fields must be the same.  */
	for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
	     f1 || f2;
	     f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
	  {
	    /* Skip non-fields and zero-sized fields.  */
	    while (f1 && (TREE_CODE (f1) != FIELD_DECL
			  || (DECL_SIZE (f1)
			      && integer_zerop (DECL_SIZE (f1)))))
	      f1 = TREE_CHAIN (f1);
	    while (f2 && (TREE_CODE (f2) != FIELD_DECL
			  || (DECL_SIZE (f2)
			      && integer_zerop (DECL_SIZE (f2)))))
	      f2 = TREE_CHAIN (f2);
	    if (!f1 || !f2)
	      break;
	    /* The fields must have the same name, offset and type.  */
	    if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
		|| !gimple_compare_field_offset (f1, f2)
		|| !gimple_canonical_types_compatible_p
		      (TREE_TYPE (f1), TREE_TYPE (f2),
		       trust_type_canonical))
	      return false;
	  }

	/* If one aggregate has more fields than the other, they
	   are not the same.  */
	if (f1 || f2)
	  return false;

	return true;
      }

    default:
      /* Consider all types with language specific trees in them mutually
	 compatible.  This is executed only from verify_type and false
         positives can be tolerated.  */
      gcc_assert (!in_lto_p);
      return true;
    }
}

/* Verify type T.  */

void
verify_type (const_tree t)
{
  bool error_found = false;
  tree mv = TYPE_MAIN_VARIANT (t);
  if (!mv)
    {
      error ("main variant is not defined");
      error_found = true;
    }
  else if (mv != TYPE_MAIN_VARIANT (mv))
    {
      error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
      debug_tree (mv);
      error_found = true;
    }
  else if (t != mv && !verify_type_variant (t, mv))
    error_found = true;

  tree ct = TYPE_CANONICAL (t);
  if (!ct)
    ;
  else if (TYPE_CANONICAL (t) != ct)
    {
      error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
      debug_tree (ct);
      error_found = true;
    }
  /* Method and function types cannot be used to address memory and thus
     TYPE_CANONICAL really matters only for determining useless conversions.

     FIXME: C++ FE produce declarations of builtin functions that are not
     compatible with main variants.  */
  else if (TREE_CODE (t) == FUNCTION_TYPE)
    ;
  else if (t != ct
	   /* FIXME: gimple_canonical_types_compatible_p cannot compare types
	      with variably sized arrays because their sizes possibly
	      gimplified to different variables.  */
	   && !variably_modified_type_p (ct, NULL)
	   && !gimple_canonical_types_compatible_p (t, ct, false)
	   && COMPLETE_TYPE_P (t))
    {
      error ("%<TYPE_CANONICAL%> is not compatible");
      debug_tree (ct);
      error_found = true;
    }

  if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
      && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
    {
      error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
      debug_tree (ct);
      error_found = true;
    }
  if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
   {
      error ("%<TYPE_CANONICAL%> of main variant is not main variant");
      debug_tree (ct);
      debug_tree (TYPE_MAIN_VARIANT (ct));
      error_found = true;
   }


  /* Check various uses of TYPE_MIN_VALUE_RAW.  */
  if (RECORD_OR_UNION_TYPE_P (t))
    {
      /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
	 and danagle the pointer from time to time.  */
      if (TYPE_VFIELD (t)
	  && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
	  && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
	{
	  error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
	  debug_tree (TYPE_VFIELD (t));
	  error_found = true;
	}
    }
  else if (TREE_CODE (t) == POINTER_TYPE)
    {
      if (TYPE_NEXT_PTR_TO (t)
	  && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
	{
	  error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
	  debug_tree (TYPE_NEXT_PTR_TO (t));
	  error_found = true;
	}
    }
  else if (TREE_CODE (t) == REFERENCE_TYPE)
    {
      if (TYPE_NEXT_REF_TO (t)
	  && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
	{
	  error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
	  debug_tree (TYPE_NEXT_REF_TO (t));
	  error_found = true;
	}
    }
  else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
	   || TREE_CODE (t) == FIXED_POINT_TYPE)
    {
      /* FIXME: The following check should pass:
	  useless_type_conversion_p (const_cast <tree> (t),
				     TREE_TYPE (TYPE_MIN_VALUE (t))
	 but does not for C sizetypes in LTO.  */
    }

  /* Check various uses of TYPE_MAXVAL_RAW.  */
  if (RECORD_OR_UNION_TYPE_P (t))
    {
      if (!TYPE_BINFO (t))
	;
      else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
	{
	  error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
	  debug_tree (TYPE_BINFO (t));
	  error_found = true;
	}
      else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
	{
	  error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
	  debug_tree (TREE_TYPE (TYPE_BINFO (t)));
	  error_found = true;
	}
    }
  else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
    {
      if (TYPE_METHOD_BASETYPE (t)
	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
	{
	  error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
	  debug_tree (TYPE_METHOD_BASETYPE (t));
	  error_found = true;
	}
    }
  else if (TREE_CODE (t) == OFFSET_TYPE)
    {
      if (TYPE_OFFSET_BASETYPE (t)
	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
	{
	  error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
	  debug_tree (TYPE_OFFSET_BASETYPE (t));
	  error_found = true;
	}
    }
  else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
	   || TREE_CODE (t) == FIXED_POINT_TYPE)
    {
      /* FIXME: The following check should pass:
	  useless_type_conversion_p (const_cast <tree> (t),
				     TREE_TYPE (TYPE_MAX_VALUE (t))
	 but does not for C sizetypes in LTO.  */
    }
  else if (TREE_CODE (t) == ARRAY_TYPE)
    {
      if (TYPE_ARRAY_MAX_SIZE (t)
	  && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
        {
	  error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
	  debug_tree (TYPE_ARRAY_MAX_SIZE (t));
	  error_found = true;
        } 
    }
  else if (TYPE_MAX_VALUE_RAW (t))
    {
      error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
      debug_tree (TYPE_MAX_VALUE_RAW (t));
      error_found = true;
    }

  if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
    {
      error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
      debug_tree (TYPE_LANG_SLOT_1 (t));
      error_found = true;
    }

  /* Check various uses of TYPE_VALUES_RAW.  */
  if (TREE_CODE (t) == ENUMERAL_TYPE)
    for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
      {
	tree value = TREE_VALUE (l);
	tree name = TREE_PURPOSE (l);

	/* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
 	   CONST_DECL of ENUMERAL TYPE.  */
	if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
	  {
	    error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
	    debug_tree (value);
	    debug_tree (name);
	    error_found = true;
	  }
	if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
	    && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
	  {
	    error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
		   "to the enum");
	    debug_tree (value);
	    debug_tree (name);
	    error_found = true;
	  }
	if (TREE_CODE (name) != IDENTIFIER_NODE)
	  {
	    error ("enum value name is not %<IDENTIFIER_NODE%>");
	    debug_tree (value);
	    debug_tree (name);
	    error_found = true;
	  }
      }
  else if (TREE_CODE (t) == ARRAY_TYPE)
    {
      if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
	{
	  error ("array %<TYPE_DOMAIN%> is not integer type");
	  debug_tree (TYPE_DOMAIN (t));
	  error_found = true;
	}
    }
  else if (RECORD_OR_UNION_TYPE_P (t))
    {
      if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
	{
	  error ("%<TYPE_FIELDS%> defined in incomplete type");
	  error_found = true;
	}
      for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
	{
	  /* TODO: verify properties of decls.  */
	  if (TREE_CODE (fld) == FIELD_DECL)
	    ;
	  else if (TREE_CODE (fld) == TYPE_DECL)
	    ;
	  else if (TREE_CODE (fld) == CONST_DECL)
	    ;
	  else if (VAR_P (fld))
	    ;
	  else if (TREE_CODE (fld) == TEMPLATE_DECL)
	    ;
	  else if (TREE_CODE (fld) == USING_DECL)
	    ;
	  else if (TREE_CODE (fld) == FUNCTION_DECL)
	    ;
	  else
	    {
	      error ("wrong tree in %<TYPE_FIELDS%> list");
	      debug_tree (fld);
	      error_found = true;
	    }
	}
    }
  else if (TREE_CODE (t) == INTEGER_TYPE
	   || TREE_CODE (t) == BOOLEAN_TYPE
	   || TREE_CODE (t) == OFFSET_TYPE
	   || TREE_CODE (t) == REFERENCE_TYPE
	   || TREE_CODE (t) == NULLPTR_TYPE
	   || TREE_CODE (t) == POINTER_TYPE)
    {
      if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
	{
	  error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
		 "is %p",
		 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
	  error_found = true;
	}
      else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
	{
	  error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
	  debug_tree (TYPE_CACHED_VALUES (t));
	  error_found = true;
	}
      /* Verify just enough of cache to ensure that no one copied it to new type.
 	 All copying should go by copy_node that should clear it.  */
      else if (TYPE_CACHED_VALUES_P (t))
	{
	  int i;
	  for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
	    if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
		&& TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
	      {
		error ("wrong %<TYPE_CACHED_VALUES%> entry");
		debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
		error_found = true;
		break;
	      }
	}
    }
  else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
    for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
      {
	/* C++ FE uses TREE_PURPOSE to store initial values.  */
	if (TREE_PURPOSE (l) && in_lto_p)
	  {
	    error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
	    debug_tree (l);
	    error_found = true;
	  }
	if (!TYPE_P (TREE_VALUE (l)))
	  {
	    error ("wrong entry in %<TYPE_ARG_TYPES%> list");
	    debug_tree (l);
	    error_found = true;
	  }
      }
  else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
    {
      error ("%<TYPE_VALUES_RAW%> field is non-NULL");
      debug_tree (TYPE_VALUES_RAW (t));
      error_found = true;
    }
  if (TREE_CODE (t) != INTEGER_TYPE
      && TREE_CODE (t) != BOOLEAN_TYPE
      && TREE_CODE (t) != OFFSET_TYPE
      && TREE_CODE (t) != REFERENCE_TYPE
      && TREE_CODE (t) != NULLPTR_TYPE
      && TREE_CODE (t) != POINTER_TYPE
      && TYPE_CACHED_VALUES_P (t))
    {
      error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
      error_found = true;
    }
  
  /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
     TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
     of a type. */
  if (TREE_CODE (t) == METHOD_TYPE
      && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
    {
	error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
	error_found = true;
    }

  if (error_found)
    {
      debug_tree (const_cast <tree> (t));
      internal_error ("%qs failed", __func__);
    }
}


/* Return 1 if ARG interpreted as signed in its precision is known to be
   always positive or 2 if ARG is known to be always negative, or 3 if
   ARG may be positive or negative.  */

int
get_range_pos_neg (tree arg)
{
  if (arg == error_mark_node)
    return 3;

  int prec = TYPE_PRECISION (TREE_TYPE (arg));
  int cnt = 0;
  if (TREE_CODE (arg) == INTEGER_CST)
    {
      wide_int w = wi::sext (wi::to_wide (arg), prec);
      if (wi::neg_p (w))
	return 2;
      else
	return 1;
    }
  while (CONVERT_EXPR_P (arg)
	 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
	 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
    {
      arg = TREE_OPERAND (arg, 0);
      /* Narrower value zero extended into wider type
	 will always result in positive values.  */
      if (TYPE_UNSIGNED (TREE_TYPE (arg))
	  && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
	return 1;
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      if (++cnt > 30)
	return 3;
    }

  if (TREE_CODE (arg) != SSA_NAME)
    return 3;
  value_range r;
  while (!get_global_range_query ()->range_of_expr (r, arg) || r.kind () != VR_RANGE)
    {
      gimple *g = SSA_NAME_DEF_STMT (arg);
      if (is_gimple_assign (g)
	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
	{
	  tree t = gimple_assign_rhs1 (g);
	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
	      && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
	    {
	      if (TYPE_UNSIGNED (TREE_TYPE (t))
		  && TYPE_PRECISION (TREE_TYPE (t)) < prec)
		return 1;
	      prec = TYPE_PRECISION (TREE_TYPE (t));
	      arg = t;
	      if (++cnt > 30)
		return 3;
	      continue;
	    }
	}
      return 3;
    }
  if (TYPE_UNSIGNED (TREE_TYPE (arg)))
    {
      /* For unsigned values, the "positive" range comes
	 below the "negative" range.  */
      if (!wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED))
	return 1;
      if (wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED))
	return 2;
    }
  else
    {
      if (!wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED))
	return 1;
      if (wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED))
	return 2;
    }
  return 3;
}




/* Return true if ARG is marked with the nonnull attribute in the
   current function signature.  */

bool
nonnull_arg_p (const_tree arg)
{
  tree t, attrs, fntype;
  unsigned HOST_WIDE_INT arg_num;

  gcc_assert (TREE_CODE (arg) == PARM_DECL
	      && (POINTER_TYPE_P (TREE_TYPE (arg))
		  || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));

  /* The static chain decl is always non null.  */
  if (arg == cfun->static_chain_decl)
    return true;

  /* THIS argument of method is always non-NULL.  */
  if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
      && arg == DECL_ARGUMENTS (cfun->decl)
      && flag_delete_null_pointer_checks)
    return true;

  /* Values passed by reference are always non-NULL.  */
  if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
      && flag_delete_null_pointer_checks)
    return true;

  fntype = TREE_TYPE (cfun->decl);
  for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
    {
      attrs = lookup_attribute ("nonnull", attrs);

      /* If "nonnull" wasn't specified, we know nothing about the argument.  */
      if (attrs == NULL_TREE)
	return false;

      /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
      if (TREE_VALUE (attrs) == NULL_TREE)
	return true;

      /* Get the position number for ARG in the function signature.  */
      for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
	   t;
	   t = DECL_CHAIN (t), arg_num++)
	{
	  if (t == arg)
	    break;
	}

      gcc_assert (t == arg);

      /* Now see if ARG_NUM is mentioned in the nonnull list.  */
      for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
	{
	  if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
	    return true;
	}
    }

  return false;
}

/* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
   information.  */

location_t
set_block (location_t loc, tree block)
{
  location_t pure_loc = get_pure_location (loc);
  source_range src_range = get_range_from_loc (line_table, loc);
  return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
}

location_t
set_source_range (tree expr, location_t start, location_t finish)
{
  source_range src_range;
  src_range.m_start = start;
  src_range.m_finish = finish;
  return set_source_range (expr, src_range);
}

location_t
set_source_range (tree expr, source_range src_range)
{
  if (!EXPR_P (expr))
    return UNKNOWN_LOCATION;

  location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
  location_t adhoc = COMBINE_LOCATION_DATA (line_table,
					    pure_loc,
					    src_range,
					    NULL);
  SET_EXPR_LOCATION (expr, adhoc);
  return adhoc;
}

/* Return EXPR, potentially wrapped with a node expression LOC,
   if !CAN_HAVE_LOCATION_P (expr).

   NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
   VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.

   Wrapper nodes can be identified using location_wrapper_p.  */

tree
maybe_wrap_with_location (tree expr, location_t loc)
{
  if (expr == NULL)
    return NULL;
  if (loc == UNKNOWN_LOCATION)
    return expr;
  if (CAN_HAVE_LOCATION_P (expr))
    return expr;
  /* We should only be adding wrappers for constants and for decls,
     or for some exceptional tree nodes (e.g. BASELINK in the C++ FE).  */
  gcc_assert (CONSTANT_CLASS_P (expr)
	      || DECL_P (expr)
	      || EXCEPTIONAL_CLASS_P (expr));

  /* For now, don't add wrappers to exceptional tree nodes, to minimize
     any impact of the wrapper nodes.  */
  if (EXCEPTIONAL_CLASS_P (expr))
    return expr;

  /* Compiler-generated temporary variables don't need a wrapper.  */
  if (DECL_P (expr) && DECL_ARTIFICIAL (expr) && DECL_IGNORED_P (expr))
    return expr;

  /* If any auto_suppress_location_wrappers are active, don't create
     wrappers.  */
  if (suppress_location_wrappers > 0)
    return expr;

  tree_code code
    = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
	|| (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
       ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
  tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
  /* Mark this node as being a wrapper.  */
  EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
  return wrapper;
}

int suppress_location_wrappers;

/* Return the name of combined function FN, for debugging purposes.  */

const char *
combined_fn_name (combined_fn fn)
{
  if (builtin_fn_p (fn))
    {
      tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
      return IDENTIFIER_POINTER (DECL_NAME (fndecl));
    }
  else
    return internal_fn_name (as_internal_fn (fn));
}

/* Return a bitmap with a bit set corresponding to each argument in
   a function call type FNTYPE declared with attribute nonnull,
   or null if none of the function's argument are nonnull.  The caller
   must free the bitmap.  */

bitmap
get_nonnull_args (const_tree fntype)
{
  if (fntype == NULL_TREE)
    return NULL;

  bitmap argmap = NULL;
  if (TREE_CODE (fntype) == METHOD_TYPE)
    {
      /* The this pointer in C++ non-static member functions is
	 implicitly nonnull whether or not it's declared as such.  */
      argmap = BITMAP_ALLOC (NULL);
      bitmap_set_bit (argmap, 0);
    }

  tree attrs = TYPE_ATTRIBUTES (fntype);
  if (!attrs)
    return argmap;

  /* A function declaration can specify multiple attribute nonnull,
     each with zero or more arguments.  The loop below creates a bitmap
     representing a union of all the arguments.  An empty (but non-null)
     bitmap means that all arguments have been declaraed nonnull.  */
  for ( ; attrs; attrs = TREE_CHAIN (attrs))
    {
      attrs = lookup_attribute ("nonnull", attrs);
      if (!attrs)
	break;

      if (!argmap)
	argmap = BITMAP_ALLOC (NULL);

      if (!TREE_VALUE (attrs))
	{
	  /* Clear the bitmap in case a previous attribute nonnull
	     set it and this one overrides it for all arguments.  */
	  bitmap_clear (argmap);
	  return argmap;
	}

      /* Iterate over the indices of the format arguments declared nonnull
	 and set a bit for each.  */
      for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
	{
	  unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
	  bitmap_set_bit (argmap, val);
	}
    }

  return argmap;
}

/* Returns true if TYPE is a type where it and all of its subobjects
   (recursively) are of structure, union, or array type.  */

bool
is_empty_type (const_tree type)
{
  if (RECORD_OR_UNION_TYPE_P (type))
    {
      for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL
	    && !DECL_PADDING_P (field)
	    && !is_empty_type (TREE_TYPE (field)))
	  return false;
      return true;
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    return (integer_minus_onep (array_type_nelts (type))
	    || TYPE_DOMAIN (type) == NULL_TREE
	    || is_empty_type (TREE_TYPE (type)));
  return false;
}

/* Implement TARGET_EMPTY_RECORD_P.  Return true if TYPE is an empty type
   that shouldn't be passed via stack.  */

bool
default_is_empty_record (const_tree type)
{
  if (!abi_version_at_least (12))
    return false;

  if (type == error_mark_node)
    return false;

  if (TREE_ADDRESSABLE (type))
    return false;

  return is_empty_type (TYPE_MAIN_VARIANT (type));
}

/* Determine whether TYPE is a structure with a flexible array member,
   or a union containing such a structure (possibly recursively).  */

bool
flexible_array_type_p (const_tree type)
{
  tree x, last;
  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
      last = NULL_TREE;
      for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
	if (TREE_CODE (x) == FIELD_DECL)
	  last = x;
      if (last == NULL_TREE)
	return false;
      if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
	  && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
	  && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
	  && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
	return true;
      return false;
    case UNION_TYPE:
      for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
	{
	  if (TREE_CODE (x) == FIELD_DECL
	      && flexible_array_type_p (TREE_TYPE (x)))
	    return true;
	}
      return false;
    default:
      return false;
  }
}

/* Like int_size_in_bytes, but handle empty records specially.  */

HOST_WIDE_INT
arg_int_size_in_bytes (const_tree type)
{
  return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
}

/* Like size_in_bytes, but handle empty records specially.  */

tree
arg_size_in_bytes (const_tree type)
{
  return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
}

/* Return true if an expression with CODE has to have the same result type as
   its first operand.  */

bool
expr_type_first_operand_type_p (tree_code code)
{
  switch (code)
    {
    case NEGATE_EXPR:
    case ABS_EXPR:
    case BIT_NOT_EXPR:
    case PAREN_EXPR:
    case CONJ_EXPR:

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case RDIV_EXPR:
    case EXACT_DIV_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      return true;

    default:
      return false;
    }
}

/* Return a typenode for the "standard" C type with a given name.  */
tree
get_typenode_from_name (const char *name)
{
  if (name == NULL || *name == '\0')
    return NULL_TREE;

  if (strcmp (name, "char") == 0)
    return char_type_node;
  if (strcmp (name, "unsigned char") == 0)
    return unsigned_char_type_node;
  if (strcmp (name, "signed char") == 0)
    return signed_char_type_node;

  if (strcmp (name, "short int") == 0)
    return short_integer_type_node;
  if (strcmp (name, "short unsigned int") == 0)
    return short_unsigned_type_node;

  if (strcmp (name, "int") == 0)
    return integer_type_node;
  if (strcmp (name, "unsigned int") == 0)
    return unsigned_type_node;

  if (strcmp (name, "long int") == 0)
    return long_integer_type_node;
  if (strcmp (name, "long unsigned int") == 0)
    return long_unsigned_type_node;

  if (strcmp (name, "long long int") == 0)
    return long_long_integer_type_node;
  if (strcmp (name, "long long unsigned int") == 0)
    return long_long_unsigned_type_node;

  gcc_unreachable ();
}

/* List of pointer types used to declare builtins before we have seen their
   real declaration.

   Keep the size up to date in tree.h !  */
const builtin_structptr_type builtin_structptr_types[6] = 
{
  { fileptr_type_node, ptr_type_node, "FILE" },
  { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
  { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
  { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
  { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
  { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
};

/* Return the maximum object size.  */

tree
max_object_size (void)
{
  /* To do: Make this a configurable parameter.  */
  return TYPE_MAX_VALUE (ptrdiff_type_node);
}

/* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
   parameter default to false and that weeds out error_mark_node.  */

bool
verify_type_context (location_t loc, type_context_kind context,
		     const_tree type, bool silent_p)
{
  if (type == error_mark_node)
    return true;

  gcc_assert (TYPE_P (type));
  return (!targetm.verify_type_context
	  || targetm.verify_type_context (loc, context, type, silent_p));
}

/* Return true if NEW_ASM and DELETE_ASM name a valid pair of new and
   delete operators.  Return false if they may or may not name such
   a pair and, when nonnull, set *PCERTAIN to true if they certainly
   do not.  */

bool
valid_new_delete_pair_p (tree new_asm, tree delete_asm,
			 bool *pcertain /* = NULL */)
{
  bool certain;
  if (!pcertain)
    pcertain = &certain;

  const char *new_name = IDENTIFIER_POINTER (new_asm);
  const char *delete_name = IDENTIFIER_POINTER (delete_asm);
  unsigned int new_len = IDENTIFIER_LENGTH (new_asm);
  unsigned int delete_len = IDENTIFIER_LENGTH (delete_asm);

  /* The following failures are due to invalid names so they're not
     considered certain mismatches.  */
  *pcertain = false;

  if (new_len < 5 || delete_len < 6)
    return false;
  if (new_name[0] == '_')
    ++new_name, --new_len;
  if (new_name[0] == '_')
    ++new_name, --new_len;
  if (delete_name[0] == '_')
    ++delete_name, --delete_len;
  if (delete_name[0] == '_')
    ++delete_name, --delete_len;
  if (new_len < 4 || delete_len < 5)
    return false;

  /* The following failures are due to names of user-defined operators
     so they're also not considered certain mismatches.  */

  /* *_len is now just the length after initial underscores.  */
  if (new_name[0] != 'Z' || new_name[1] != 'n')
    return false;
  if (delete_name[0] != 'Z' || delete_name[1] != 'd')
    return false;

  /* The following failures are certain mismatches.  */
  *pcertain = true;

  /* _Znw must match _Zdl, _Zna must match _Zda.  */
  if ((new_name[2] != 'w' || delete_name[2] != 'l')
      && (new_name[2] != 'a' || delete_name[2] != 'a'))
    return false;
  /* 'j', 'm' and 'y' correspond to size_t.  */
  if (new_name[3] != 'j' && new_name[3] != 'm' && new_name[3] != 'y')
    return false;
  if (delete_name[3] != 'P' || delete_name[4] != 'v')
    return false;
  if (new_len == 4
      || (new_len == 18 && !memcmp (new_name + 4, "RKSt9nothrow_t", 14)))
    {
      /* _ZnXY or _ZnXYRKSt9nothrow_t matches
	 _ZdXPv, _ZdXPvY and _ZdXPvRKSt9nothrow_t.  */
      if (delete_len == 5)
	return true;
      if (delete_len == 6 && delete_name[5] == new_name[3])
	return true;
      if (delete_len == 19 && !memcmp (delete_name + 5, "RKSt9nothrow_t", 14))
	return true;
    }
  else if ((new_len == 19 && !memcmp (new_name + 4, "St11align_val_t", 15))
	   || (new_len == 33
	       && !memcmp (new_name + 4, "St11align_val_tRKSt9nothrow_t", 29)))
    {
      /* _ZnXYSt11align_val_t or _ZnXYSt11align_val_tRKSt9nothrow_t matches
	 _ZdXPvSt11align_val_t or _ZdXPvYSt11align_val_t or  or
	 _ZdXPvSt11align_val_tRKSt9nothrow_t.  */
      if (delete_len == 20 && !memcmp (delete_name + 5, "St11align_val_t", 15))
	return true;
      if (delete_len == 21
	  && delete_name[5] == new_name[3]
	  && !memcmp (delete_name + 6, "St11align_val_t", 15))
	return true;
      if (delete_len == 34
	  && !memcmp (delete_name + 5, "St11align_val_tRKSt9nothrow_t", 29))
	return true;
    }

  /* The negative result is conservative.  */
  *pcertain = false;
  return false;
}

/* Return the zero-based number corresponding to the argument being
   deallocated if FNDECL is a deallocation function or an out-of-bounds
   value if it isn't.  */

unsigned
fndecl_dealloc_argno (tree fndecl)
{
  /* A call to operator delete isn't recognized as one to a built-in.  */
  if (DECL_IS_OPERATOR_DELETE_P (fndecl))
    {
      if (DECL_IS_REPLACEABLE_OPERATOR (fndecl))
	return 0;

      /* Avoid placement delete that's not been inlined.  */
      tree fname = DECL_ASSEMBLER_NAME (fndecl);
      if (id_equal (fname, "_ZdlPvS_")       // ordinary form
	  || id_equal (fname, "_ZdaPvS_"))   // array form
	return UINT_MAX;
      return 0;
    }

  /* TODO: Handle user-defined functions with attribute malloc?  Handle
     known non-built-ins like fopen?  */
  if (fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
    {
      switch (DECL_FUNCTION_CODE (fndecl))
	{
	case BUILT_IN_FREE:
	case BUILT_IN_REALLOC:
	  return 0;
	default:
	  break;
	}
      return UINT_MAX;
    }

  tree attrs = DECL_ATTRIBUTES (fndecl);
  if (!attrs)
    return UINT_MAX;

  for (tree atfree = attrs;
       (atfree = lookup_attribute ("*dealloc", atfree));
       atfree = TREE_CHAIN (atfree))
    {
      tree alloc = TREE_VALUE (atfree);
      if (!alloc)
	continue;

      tree pos = TREE_CHAIN (alloc);
      if (!pos)
	return 0;

      pos = TREE_VALUE (pos);
      return TREE_INT_CST_LOW (pos) - 1;
    }

  return UINT_MAX;
}

/* If EXPR refers to a character array or pointer declared attribute
   nonstring, return a decl for that array or pointer and set *REF
   to the referenced enclosing object or pointer.  Otherwise return
   null.  */

tree
get_attr_nonstring_decl (tree expr, tree *ref)
{
  tree decl = expr;
  tree var = NULL_TREE;
  if (TREE_CODE (decl) == SSA_NAME)
    {
      gimple *def = SSA_NAME_DEF_STMT (decl);

      if (is_gimple_assign (def))
	{
	  tree_code code = gimple_assign_rhs_code (def);
	  if (code == ADDR_EXPR
	      || code == COMPONENT_REF
	      || code == VAR_DECL)
	    decl = gimple_assign_rhs1 (def);
	}
      else
	var = SSA_NAME_VAR (decl);
    }

  if (TREE_CODE (decl) == ADDR_EXPR)
    decl = TREE_OPERAND (decl, 0);

  /* To simplify calling code, store the referenced DECL regardless of
     the attribute determined below, but avoid storing the SSA_NAME_VAR
     obtained above (it's not useful for dataflow purposes).  */
  if (ref)
    *ref = decl;

  /* Use the SSA_NAME_VAR that was determined above to see if it's
     declared nonstring.  Otherwise drill down into the referenced
     DECL.  */
  if (var)
    decl = var;
  else if (TREE_CODE (decl) == ARRAY_REF)
    decl = TREE_OPERAND (decl, 0);
  else if (TREE_CODE (decl) == COMPONENT_REF)
    decl = TREE_OPERAND (decl, 1);
  else if (TREE_CODE (decl) == MEM_REF)
    return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);

  if (DECL_P (decl)
      && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
    return decl;

  return NULL_TREE;
}

#if CHECKING_P

namespace selftest {

/* Selftests for tree.  */

/* Verify that integer constants are sane.  */

static void
test_integer_constants ()
{
  ASSERT_TRUE (integer_type_node != NULL);
  ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);

  tree type = integer_type_node;

  tree zero = build_zero_cst (type);
  ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
  ASSERT_EQ (type, TREE_TYPE (zero));

  tree one = build_int_cst (type, 1);
  ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
  ASSERT_EQ (type, TREE_TYPE (zero));
}

/* Verify identifiers.  */

static void
test_identifiers ()
{
  tree identifier = get_identifier ("foo");
  ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
  ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
}

/* Verify LABEL_DECL.  */

static void
test_labels ()
{
  tree identifier = get_identifier ("err");
  tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
				identifier, void_type_node);
  ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
  ASSERT_FALSE (FORCED_LABEL (label_decl));
}

/* Return a new VECTOR_CST node whose type is TYPE and whose values
   are given by VALS.  */

static tree
build_vector (tree type, const vec<tree> &vals MEM_STAT_DECL)
{
  gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
  tree_vector_builder builder (type, vals.length (), 1);
  builder.splice (vals);
  return builder.build ();
}

/* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED.  */

static void
check_vector_cst (const vec<tree> &expected, tree actual)
{
  ASSERT_KNOWN_EQ (expected.length (),
		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
  for (unsigned int i = 0; i < expected.length (); ++i)
    ASSERT_EQ (wi::to_wide (expected[i]),
	       wi::to_wide (vector_cst_elt (actual, i)));
}

/* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
   and that its elements match EXPECTED.  */

static void
check_vector_cst_duplicate (const vec<tree> &expected, tree actual,
			    unsigned int npatterns)
{
  ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
  ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
  ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
  ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
  ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
  check_vector_cst (expected, actual);
}

/* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
   and NPATTERNS background elements, and that its elements match
   EXPECTED.  */

static void
check_vector_cst_fill (const vec<tree> &expected, tree actual,
		       unsigned int npatterns)
{
  ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
  ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
  ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
  ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
  ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
  check_vector_cst (expected, actual);
}

/* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
   and that its elements match EXPECTED.  */

static void
check_vector_cst_stepped (const vec<tree> &expected, tree actual,
			  unsigned int npatterns)
{
  ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
  ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
  ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
  ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
  ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
  check_vector_cst (expected, actual);
}

/* Test the creation of VECTOR_CSTs.  */

static void
test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
{
  auto_vec<tree, 8> elements (8);
  elements.quick_grow (8);
  tree element_type = build_nonstandard_integer_type (16, true);
  tree vector_type = build_vector_type (element_type, 8);

  /* Test a simple linear series with a base of 0 and a step of 1:
     { 0, 1, 2, 3, 4, 5, 6, 7 }.  */
  for (unsigned int i = 0; i < 8; ++i)
    elements[i] = build_int_cst (element_type, i);
  tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_stepped (elements, vector, 1);

  /* Try the same with the first element replaced by 100:
     { 100, 1, 2, 3, 4, 5, 6, 7 }.  */
  elements[0] = build_int_cst (element_type, 100);
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_stepped (elements, vector, 1);

  /* Try a series that wraps around.
     { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }.  */
  for (unsigned int i = 1; i < 8; ++i)
    elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_stepped (elements, vector, 1);

  /* Try a downward series:
     { 100, 79, 78, 77, 76, 75, 75, 73 }.  */
  for (unsigned int i = 1; i < 8; ++i)
    elements[i] = build_int_cst (element_type, 80 - i);
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_stepped (elements, vector, 1);

  /* Try two interleaved series with different bases and steps:
     { 100, 53, 66, 206, 62, 212, 58, 218 }.  */
  elements[1] = build_int_cst (element_type, 53);
  for (unsigned int i = 2; i < 8; i += 2)
    {
      elements[i] = build_int_cst (element_type, 70 - i * 2);
      elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
    }
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_stepped (elements, vector, 2);

  /* Try a duplicated value:
     { 100, 100, 100, 100, 100, 100, 100, 100 }.  */
  for (unsigned int i = 1; i < 8; ++i)
    elements[i] = elements[0];
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_duplicate (elements, vector, 1);

  /* Try an interleaved duplicated value:
     { 100, 55, 100, 55, 100, 55, 100, 55 }.  */
  elements[1] = build_int_cst (element_type, 55);
  for (unsigned int i = 2; i < 8; ++i)
    elements[i] = elements[i - 2];
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_duplicate (elements, vector, 2);

  /* Try a duplicated value with 2 exceptions
     { 41, 97, 100, 55, 100, 55, 100, 55 }.  */
  elements[0] = build_int_cst (element_type, 41);
  elements[1] = build_int_cst (element_type, 97);
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_fill (elements, vector, 2);

  /* Try with and without a step
     { 41, 97, 100, 21, 100, 35, 100, 49 }.  */
  for (unsigned int i = 3; i < 8; i += 2)
    elements[i] = build_int_cst (element_type, i * 7);
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_stepped (elements, vector, 2);

  /* Try a fully-general constant:
     { 41, 97, 100, 21, 100, 9990, 100, 49 }.  */
  elements[5] = build_int_cst (element_type, 9990);
  vector = build_vector (vector_type, elements PASS_MEM_STAT);
  check_vector_cst_fill (elements, vector, 4);
}

/* Verify that STRIP_NOPS (NODE) is EXPECTED.
   Helper function for test_location_wrappers, to deal with STRIP_NOPS
   modifying its argument in-place.  */

static void
check_strip_nops (tree node, tree expected)
{
  STRIP_NOPS (node);
  ASSERT_EQ (expected, node);
}

/* Verify location wrappers.  */

static void
test_location_wrappers ()
{
  location_t loc = BUILTINS_LOCATION;

  ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));

  /* Wrapping a constant.  */
  tree int_cst = build_int_cst (integer_type_node, 42);
  ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
  ASSERT_FALSE (location_wrapper_p (int_cst));

  tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
  ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
  ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
  ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));

  /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION.  */
  ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));

  /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P.  */
  tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
  ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
  ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));

  /* Wrapping a STRING_CST.  */
  tree string_cst = build_string (4, "foo");
  ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
  ASSERT_FALSE (location_wrapper_p (string_cst));

  tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
  ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
  ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
  ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
  ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));


  /* Wrapping a variable.  */
  tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
			     get_identifier ("some_int_var"),
			     integer_type_node);
  ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
  ASSERT_FALSE (location_wrapper_p (int_var));

  tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
  ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
  ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
  ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));

  /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
     wrapper.  */
  tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
  ASSERT_FALSE (location_wrapper_p (r_cast));
  ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));

  /* Verify that STRIP_NOPS removes wrappers.  */
  check_strip_nops (wrapped_int_cst, int_cst);
  check_strip_nops (wrapped_string_cst, string_cst);
  check_strip_nops (wrapped_int_var, int_var);
}

/* Test various tree predicates.  Verify that location wrappers don't
   affect the results.  */

static void
test_predicates ()
{
  /* Build various constants and wrappers around them.  */

  location_t loc = BUILTINS_LOCATION;

  tree i_0 = build_int_cst (integer_type_node, 0);
  tree wr_i_0 = maybe_wrap_with_location (i_0, loc);

  tree i_1 = build_int_cst (integer_type_node, 1);
  tree wr_i_1 = maybe_wrap_with_location (i_1, loc);

  tree i_m1 = build_int_cst (integer_type_node, -1);
  tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);

  tree f_0 = build_real_from_int_cst (float_type_node, i_0);
  tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
  tree f_1 = build_real_from_int_cst (float_type_node, i_1);
  tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
  tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
  tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);

  tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
  tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
  tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);

  tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
  tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
  tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);

  /* TODO: vector constants.  */

  /* Test integer_onep.  */
  ASSERT_FALSE (integer_onep (i_0));
  ASSERT_FALSE (integer_onep (wr_i_0));
  ASSERT_TRUE (integer_onep (i_1));
  ASSERT_TRUE (integer_onep (wr_i_1));
  ASSERT_FALSE (integer_onep (i_m1));
  ASSERT_FALSE (integer_onep (wr_i_m1));
  ASSERT_FALSE (integer_onep (f_0));
  ASSERT_FALSE (integer_onep (wr_f_0));
  ASSERT_FALSE (integer_onep (f_1));
  ASSERT_FALSE (integer_onep (wr_f_1));
  ASSERT_FALSE (integer_onep (f_m1));
  ASSERT_FALSE (integer_onep (wr_f_m1));
  ASSERT_FALSE (integer_onep (c_i_0));
  ASSERT_TRUE (integer_onep (c_i_1));
  ASSERT_FALSE (integer_onep (c_i_m1));
  ASSERT_FALSE (integer_onep (c_f_0));
  ASSERT_FALSE (integer_onep (c_f_1));
  ASSERT_FALSE (integer_onep (c_f_m1));

  /* Test integer_zerop.  */
  ASSERT_TRUE (integer_zerop (i_0));
  ASSERT_TRUE (integer_zerop (wr_i_0));
  ASSERT_FALSE (integer_zerop (i_1));
  ASSERT_FALSE (integer_zerop (wr_i_1));
  ASSERT_FALSE (integer_zerop (i_m1));
  ASSERT_FALSE (integer_zerop (wr_i_m1));
  ASSERT_FALSE (integer_zerop (f_0));
  ASSERT_FALSE (integer_zerop (wr_f_0));
  ASSERT_FALSE (integer_zerop (f_1));
  ASSERT_FALSE (integer_zerop (wr_f_1));
  ASSERT_FALSE (integer_zerop (f_m1));
  ASSERT_FALSE (integer_zerop (wr_f_m1));
  ASSERT_TRUE (integer_zerop (c_i_0));
  ASSERT_FALSE (integer_zerop (c_i_1));
  ASSERT_FALSE (integer_zerop (c_i_m1));
  ASSERT_FALSE (integer_zerop (c_f_0));
  ASSERT_FALSE (integer_zerop (c_f_1));
  ASSERT_FALSE (integer_zerop (c_f_m1));

  /* Test integer_all_onesp.  */
  ASSERT_FALSE (integer_all_onesp (i_0));
  ASSERT_FALSE (integer_all_onesp (wr_i_0));
  ASSERT_FALSE (integer_all_onesp (i_1));
  ASSERT_FALSE (integer_all_onesp (wr_i_1));
  ASSERT_TRUE (integer_all_onesp (i_m1));
  ASSERT_TRUE (integer_all_onesp (wr_i_m1));
  ASSERT_FALSE (integer_all_onesp (f_0));
  ASSERT_FALSE (integer_all_onesp (wr_f_0));
  ASSERT_FALSE (integer_all_onesp (f_1));
  ASSERT_FALSE (integer_all_onesp (wr_f_1));
  ASSERT_FALSE (integer_all_onesp (f_m1));
  ASSERT_FALSE (integer_all_onesp (wr_f_m1));
  ASSERT_FALSE (integer_all_onesp (c_i_0));
  ASSERT_FALSE (integer_all_onesp (c_i_1));
  ASSERT_FALSE (integer_all_onesp (c_i_m1));
  ASSERT_FALSE (integer_all_onesp (c_f_0));
  ASSERT_FALSE (integer_all_onesp (c_f_1));
  ASSERT_FALSE (integer_all_onesp (c_f_m1));

  /* Test integer_minus_onep.  */
  ASSERT_FALSE (integer_minus_onep (i_0));
  ASSERT_FALSE (integer_minus_onep (wr_i_0));
  ASSERT_FALSE (integer_minus_onep (i_1));
  ASSERT_FALSE (integer_minus_onep (wr_i_1));
  ASSERT_TRUE (integer_minus_onep (i_m1));
  ASSERT_TRUE (integer_minus_onep (wr_i_m1));
  ASSERT_FALSE (integer_minus_onep (f_0));
  ASSERT_FALSE (integer_minus_onep (wr_f_0));
  ASSERT_FALSE (integer_minus_onep (f_1));
  ASSERT_FALSE (integer_minus_onep (wr_f_1));
  ASSERT_FALSE (integer_minus_onep (f_m1));
  ASSERT_FALSE (integer_minus_onep (wr_f_m1));
  ASSERT_FALSE (integer_minus_onep (c_i_0));
  ASSERT_FALSE (integer_minus_onep (c_i_1));
  ASSERT_TRUE (integer_minus_onep (c_i_m1));
  ASSERT_FALSE (integer_minus_onep (c_f_0));
  ASSERT_FALSE (integer_minus_onep (c_f_1));
  ASSERT_FALSE (integer_minus_onep (c_f_m1));

  /* Test integer_each_onep.  */
  ASSERT_FALSE (integer_each_onep (i_0));
  ASSERT_FALSE (integer_each_onep (wr_i_0));
  ASSERT_TRUE (integer_each_onep (i_1));
  ASSERT_TRUE (integer_each_onep (wr_i_1));
  ASSERT_FALSE (integer_each_onep (i_m1));
  ASSERT_FALSE (integer_each_onep (wr_i_m1));
  ASSERT_FALSE (integer_each_onep (f_0));
  ASSERT_FALSE (integer_each_onep (wr_f_0));
  ASSERT_FALSE (integer_each_onep (f_1));
  ASSERT_FALSE (integer_each_onep (wr_f_1));
  ASSERT_FALSE (integer_each_onep (f_m1));
  ASSERT_FALSE (integer_each_onep (wr_f_m1));
  ASSERT_FALSE (integer_each_onep (c_i_0));
  ASSERT_FALSE (integer_each_onep (c_i_1));
  ASSERT_FALSE (integer_each_onep (c_i_m1));
  ASSERT_FALSE (integer_each_onep (c_f_0));
  ASSERT_FALSE (integer_each_onep (c_f_1));
  ASSERT_FALSE (integer_each_onep (c_f_m1));

  /* Test integer_truep.  */
  ASSERT_FALSE (integer_truep (i_0));
  ASSERT_FALSE (integer_truep (wr_i_0));
  ASSERT_TRUE (integer_truep (i_1));
  ASSERT_TRUE (integer_truep (wr_i_1));
  ASSERT_FALSE (integer_truep (i_m1));
  ASSERT_FALSE (integer_truep (wr_i_m1));
  ASSERT_FALSE (integer_truep (f_0));
  ASSERT_FALSE (integer_truep (wr_f_0));
  ASSERT_FALSE (integer_truep (f_1));
  ASSERT_FALSE (integer_truep (wr_f_1));
  ASSERT_FALSE (integer_truep (f_m1));
  ASSERT_FALSE (integer_truep (wr_f_m1));
  ASSERT_FALSE (integer_truep (c_i_0));
  ASSERT_TRUE (integer_truep (c_i_1));
  ASSERT_FALSE (integer_truep (c_i_m1));
  ASSERT_FALSE (integer_truep (c_f_0));
  ASSERT_FALSE (integer_truep (c_f_1));
  ASSERT_FALSE (integer_truep (c_f_m1));

  /* Test integer_nonzerop.  */
  ASSERT_FALSE (integer_nonzerop (i_0));
  ASSERT_FALSE (integer_nonzerop (wr_i_0));
  ASSERT_TRUE (integer_nonzerop (i_1));
  ASSERT_TRUE (integer_nonzerop (wr_i_1));
  ASSERT_TRUE (integer_nonzerop (i_m1));
  ASSERT_TRUE (integer_nonzerop (wr_i_m1));
  ASSERT_FALSE (integer_nonzerop (f_0));
  ASSERT_FALSE (integer_nonzerop (wr_f_0));
  ASSERT_FALSE (integer_nonzerop (f_1));
  ASSERT_FALSE (integer_nonzerop (wr_f_1));
  ASSERT_FALSE (integer_nonzerop (f_m1));
  ASSERT_FALSE (integer_nonzerop (wr_f_m1));
  ASSERT_FALSE (integer_nonzerop (c_i_0));
  ASSERT_TRUE (integer_nonzerop (c_i_1));
  ASSERT_TRUE (integer_nonzerop (c_i_m1));
  ASSERT_FALSE (integer_nonzerop (c_f_0));
  ASSERT_FALSE (integer_nonzerop (c_f_1));
  ASSERT_FALSE (integer_nonzerop (c_f_m1));

  /* Test real_zerop.  */
  ASSERT_FALSE (real_zerop (i_0));
  ASSERT_FALSE (real_zerop (wr_i_0));
  ASSERT_FALSE (real_zerop (i_1));
  ASSERT_FALSE (real_zerop (wr_i_1));
  ASSERT_FALSE (real_zerop (i_m1));
  ASSERT_FALSE (real_zerop (wr_i_m1));
  ASSERT_TRUE (real_zerop (f_0));
  ASSERT_TRUE (real_zerop (wr_f_0));
  ASSERT_FALSE (real_zerop (f_1));
  ASSERT_FALSE (real_zerop (wr_f_1));
  ASSERT_FALSE (real_zerop (f_m1));
  ASSERT_FALSE (real_zerop (wr_f_m1));
  ASSERT_FALSE (real_zerop (c_i_0));
  ASSERT_FALSE (real_zerop (c_i_1));
  ASSERT_FALSE (real_zerop (c_i_m1));
  ASSERT_TRUE (real_zerop (c_f_0));
  ASSERT_FALSE (real_zerop (c_f_1));
  ASSERT_FALSE (real_zerop (c_f_m1));

  /* Test real_onep.  */
  ASSERT_FALSE (real_onep (i_0));
  ASSERT_FALSE (real_onep (wr_i_0));
  ASSERT_FALSE (real_onep (i_1));
  ASSERT_FALSE (real_onep (wr_i_1));
  ASSERT_FALSE (real_onep (i_m1));
  ASSERT_FALSE (real_onep (wr_i_m1));
  ASSERT_FALSE (real_onep (f_0));
  ASSERT_FALSE (real_onep (wr_f_0));
  ASSERT_TRUE (real_onep (f_1));
  ASSERT_TRUE (real_onep (wr_f_1));
  ASSERT_FALSE (real_onep (f_m1));
  ASSERT_FALSE (real_onep (wr_f_m1));
  ASSERT_FALSE (real_onep (c_i_0));
  ASSERT_FALSE (real_onep (c_i_1));
  ASSERT_FALSE (real_onep (c_i_m1));
  ASSERT_FALSE (real_onep (c_f_0));
  ASSERT_TRUE (real_onep (c_f_1));
  ASSERT_FALSE (real_onep (c_f_m1));

  /* Test real_minus_onep.  */
  ASSERT_FALSE (real_minus_onep (i_0));
  ASSERT_FALSE (real_minus_onep (wr_i_0));
  ASSERT_FALSE (real_minus_onep (i_1));
  ASSERT_FALSE (real_minus_onep (wr_i_1));
  ASSERT_FALSE (real_minus_onep (i_m1));
  ASSERT_FALSE (real_minus_onep (wr_i_m1));
  ASSERT_FALSE (real_minus_onep (f_0));
  ASSERT_FALSE (real_minus_onep (wr_f_0));
  ASSERT_FALSE (real_minus_onep (f_1));
  ASSERT_FALSE (real_minus_onep (wr_f_1));
  ASSERT_TRUE (real_minus_onep (f_m1));
  ASSERT_TRUE (real_minus_onep (wr_f_m1));
  ASSERT_FALSE (real_minus_onep (c_i_0));
  ASSERT_FALSE (real_minus_onep (c_i_1));
  ASSERT_FALSE (real_minus_onep (c_i_m1));
  ASSERT_FALSE (real_minus_onep (c_f_0));
  ASSERT_FALSE (real_minus_onep (c_f_1));
  ASSERT_TRUE (real_minus_onep (c_f_m1));

  /* Test zerop.  */
  ASSERT_TRUE (zerop (i_0));
  ASSERT_TRUE (zerop (wr_i_0));
  ASSERT_FALSE (zerop (i_1));
  ASSERT_FALSE (zerop (wr_i_1));
  ASSERT_FALSE (zerop (i_m1));
  ASSERT_FALSE (zerop (wr_i_m1));
  ASSERT_TRUE (zerop (f_0));
  ASSERT_TRUE (zerop (wr_f_0));
  ASSERT_FALSE (zerop (f_1));
  ASSERT_FALSE (zerop (wr_f_1));
  ASSERT_FALSE (zerop (f_m1));
  ASSERT_FALSE (zerop (wr_f_m1));
  ASSERT_TRUE (zerop (c_i_0));
  ASSERT_FALSE (zerop (c_i_1));
  ASSERT_FALSE (zerop (c_i_m1));
  ASSERT_TRUE (zerop (c_f_0));
  ASSERT_FALSE (zerop (c_f_1));
  ASSERT_FALSE (zerop (c_f_m1));

  /* Test tree_expr_nonnegative_p.  */
  ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
  ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
  ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
  ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
  ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
  ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
  ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
  ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
  ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
  ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
  ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
  ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
  ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
  ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
  ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
  ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
  ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
  ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));

  /* Test tree_expr_nonzero_p.  */
  ASSERT_FALSE (tree_expr_nonzero_p (i_0));
  ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
  ASSERT_TRUE (tree_expr_nonzero_p (i_1));
  ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
  ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
  ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));

  /* Test integer_valued_real_p.  */
  ASSERT_FALSE (integer_valued_real_p (i_0));
  ASSERT_TRUE (integer_valued_real_p (f_0));
  ASSERT_TRUE (integer_valued_real_p (wr_f_0));
  ASSERT_TRUE (integer_valued_real_p (f_1));
  ASSERT_TRUE (integer_valued_real_p (wr_f_1));

  /* Test integer_pow2p.  */
  ASSERT_FALSE (integer_pow2p (i_0));
  ASSERT_TRUE (integer_pow2p (i_1));
  ASSERT_TRUE (integer_pow2p (wr_i_1));

  /* Test uniform_integer_cst_p.  */
  ASSERT_TRUE (uniform_integer_cst_p (i_0));
  ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
  ASSERT_TRUE (uniform_integer_cst_p (i_1));
  ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
  ASSERT_TRUE (uniform_integer_cst_p (i_m1));
  ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
  ASSERT_FALSE (uniform_integer_cst_p (f_0));
  ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
  ASSERT_FALSE (uniform_integer_cst_p (f_1));
  ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
  ASSERT_FALSE (uniform_integer_cst_p (f_m1));
  ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
  ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
  ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
  ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
  ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
  ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
  ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
}

/* Check that string escaping works correctly.  */

static void
test_escaped_strings (void)
{
  int saved_cutoff;
  escaped_string msg;

  msg.escape (NULL);
  /* ASSERT_STREQ does not accept NULL as a valid test
     result, so we have to use ASSERT_EQ instead.  */
  ASSERT_EQ (NULL, (const char *) msg);

  msg.escape ("");
  ASSERT_STREQ ("", (const char *) msg);

  msg.escape ("foobar");
  ASSERT_STREQ ("foobar", (const char *) msg);

  /* Ensure that we have -fmessage-length set to 0.  */
  saved_cutoff = pp_line_cutoff (global_dc->printer);
  pp_line_cutoff (global_dc->printer) = 0;

  msg.escape ("foo\nbar");
  ASSERT_STREQ ("foo\\nbar", (const char *) msg);

  msg.escape ("\a\b\f\n\r\t\v");
  ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);

  /* Now repeat the tests with -fmessage-length set to 5.  */
  pp_line_cutoff (global_dc->printer) = 5;

  /* Note that the newline is not translated into an escape.  */
  msg.escape ("foo\nbar");
  ASSERT_STREQ ("foo\nbar", (const char *) msg);

  msg.escape ("\a\b\f\n\r\t\v");
  ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);

  /* Restore the original message length setting.  */
  pp_line_cutoff (global_dc->printer) = saved_cutoff;
}

/* Run all of the selftests within this file.  */

void
tree_c_tests ()
{
  test_integer_constants ();
  test_identifiers ();
  test_labels ();
  test_vector_cst_patterns ();
  test_location_wrappers ();
  test_predicates ();
  test_escaped_strings ();
}

} // namespace selftest

#endif /* CHECKING_P */

#include "gt-tree.h"