1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
|
/* Header file for the value range relational processing.
Copyright (C) 2020-2021 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-range.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "alloc-pool.h"
#include "dominance.h"
// These VREL codes are arranged such that VREL_NONE is the first
// code, and all the rest are contiguous up to and including VREL_LAST.
#define VREL_FIRST VREL_NONE
#define VREL_LAST NE_EXPR
#define VREL_COUNT (VREL_LAST - VREL_FIRST + 1)
// vrel_range_assert will either assert that the tree code passed is valid,
// or mark invalid codes as unreachable to help with table optimation.
#if CHECKING_P
#define vrel_range_assert(c) \
gcc_checking_assert ((c) >= VREL_FIRST && (c) <= VREL_LAST)
#else
#define vrel_range_assert(c) \
if ((c) < VREL_FIRST || (c) > VREL_LAST) \
gcc_unreachable ();
#endif
static const char *kind_string[VREL_COUNT] =
{ "none", "<", "<=", ">", ">=", "empty", "==", "!=" };
// Print a relation_kind REL to file F.
void
print_relation (FILE *f, relation_kind rel)
{
vrel_range_assert (rel);
fprintf (f, " %s ", kind_string[rel - VREL_FIRST]);
}
// This table is used to negate the operands. op1 REL op2 -> !(op1 REL op2).
relation_kind rr_negate_table[VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
VREL_NONE, GE_EXPR, GT_EXPR, LE_EXPR, LT_EXPR, VREL_EMPTY, NE_EXPR, EQ_EXPR };
// Negate the relation, as in logical negation.
relation_kind
relation_negate (relation_kind r)
{
vrel_range_assert (r);
return rr_negate_table [r - VREL_FIRST];
}
// This table is used to swap the operands. op1 REL op2 -> op2 REL op1.
relation_kind rr_swap_table[VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
VREL_NONE, GT_EXPR, GE_EXPR, LT_EXPR, LE_EXPR, VREL_EMPTY, EQ_EXPR, NE_EXPR };
// Return the relation as if the operands were swapped.
relation_kind
relation_swap (relation_kind r)
{
vrel_range_assert (r);
return rr_swap_table [r - VREL_FIRST];
}
// This table is used to perform an intersection between 2 relations.
relation_kind rr_intersect_table[VREL_COUNT][VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
// VREL_NONE
{ VREL_NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, VREL_EMPTY, EQ_EXPR, NE_EXPR },
// LT_EXPR
{ LT_EXPR, LT_EXPR, LT_EXPR, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, LT_EXPR },
// LE_EXPR
{ LE_EXPR, LT_EXPR, LE_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY, EQ_EXPR, LT_EXPR },
// GT_EXPR
{ GT_EXPR, VREL_EMPTY, VREL_EMPTY, GT_EXPR, GT_EXPR, VREL_EMPTY, VREL_EMPTY, GT_EXPR },
// GE_EXPR
{ GE_EXPR, VREL_EMPTY, EQ_EXPR, GT_EXPR, GE_EXPR, VREL_EMPTY, EQ_EXPR, GT_EXPR },
// VREL_EMPTY
{ VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY, VREL_EMPTY },
// EQ_EXPR
{ EQ_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY, EQ_EXPR, VREL_EMPTY },
// NE_EXPR
{ NE_EXPR, LT_EXPR, LT_EXPR, GT_EXPR, GT_EXPR, VREL_EMPTY, VREL_EMPTY, NE_EXPR } };
// Intersect relation R! with relation R2 and return the resulting relation.
relation_kind
relation_intersect (relation_kind r1, relation_kind r2)
{
vrel_range_assert (r1);
vrel_range_assert (r2);
return rr_intersect_table[r1 - VREL_FIRST][r2 - VREL_FIRST];
}
// This table is used to perform a union between 2 relations.
relation_kind rr_union_table[VREL_COUNT][VREL_COUNT] = {
// NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, EMPTY, EQ_EXPR, NE_EXPR
// VREL_NONE
{ VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE, VREL_NONE },
// LT_EXPR
{ VREL_NONE, LT_EXPR, LE_EXPR, NE_EXPR, VREL_NONE, LT_EXPR, LE_EXPR, NE_EXPR },
// LE_EXPR
{ VREL_NONE, LE_EXPR, LE_EXPR, VREL_NONE, VREL_NONE, LE_EXPR, LE_EXPR, VREL_NONE },
// GT_EXPR
{ VREL_NONE, NE_EXPR, VREL_NONE, GT_EXPR, GE_EXPR, GT_EXPR, GE_EXPR, NE_EXPR },
// GE_EXPR
{ VREL_NONE, VREL_NONE, VREL_NONE, GE_EXPR, GE_EXPR, GE_EXPR, GE_EXPR, VREL_NONE },
// VREL_EMPTY
{ VREL_NONE, LT_EXPR, LE_EXPR, GT_EXPR, GE_EXPR, VREL_EMPTY, EQ_EXPR, NE_EXPR },
// EQ_EXPR
{ VREL_NONE, LE_EXPR, LE_EXPR, GE_EXPR, GE_EXPR, EQ_EXPR, EQ_EXPR, VREL_NONE },
// NE_EXPR
{ VREL_NONE, NE_EXPR, VREL_NONE, NE_EXPR, VREL_NONE, NE_EXPR, VREL_NONE, NE_EXPR } };
// Union relation R1 with relation R2 and return the result.
relation_kind
relation_union (relation_kind r1, relation_kind r2)
{
vrel_range_assert (r1);
vrel_range_assert (r2);
return rr_union_table[r1 - VREL_FIRST][r2 - VREL_FIRST];
}
// -------------------------------------------------------------------------
// This class represents an equivalency set, and contains a link to the next
// one in the list to be searched.
// The very first element in the m_equiv chain is actually just a summary
// element in which the m_names bitmap is used to indicate that an ssa_name
// has an equivalence set in this block.
// This allows for much faster traversal of the DOM chain, as a search for
// SSA_NAME simply requires walking the DOM chain until a block is found
// which has the bit for SSA_NAME set. Then scan for the equivalency set in
// that block. No previous blcoks need be searched.
class equiv_chain
{
public:
bitmap m_names; // ssa-names in equiv set.
basic_block m_bb; // Block this belongs to
equiv_chain *m_next; // Next in block list.
void dump (FILE *f) const; // Show names in this list.
};
// Dump the names in this equivalence set.
void
equiv_chain::dump (FILE *f) const
{
bitmap_iterator bi;
unsigned i;
if (!m_names)
return;
fprintf (f, "Equivalence set : [");
unsigned c = 0;
EXECUTE_IF_SET_IN_BITMAP (m_names, 0, i, bi)
{
if (ssa_name (i))
{
if (c++)
fprintf (f, ", ");
print_generic_expr (f, ssa_name (i), TDF_SLIM);
}
}
fprintf (f, "]\n");
}
// Instantiate an equivalency oracle.
equiv_oracle::equiv_oracle ()
{
bitmap_obstack_initialize (&m_bitmaps);
m_equiv.create (0);
m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
m_equiv_set = BITMAP_ALLOC (&m_bitmaps);
obstack_init (&m_chain_obstack);
}
// Destruct an equivalency oracle.
equiv_oracle::~equiv_oracle ()
{
obstack_free (&m_chain_obstack, NULL);
m_equiv.release ();
bitmap_obstack_release (&m_bitmaps);
}
// Find and return the equivalency set for SSA along the dominators of BB.
// This is the external API.
const_bitmap
equiv_oracle::equiv_set (tree ssa, basic_block bb) const
{
// Search the dominator tree for an equivalency.
equiv_chain *equiv = find_equiv_dom (ssa, bb);
if (equiv)
return equiv->m_names;
return NULL;
}
// If SSA has an equivalence in block BB, find and return it.
// Otherwise return NULL.
equiv_chain *
equiv_oracle::find_equiv_block (unsigned ssa, int bb) const
{
equiv_chain *ptr = NULL;
if (bb >= (int)m_equiv.length ())
return NULL;
// If there are equiv sets and SSA is in one in this block, find it.
// Otherwise return NULL.
if (m_equiv[bb] && bitmap_bit_p (m_equiv[bb]->m_names, ssa))
{
for (ptr = m_equiv[bb]->m_next; ptr; ptr = ptr->m_next)
if (bitmap_bit_p (ptr->m_names, ssa))
break;
}
return ptr;
}
// Starting at block BB, walk the dominator chain looking for the nearest
// equivalence set containing NAME.
equiv_chain *
equiv_oracle::find_equiv_dom (tree name, basic_block bb) const
{
unsigned v = SSA_NAME_VERSION (name);
// Short circuit looking for names which have no equivalences.
// Saves time looking for something which does not exist.
if (!bitmap_bit_p (m_equiv_set, v))
return NULL;
// NAME has at least once equivalence set, check to see if it has one along
// the dominator tree.
for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
equiv_chain *ptr = find_equiv_block (v, bb->index);
if (ptr)
return ptr;
}
return NULL;
}
// Register equivalance between ssa_name V and set EQUIV in block BB,
bitmap
equiv_oracle::register_equiv (basic_block bb, unsigned v, equiv_chain *equiv)
{
// V will have an equivalency now.
bitmap_set_bit (m_equiv_set, v);
// If that equiv chain is in this block, simply use it.
if (equiv->m_bb == bb)
{
bitmap_set_bit (equiv->m_names, v);
bitmap_set_bit (m_equiv[bb->index]->m_names, v);
return NULL;
}
// Otherwise create an equivalence for this block which is a copy
// of equiv, the add V to the set.
bitmap b = BITMAP_ALLOC (&m_bitmaps);
bitmap_copy (b, equiv->m_names);
bitmap_set_bit (b, v);
return b;
}
// Register equivalence between set equiv_1 and equiv_2 in block BB.
// Return NULL if either name can be merged with the other. Otherwise
// return a pointer to the combined bitmap of names. This allows the
// caller to do any setup required for a new element.
bitmap
equiv_oracle::register_equiv (basic_block bb, equiv_chain *equiv_1,
equiv_chain *equiv_2)
{
// If equiv_1 is alreayd in BB, use it as the combined set.
if (equiv_1->m_bb == bb)
{
bitmap_ior_into (equiv_1->m_names, equiv_2->m_names);
// Its hard to delete from a single linked list, so
// just clear the second one.
if (equiv_2->m_bb == bb)
bitmap_clear (equiv_2->m_names);
else
// Ensure equiv_2s names are in the summary for BB.
bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_2->m_names);
return NULL;
}
// If equiv_2 is in BB, use it for the combined set.
if (equiv_2->m_bb == bb)
{
bitmap_ior_into (equiv_2->m_names, equiv_1->m_names);
// Add equiv_1 names into the summary.
bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_1->m_names);
return NULL;
}
// At this point, neither equivalence is from this block.
bitmap b = BITMAP_ALLOC (&m_bitmaps);
bitmap_copy (b, equiv_1->m_names);
bitmap_ior_into (b, equiv_2->m_names);
return b;
}
// Register an equivalence between SSA1 and SSA2 in block BB.
// The equivalence oracle maintains a vector of equivalencies indexed by basic
// block. When an equivalence bteween SSA1 and SSA2 is registered in block BB,
// a query is made as to what equivalences both names have already, and
// any preexisting equivalences are merged to create a single equivalence
// containing all the ssa_names in this basic block.
void
equiv_oracle::register_equiv (basic_block bb, tree ssa1, tree ssa2)
{
unsigned v1 = SSA_NAME_VERSION (ssa1);
unsigned v2 = SSA_NAME_VERSION (ssa2);
equiv_chain *equiv_1 = find_equiv_dom (ssa1, bb);
equiv_chain *equiv_2 = find_equiv_dom (ssa2, bb);
// Check if they are the same set
if (equiv_1 && equiv_1 == equiv_2)
return;
bitmap equiv_set;
// Case where we have 2 SSA_NAMEs that are not in any set.
if (!equiv_1 && !equiv_2)
{
bitmap_set_bit (m_equiv_set, v1);
bitmap_set_bit (m_equiv_set, v2);
equiv_set = BITMAP_ALLOC (&m_bitmaps);
bitmap_set_bit (equiv_set, v1);
bitmap_set_bit (equiv_set, v2);
}
else if (!equiv_1 && equiv_2)
equiv_set = register_equiv (bb, v1, equiv_2);
else if (equiv_1 && !equiv_2)
equiv_set = register_equiv (bb, v2, equiv_1);
else
equiv_set = register_equiv (bb, equiv_1, equiv_2);
// A non-null return is a bitmap that is to be added to the current
// block as a new equivalence.
if (!equiv_set)
return;
equiv_chain *ptr;
// Check if this is the first time a block has an equivalence added.
// and create a header block. And set the summary for this block.
if (!m_equiv[bb->index])
{
ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack,
sizeof (equiv_chain));
ptr->m_names = BITMAP_ALLOC (&m_bitmaps);
bitmap_copy (ptr->m_names, equiv_set);
ptr->m_bb = bb;
ptr->m_next = NULL;
m_equiv[bb->index] = ptr;
}
// Now create the element for this equiv set and initialize it.
ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, sizeof (equiv_chain));
ptr->m_names = equiv_set;
ptr->m_bb = bb;
gcc_checking_assert (bb->index < (int)m_equiv.length ());
ptr->m_next = m_equiv[bb->index]->m_next;
m_equiv[bb->index]->m_next = ptr;
bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_set);
}
// Make sure the BB vector is big enough and grow it if needed.
void
equiv_oracle::limit_check (basic_block bb)
{
int i = (bb) ? bb->index : last_basic_block_for_fn (cfun);
if (i >= (int)m_equiv.length ())
m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
}
// Dump the equivalence sets in BB to file F.
void
equiv_oracle::dump (FILE *f, basic_block bb) const
{
if (bb->index >= (int)m_equiv.length ())
return;
if (!m_equiv[bb->index])
return;
equiv_chain *ptr = m_equiv[bb->index]->m_next;
for (; ptr; ptr = ptr->m_next)
ptr->dump (f);
}
// Dump all equivalence sets known to the oracle.
void
equiv_oracle::dump (FILE *f) const
{
fprintf (f, "Equivalency dump\n");
for (unsigned i = 0; i < m_equiv.length (); i++)
if (m_equiv[i] && BASIC_BLOCK_FOR_FN (cfun, i))
{
fprintf (f, "BB%d\n", i);
dump (f, BASIC_BLOCK_FOR_FN (cfun, i));
}
}
// --------------------------------------------------------------------------
// The value-relation class is used to encapsulate the represention of an
// individual relation between 2 ssa-names, and to facilitate operating on
// the relation.
class value_relation
{
public:
value_relation ();
value_relation (relation_kind kind, tree n1, tree n2);
void set_relation (relation_kind kind, tree n1, tree n2);
inline relation_kind kind () const { return related; }
inline tree op1 () const { return name1; }
inline tree op2 () const { return name2; }
bool union_ (value_relation &p);
bool intersect (value_relation &p);
void negate ();
void swap ();
void dump (FILE *f) const;
private:
relation_kind related;
tree name1, name2;
};
// Set relation R between ssa_name N1 and N2.
inline void
value_relation::set_relation (relation_kind r, tree n1, tree n2)
{
gcc_checking_assert (SSA_NAME_VERSION (n1) != SSA_NAME_VERSION (n2));
related = r;
name1 = n1;
name2 = n2;
}
// Default constructor.
inline
value_relation::value_relation ()
{
related = VREL_NONE;
name1 = NULL_TREE;
name2 = NULL_TREE;
}
// Constructor for relation R between SSA version N1 nd N2.
inline
value_relation::value_relation (relation_kind kind, tree n1, tree n2)
{
set_relation (kind, n1, n2);
}
// Negate the current relation.
void
value_relation::negate ()
{
related = relation_negate (related);
}
// Modify the relation as if the operands were being swapped.
void
value_relation::swap ()
{
related = relation_swap (related);
}
// Perform an intersection between 2 relations. *this &&= p.
bool
value_relation::intersect (value_relation &p)
{
// Save previous value
relation_kind old = related;
if (p.op1 () == op1 () && p.op2 () == op2 ())
related = relation_intersect (kind (), p.kind ());
else if (p.op2 () == op1 () && p.op1 () == op2 ())
related = relation_intersect (kind (), relation_swap (p.kind ()));
else
return false;
return old != related;
}
// Perform a union between 2 relations. *this ||= p.
bool
value_relation::union_ (value_relation &p)
{
// Save previous value
relation_kind old = related;
if (p.op1 () == op1 () && p.op2 () == op2 ())
related = relation_union (kind(), p.kind());
else if (p.op2 () == op1 () && p.op1 () == op2 ())
related = relation_union (kind(), relation_swap (p.kind ()));
else
return false;
return old != related;
}
// Dump the relation to file F.
void
value_relation::dump (FILE *f) const
{
if (!name1 || !name2)
{
fprintf (f, "uninitialized");
return;
}
fputc ('(', f);
print_generic_expr (f, op1 (), TDF_SLIM);
print_relation (f, kind ());
print_generic_expr (f, op2 (), TDF_SLIM);
fputc(')', f);
}
// This container is used to link relations in a chain.
class relation_chain : public value_relation
{
public:
relation_chain *m_next;
};
// ------------------------------------------------------------------------
// Instantiate a relation oracle.
relation_oracle::relation_oracle ()
{
m_relations.create (0);
m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
m_relation_set = BITMAP_ALLOC (&m_bitmaps);
m_tmp = BITMAP_ALLOC (&m_bitmaps);
}
// Destruct a relation oracle.
relation_oracle::~relation_oracle ()
{
m_relations.release ();
}
// Register relation K between ssa_name OP1 and OP2 on STMT.
void
relation_oracle::register_relation (gimple *stmt, relation_kind k, tree op1,
tree op2)
{
gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
gcc_checking_assert (stmt && gimple_bb (stmt));
// Don't register lack of a relation.
if (k == VREL_NONE)
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
value_relation vr (k, op1, op2);
fprintf (dump_file, " Registering value_relation ");
vr.dump (dump_file);
fprintf (dump_file, " (bb%d) at ", gimple_bb (stmt)->index);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
// This relation applies to the entire block, use STMT's block.
// Equivalencies are handled by the equivalence oracle.
if (k == EQ_EXPR)
register_equiv (gimple_bb (stmt), op1, op2);
else
register_relation (gimple_bb (stmt), k, op1, op2);
}
// Register relation K between ssa_name OP1 and OP2 on edge E.
void
relation_oracle::register_relation (edge e, relation_kind k, tree op1,
tree op2)
{
gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
// Do not register lack of relation, or blocks which have more than
// edge E for a predecessor.
if (k == VREL_NONE || !single_pred_p (e->dest))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
value_relation vr (k, op1, op2);
fprintf (dump_file, " Registering value_relation ");
vr.dump (dump_file);
fprintf (dump_file, " on (%d->%d)\n", e->src->index, e->dest->index);
}
// Equivalencies are handled by the equivalence oracle.
if (k == EQ_EXPR)
register_equiv (e->dest, op1, op2);
else
register_relation (e->dest, k, op1, op2);
}
// Register relation K between OP! and OP2 in block BB.
// This creates the record and searches for existing records in the dominator
// tree to merge with.
void
relation_oracle::register_relation (basic_block bb, relation_kind k, tree op1,
tree op2)
{
gcc_checking_assert (k != VREL_NONE);
value_relation vr(k, op1, op2);
int bbi = bb->index;
if (bbi >= (int)m_relations.length())
m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
// Summary bitmap indicating what ssa_names have relations in this BB.
bitmap bm = m_relations[bbi].m_names;
if (!bm)
bm = m_relations[bbi].m_names = BITMAP_ALLOC (&m_bitmaps);
unsigned v1 = SSA_NAME_VERSION (op1);
unsigned v2 = SSA_NAME_VERSION (op2);
relation_kind curr;
relation_chain *ptr;
curr = find_relation_block (bbi, v1, v2, &ptr);
// There is an existing relation in this block, just intersect with it.
if (curr != VREL_NONE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Intersecting with existing ");
ptr->dump (dump_file);
}
// Check into whether we can simply replace the relation rather than
// intersecting it. THis may help with some optimistic iterative
// updating algorithms.
ptr->intersect (vr);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " to produce ");
ptr->dump (dump_file);
fprintf (dump_file, "\n");
}
return;
}
// Check for an existing relation further up the DOM chain.
// By including dominating relations, The first one found in any search
// will be the aggregate of all the previous ones.
curr = find_relation_dom (bb, v1, v2);
if (curr != VREL_NONE)
k = relation_intersect (curr, k);
bitmap_set_bit (bm, v1);
bitmap_set_bit (bm, v2);
bitmap_set_bit (m_relation_set, v1);
bitmap_set_bit (m_relation_set, v2);
ptr = (relation_chain *) obstack_alloc (&m_chain_obstack,
sizeof (relation_chain));
ptr->set_relation (k, op1, op2);
ptr->m_next = m_relations[bbi].m_head;
m_relations[bbi].m_head = ptr;;
}
// Find the relation between any ssa_name in B1 and any name in B2 in block BB.
// This will allow equivalencies to be applied to any SSA_NAME in a relation.
relation_kind
relation_oracle::find_relation_block (unsigned bb, const_bitmap b1,
const_bitmap b2)
{
const_bitmap bm;
if (bb >= m_relations.length())
return VREL_NONE;
bm = m_relations[bb].m_names;
if (!bm)
return VREL_NONE;
// If both b1 and b2 aren't referenced in thie block, cant be a relation
if (!bitmap_intersect_p (bm, b1) || !bitmap_intersect_p (bm, b2))
return VREL_NONE;
// Search for the fiorst relation that contains BOTH an element from B1
// and B2, and return that relation.
for (relation_chain *ptr = m_relations[bb].m_head; ptr ; ptr = ptr->m_next)
{
unsigned op1 = SSA_NAME_VERSION (ptr->op1 ());
unsigned op2 = SSA_NAME_VERSION (ptr->op2 ());
if (bitmap_bit_p (b1, op1) && bitmap_bit_p (b2, op2))
return ptr->kind ();
if (bitmap_bit_p (b1, op2) && bitmap_bit_p (b2, op1))
return relation_swap (ptr->kind ());
}
return VREL_NONE;
}
// Search the DOM tree for a relation between an element of B1 and B2, starting
// with block BB.
relation_kind
relation_oracle::find_relation_dom (basic_block bb, const_bitmap b1,
const_bitmap b2)
{
relation_kind r;
// If either name does not occur in a relation anywhere, there isnt one.
if (!bitmap_intersect_p (m_relation_set, b1)
|| !bitmap_intersect_p (m_relation_set, b2))
return VREL_NONE;
// Search each block in the DOM tree checking.
for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
r = find_relation_block (bb->index, b1, b2);
if (r != VREL_NONE)
return r;
}
return VREL_NONE;
}
// Find a relation in block BB between ssa version V1 and V2. If a relation
// is found, return a pointer to the chain object in OBJ.
relation_kind
relation_oracle::find_relation_block (int bb, unsigned v1, unsigned v2,
relation_chain **obj)
{
if (bb >= (int)m_relations.length())
return VREL_NONE;
const_bitmap bm = m_relations[bb].m_names;
if (!bm)
return VREL_NONE;
// If both b1 and b2 aren't referenced in thie block, cant be a relation
if (!bitmap_bit_p (bm, v1) || !bitmap_bit_p (bm, v2))
return VREL_NONE;
relation_chain *ptr;
for (ptr = m_relations[bb].m_head; ptr ; ptr = ptr->m_next)
{
unsigned op1 = SSA_NAME_VERSION (ptr->op1 ());
unsigned op2 = SSA_NAME_VERSION (ptr->op2 ());
if (v1 == op1 && v2 == op2)
{
if (obj)
*obj = ptr;
return ptr->kind ();
}
if (v1 == op2 && v2 == op1)
{
if (obj)
*obj = ptr;
return relation_swap (ptr->kind ());
}
}
return VREL_NONE;
}
// Find a relation between SSA version V1 and V2 in the dominator tree
// starting with block BB
relation_kind
relation_oracle::find_relation_dom (basic_block bb, unsigned v1, unsigned v2)
{
relation_kind r;
// IF either name does not occur in a relation anywhere, there isnt one.
if (!bitmap_bit_p (m_relation_set, v1) || !bitmap_bit_p (m_relation_set, v2))
return VREL_NONE;
for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
r = find_relation_block (bb->index, v1, v2);
if (r != VREL_NONE)
return r;
}
return VREL_NONE;
}
// Query if there is a relation between SSA1 and SS2 in block BB or a
// dominator of BB
relation_kind
relation_oracle::query_relation (basic_block bb, tree ssa1, tree ssa2)
{
relation_kind kind;
unsigned v1 = SSA_NAME_VERSION (ssa1);
unsigned v2 = SSA_NAME_VERSION (ssa2);
if (v1 == v2)
return EQ_EXPR;
// Check for equivalence first.
const_bitmap equiv1 = equiv_set (ssa1, bb);
if (equiv1 && bitmap_bit_p (equiv1, v2))
return EQ_EXPR;
// Initially look for a direct relationship and just return that.
kind = find_relation_dom (bb, v1, v2);
if (kind != VREL_NONE)
return kind;
// If v2 isn't in v1s equiv set, then v1 shouldn't be in v2's set either.
// It is possible for out-of-order dominator processing to have an out of
// sync set of equivalences.. Down the road, when we do full updates,
// change this to an assert to ensure everything is in sync.
const_bitmap equiv2 = equiv_set (ssa2, bb);
if (equiv2 && bitmap_bit_p (equiv2, v1))
return EQ_EXPR;
// If not equal, see if there is a relationship between equivalences.
if (!equiv1 && !equiv2)
kind = VREL_NONE;
else if (!equiv1)
{
bitmap_clear (m_tmp);
bitmap_set_bit (m_tmp, v1);
kind = find_relation_dom (bb, m_tmp, equiv2);
}
else if (!equiv2)
{
bitmap_clear (m_tmp);
bitmap_set_bit (m_tmp, v2);
kind = find_relation_dom (bb, equiv1, m_tmp);
}
else
kind = find_relation_dom (bb, equiv1, equiv2);
return kind;
}
// Dump all the relations in block BB to file F.
void
relation_oracle::dump (FILE *f, basic_block bb) const
{
equiv_oracle::dump (f,bb);
if (bb->index >= (int)m_relations.length ())
return;
if (!m_relations[bb->index].m_names)
return;
relation_chain *ptr = m_relations[bb->index].m_head;
for (; ptr; ptr = ptr->m_next)
{
fprintf (f, "Relational : ");
ptr->dump (f);
fprintf (f, "\n");
}
}
// Dump all the relations known to file F.
void
relation_oracle::dump (FILE *f) const
{
fprintf (f, "Relation dump\n");
for (unsigned i = 0; i < m_relations.length (); i++)
if (BASIC_BLOCK_FOR_FN (cfun, i))
{
fprintf (f, "BB%d\n", i);
dump (f, BASIC_BLOCK_FOR_FN (cfun, i));
}
}
|