1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
/* DWARF2 EH unwinding support for PA Linux.
Copyright (C) 2004-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Do code reading to identify a signal frame, and set the frame
state data appropriately. See unwind-dw2.c for the structs. */
/* Don't use this if inhibit_libc is set.
The build for this target will fail trying to include missing headers. */
#ifndef inhibit_libc
#include <signal.h>
#include <sys/ucontext.h>
/* Return TRUE if read access to *P is allowed. */
static inline long
pa32_read_access_ok (void *p)
{
long ret;
__asm__ ("proberi (%1),3,%0" : "=r" (ret) : "r" (p) :);
return ret;
}
/* Unfortunately, because of various bugs and changes to the kernel,
we have several cases to deal with.
In 2.4, the signal trampoline is 4 words, and (CONTEXT)->ra should
point directly at the beginning of the trampoline and struct rt_sigframe.
In <= 2.6.5-rc2-pa3, the signal trampoline is 9 words, and
(CONTEXT)->ra points at the 4th word in the trampoline structure. This
is wrong, it should point at the 5th word. This is fixed in 2.6.5-rc2-pa4.
To detect these cases, we first take (CONTEXT)->ra, align it to 64-bytes
to get the beginning of the signal frame, and then check offsets 0, 4
and 5 to see if we found the beginning of the trampoline. This will
tell us how to locate the sigcontext structure.
Note that with a 2.4 64-bit kernel, the signal context is not properly
passed back to userspace so the unwind will not work correctly.
There is also a bug in various glibc versions. The (CONTEXT)->ra
for the outermost frame is not marked as undefined, so we need to
check whether read access is allowed for all the accesses used in
searching for the signal trampoline. */
#define MD_FALLBACK_FRAME_STATE_FOR pa32_fallback_frame_state
static _Unwind_Reason_Code
pa32_fallback_frame_state (struct _Unwind_Context *context,
_Unwind_FrameState *fs)
{
unsigned long sp = (unsigned long)context->ra & ~63;
unsigned int *pc = (unsigned int *)sp;
unsigned long off;
_Unwind_Ptr new_cfa;
int i;
struct sigcontext *sc;
struct rt_sigframe {
siginfo_t info;
ucontext_t uc;
} *frame;
/* rt_sigreturn trampoline:
3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
3414015a ldi __NR_rt_sigreturn, %r20
e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
08000240 nop */
if (pa32_read_access_ok (pc)
&& (pc[0] == 0x34190000 || pc[0] == 0x34190002))
off = 4*4;
else if (pa32_read_access_ok (&pc[4])
&& (pc[4] == 0x34190000 || pc[4] == 0x34190002))
{
pc += 4;
off = 10 * 4;
}
else if (pa32_read_access_ok (&pc[5])
&& (pc[5] == 0x34190000 || pc[5] == 0x34190002))
{
pc += 5;
off = 10 * 4;
}
else
{
/* We may have to unwind through an alternate signal stack.
We assume that the alignment of the alternate signal stack
is BIGGEST_ALIGNMENT (i.e., that it has been allocated using
malloc). As a result, we can't distinguish trampolines
used prior to 2.6.5-rc2-pa4. However after 2.6.5-rc2-pa4,
the return address of a signal trampoline will be on an odd
word boundary and we can then determine the frame offset. */
sp = (unsigned long)context->ra;
pc = (unsigned int *)sp;
if ((sp & 4)
&& pa32_read_access_ok (pc)
&& (pc[0] == 0x34190000 || pc[0] == 0x34190002))
off = 5 * 4;
else
return _URC_END_OF_STACK;
}
if (!pa32_read_access_ok (&pc[3])
|| pc[1] != 0x3414015a
|| pc[2] != 0xe4008200
|| pc[3] != 0x08000240)
return _URC_END_OF_STACK;
frame = (struct rt_sigframe *)(sp + off);
sc = &frame->uc.uc_mcontext;
new_cfa = sc->sc_gr[30];
fs->regs.cfa_how = CFA_REG_OFFSET;
fs->regs.cfa_reg = 30;
fs->regs.cfa_offset = new_cfa - (long) context->cfa;
for (i = 1; i <= 31; i++)
{
fs->regs.reg[i].how = REG_SAVED_OFFSET;
fs->regs.reg[i].loc.offset = (long)&sc->sc_gr[i] - new_cfa;
}
for (i = 4; i <= 31; i++)
{
/* FP regs have left and right halves */
fs->regs.reg[2*i+24].how = REG_SAVED_OFFSET;
fs->regs.reg[2*i+24].loc.offset
= (long)&sc->sc_fr[i] - new_cfa;
fs->regs.reg[2*i+24+1].how = REG_SAVED_OFFSET;
fs->regs.reg[2*i+24+1].loc.offset
= (long)&sc->sc_fr[i] + 4 - new_cfa;
}
fs->regs.reg[88].how = REG_SAVED_OFFSET;
fs->regs.reg[88].loc.offset = (long) &sc->sc_sar - new_cfa;
fs->regs.reg[__LIBGCC_DWARF_ALT_FRAME_RETURN_COLUMN__].how
= REG_SAVED_OFFSET;
fs->regs.reg[__LIBGCC_DWARF_ALT_FRAME_RETURN_COLUMN__].loc.offset
= (long) &sc->sc_iaoq[0] - new_cfa;
fs->retaddr_column = __LIBGCC_DWARF_ALT_FRAME_RETURN_COLUMN__;
fs->signal_frame = 1;
return _URC_NO_REASON;
}
#endif /* inhibit_libc */
|