summaryrefslogtreecommitdiff
path: root/libgfortran/io/write_float.def
blob: e6880027a8665b02449f0bb06ef46e632c898882 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/* Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
   Contributed by Andy Vaught
   Write float code factoring to this file by Jerry DeLisle   
   F2003 I/O support contributed by Jerry DeLisle

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "config.h"

typedef enum
{ S_NONE, S_MINUS, S_PLUS }
sign_t;

/* Given a flag that indicates if a value is negative or not, return a
   sign_t that gives the sign that we need to produce.  */

static sign_t
calculate_sign (st_parameter_dt *dtp, int negative_flag)
{
  sign_t s = S_NONE;

  if (negative_flag)
    s = S_MINUS;
  else
    switch (dtp->u.p.sign_status)
      {
      case SIGN_SP:	/* Show sign. */
	s = S_PLUS;
	break;
      case SIGN_SS:	/* Suppress sign. */
	s = S_NONE;
	break;
      case SIGN_S:	/* Processor defined. */
      case SIGN_UNSPECIFIED:
	s = options.optional_plus ? S_PLUS : S_NONE;
	break;
      }

  return s;
}


/* Output a real number according to its format which is FMT_G free.  */

static void
output_float (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size, 
	      int sign_bit, bool zero_flag, int ndigits, int edigits)
{
  char *out;
  char *digits;
  int e;
  char expchar, rchar;
  format_token ft;
  int w;
  int d;
  /* Number of digits before the decimal point.  */
  int nbefore;
  /* Number of zeros after the decimal point.  */
  int nzero;
  /* Number of digits after the decimal point.  */
  int nafter;
  /* Number of zeros after the decimal point, whatever the precision.  */
  int nzero_real;
  int leadzero;
  int nblanks;
  int i;
  sign_t sign;

  ft = f->format;
  w = f->u.real.w;
  d = f->u.real.d;

  rchar = '5';
  nzero_real = -1;

  /* We should always know the field width and precision.  */
  if (d < 0)
    internal_error (&dtp->common, "Unspecified precision");

  sign = calculate_sign (dtp, sign_bit);
  
  /* The following code checks the given string has punctuation in the correct
     places.  Uncomment if needed for debugging.
     if (d != 0 && ((buffer[2] != '.' && buffer[2] != ',')
		    || buffer[ndigits + 2] != 'e'))
       internal_error (&dtp->common, "printf is broken");  */

  /* Read the exponent back in.  */
  e = atoi (&buffer[ndigits + 3]) + 1;

  /* Make sure zero comes out as 0.0e0.   */
  if (zero_flag)
    {
      e = 0;
      if (compile_options.sign_zero == 1)
	sign = calculate_sign (dtp, sign_bit);
      else
	sign = calculate_sign (dtp, 0);

      /* Handle special cases.  */
      if (w == 0)
	w = d + 2;

      /* For this one we choose to not output a decimal point.
	 F95 10.5.1.2.1  */
      if (w == 1 && ft == FMT_F)
	{
	  out = write_block (dtp, w);
	  if (out == NULL)
	    return;
	  *out = '0';
	  return;
	}
	      
    }

  /* Normalize the fractional component.  */
  buffer[2] = buffer[1];
  digits = &buffer[2];

  /* Figure out where to place the decimal point.  */
  switch (ft)
    {
    case FMT_F:
      nbefore = e + dtp->u.p.scale_factor;
      if (nbefore < 0)
	{
	  nzero = -nbefore;
          nzero_real = nzero;
	  if (nzero > d)
	    nzero = d;
	  nafter = d - nzero;
	  nbefore = 0;
	}
      else
	{
	  nzero = 0;
	  nafter = d;
	}
      expchar = 0;
      break;

    case FMT_E:
    case FMT_D:
      i = dtp->u.p.scale_factor;
      if (d <= 0 && i == 0)
	{
	  generate_error (&dtp->common, LIBERROR_FORMAT, "Precision not "
			  "greater than zero in format specifier 'E' or 'D'");
	  return;
	}
      if (i <= -d || i >= d + 2)
	{
	  generate_error (&dtp->common, LIBERROR_FORMAT, "Scale factor "
			  "out of range in format specifier 'E' or 'D'");
	  return;
	}

      if (!zero_flag)
	e -= i;
      if (i < 0)
	{
	  nbefore = 0;
	  nzero = -i;
	  nafter = d + i;
	}
      else if (i > 0)
	{
	  nbefore = i;
	  nzero = 0;
	  nafter = (d - i) + 1;
	}
      else /* i == 0 */
	{
	  nbefore = 0;
	  nzero = 0;
	  nafter = d;
	}

      if (ft == FMT_E)
	expchar = 'E';
      else
	expchar = 'D';
      break;

    case FMT_EN:
      /* The exponent must be a multiple of three, with 1-3 digits before
	 the decimal point.  */
      if (!zero_flag)
        e--;
      if (e >= 0)
	nbefore = e % 3;
      else
	{
	  nbefore = (-e) % 3;
	  if (nbefore != 0)
	    nbefore = 3 - nbefore;
	}
      e -= nbefore;
      nbefore++;
      nzero = 0;
      nafter = d;
      expchar = 'E';
      break;

    case FMT_ES:
      if (!zero_flag)
        e--;
      nbefore = 1;
      nzero = 0;
      nafter = d;
      expchar = 'E';
      break;

    default:
      /* Should never happen.  */
      internal_error (&dtp->common, "Unexpected format token");
    }

  /* Round the value.  The value being rounded is an unsigned magnitude.
     The ROUND_COMPATIBLE is rounding away from zero when there is a tie.  */
  switch (dtp->u.p.current_unit->round_status)
    {
      case ROUND_ZERO: /* Do nothing and truncation occurs.  */
	goto skip;
      case ROUND_UP:
	if (sign_bit)
	  goto skip;
	rchar = '0';
	break;
      case ROUND_DOWN:
	if (!sign_bit)
	  goto skip;
	rchar = '0';
	break;
      case ROUND_NEAREST:
	/* Round compatible unless there is a tie. A tie is a 5 with
	   all trailing zero's.  */
	i = nafter + 1;
	if (digits[i] == '5')
	  {
	    for(i++ ; i < ndigits; i++)
	      {
		if (digits[i] != '0')
		  goto do_rnd;
	      }
	    /* It is a  tie so round to even.  */
	    switch (digits[nafter])
	      {
		case '1':
		case '3':
		case '5':
		case '7':
		case '9':
		  /* If odd, round away from zero to even.  */
		  break;
		default:
		  /* If even, skip rounding, truncate to even.  */
		  goto skip;
	      }
	  }
	 /* Fall through.  */ 
      case ROUND_PROCDEFINED:
      case ROUND_UNSPECIFIED:
      case ROUND_COMPATIBLE:
	rchar = '5';
	/* Just fall through and do the actual rounding.  */
    }
    
  do_rnd:
 
  if (nbefore + nafter == 0)
    {
      ndigits = 0;
      if (nzero_real == d && digits[0] >= rchar)
	{
	  /* We rounded to zero but shouldn't have */
	  nzero--;
	  nafter = 1;
	  digits[0] = '1';
	  ndigits = 1;
	}
    }
  else if (nbefore + nafter < ndigits)
    {
      ndigits = nbefore + nafter;
      i = ndigits;
      if (digits[i] >= rchar)
	{
	  /* Propagate the carry.  */
	  for (i--; i >= 0; i--)
	    {
	      if (digits[i] != '9')
		{
		  digits[i]++;
		  break;
		}
	      digits[i] = '0';
	    }

	  if (i < 0)
	    {
	      /* The carry overflowed.  Fortunately we have some spare
	         space at the start of the buffer.  We may discard some
	         digits, but this is ok because we already know they are
	         zero.  */
	      digits--;
	      digits[0] = '1';
	      if (ft == FMT_F)
		{
		  if (nzero > 0)
		    {
		      nzero--;
		      nafter++;
		    }
		  else
		    nbefore++;
		}
	      else if (ft == FMT_EN)
		{
		  nbefore++;
		  if (nbefore == 4)
		    {
		      nbefore = 1;
		      e += 3;
		    }
		}
	      else
		e++;
	    }
	}
    }

  skip:

  /* Calculate the format of the exponent field.  */
  if (expchar)
    {
      edigits = 1;
      for (i = abs (e); i >= 10; i /= 10)
	edigits++;

      if (f->u.real.e < 0)
	{
	  /* Width not specified.  Must be no more than 3 digits.  */
	  if (e > 999 || e < -999)
	    edigits = -1;
	  else
	    {
	      edigits = 4;
	      if (e > 99 || e < -99)
		expchar = ' ';
	    }
	}
      else
	{
	  /* Exponent width specified, check it is wide enough.  */
	  if (edigits > f->u.real.e)
	    edigits = -1;
	  else
	    edigits = f->u.real.e + 2;
	}
    }
  else
    edigits = 0;

  /* Zero values always output as positive, even if the value was negative
     before rounding.  */
  for (i = 0; i < ndigits; i++)
    {
      if (digits[i] != '0')
	break;
    }
  if (i == ndigits)
    {
      /* The output is zero, so set the sign according to the sign bit unless
	 -fno-sign-zero was specified.  */
      if (compile_options.sign_zero == 1)
        sign = calculate_sign (dtp, sign_bit);
      else
	sign = calculate_sign (dtp, 0);
    }

  /* Pick a field size if none was specified.  */
  if (w <= 0)
    w = nbefore + nzero + nafter + (sign != S_NONE ? 2 : 1);
  
  /* Work out how much padding is needed.  */
  nblanks = w - (nbefore + nzero + nafter + edigits + 1);
  if (sign != S_NONE)
    nblanks--;

  if (dtp->u.p.g0_no_blanks)
    {
      w -= nblanks;
      nblanks = 0;
    }

  /* Create the ouput buffer.  */
  out = write_block (dtp, w);
  if (out == NULL)
    return;

  /* Check the value fits in the specified field width.  */
  if (nblanks < 0 || edigits == -1)
    {
      star_fill (out, w);
      return;
    }

  /* See if we have space for a zero before the decimal point.  */
  if (nbefore == 0 && nblanks > 0)
    {
      leadzero = 1;
      nblanks--;
    }
  else
    leadzero = 0;

  /* Pad to full field width.  */

  if ( ( nblanks > 0 ) && !dtp->u.p.no_leading_blank)
    {
      memset (out, ' ', nblanks);
      out += nblanks;
    }

  /* Output the initial sign (if any).  */
  if (sign == S_PLUS)
    *(out++) = '+';
  else if (sign == S_MINUS)
    *(out++) = '-';

  /* Output an optional leading zero.  */
  if (leadzero)
    *(out++) = '0';

  /* Output the part before the decimal point, padding with zeros.  */
  if (nbefore > 0)
    {
      if (nbefore > ndigits)
	{
	  i = ndigits;
	  memcpy (out, digits, i);
	  ndigits = 0;
	  while (i < nbefore)
	    out[i++] = '0';
	}
      else
	{
	  i = nbefore;
	  memcpy (out, digits, i);
	  ndigits -= i;
	}

      digits += i;
      out += nbefore;
    }

  /* Output the decimal point.  */
  *(out++) = dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? '.' : ',';

  /* Output leading zeros after the decimal point.  */
  if (nzero > 0)
    {
      for (i = 0; i < nzero; i++)
	*(out++) = '0';
    }

  /* Output digits after the decimal point, padding with zeros.  */
  if (nafter > 0)
    {
      if (nafter > ndigits)
	i = ndigits;
      else
	i = nafter;

      memcpy (out, digits, i);
      while (i < nafter)
	out[i++] = '0';

      digits += i;
      ndigits -= i;
      out += nafter;
    }

  /* Output the exponent.  */
  if (expchar)
    {
      if (expchar != ' ')
	{
	  *(out++) = expchar;
	  edigits--;
	}
#if HAVE_SNPRINTF
      snprintf (buffer, size, "%+0*d", edigits, e);
#else
      sprintf (buffer, "%+0*d", edigits, e);
#endif
      memcpy (out, buffer, edigits);
    }

  if (dtp->u.p.no_leading_blank)
    {
      out += edigits;
      memset( out , ' ' , nblanks );
      dtp->u.p.no_leading_blank = 0;
    }

#undef STR
#undef STR1
#undef MIN_FIELD_WIDTH
}


/* Write "Infinite" or "Nan" as appropriate for the given format.  */

static void
write_infnan (st_parameter_dt *dtp, const fnode *f, int isnan_flag, int sign_bit)
{
  char * p, fin;
  int nb = 0;

  if (f->format != FMT_B && f->format != FMT_O && f->format != FMT_Z)
    {
	  nb =  f->u.real.w;
	  
	  /* If the field width is zero, the processor must select a width 
	     not zero.  4 is chosen to allow output of '-Inf' or '+Inf' */
	     
	  if (nb == 0) nb = 4;
	  p = write_block (dtp, nb);
          if (p == NULL)
            return;
	  if (nb < 3)
	    {
	      memset (p, '*',nb);
	      return;
	    }

	  memset(p, ' ', nb);
	  if (!isnan_flag)
	    {
	      if (sign_bit)
	        {
	        
	          /* If the sign is negative and the width is 3, there is
	             insufficient room to output '-Inf', so output asterisks */
	             
	          if (nb == 3)
	            {
	              memset (p, '*',nb);
	              return;
	            }
	            
	          /* The negative sign is mandatory */
	            
	          fin = '-';
		}    
	      else
	      
	          /* The positive sign is optional, but we output it for
	             consistency */
		  fin = '+';

	      if (nb > 8)
	      
	        /* We have room, so output 'Infinity' */
		memcpy(p + nb - 8, "Infinity", 8);
	      else
	      
	        /* For the case of width equals 8, there is not enough room
	           for the sign and 'Infinity' so we go with 'Inf' */
		memcpy(p + nb - 3, "Inf", 3);

	      if (nb < 9 && nb > 3)
		p[nb - 4] = fin;  /* Put the sign in front of Inf */
	      else if (nb > 8)
		p[nb - 9] = fin;  /* Put the sign in front of Infinity */
	    }
	  else
	    memcpy(p + nb - 3, "NaN", 3);
	  return;
	}
    }


/* Returns the value of 10**d.  */

#define CALCULATE_EXP(x) \
inline static GFC_REAL_ ## x \
calculate_exp_ ## x  (int d)\
{\
  int i;\
  GFC_REAL_ ## x r = 1.0;\
  for (i = 0; i< (d >= 0 ? d : -d); i++)\
    r *= 10;\
  r = (d >= 0) ? r : 1.0 / r;\
  return r;\
}

CALCULATE_EXP(4)

CALCULATE_EXP(8)

#ifdef HAVE_GFC_REAL_10
CALCULATE_EXP(10)
#endif

#ifdef HAVE_GFC_REAL_16
CALCULATE_EXP(16)
#endif
#undef CALCULATE_EXP

/* Generate corresponding I/O format for FMT_G and output.
   The rules to translate FMT_G to FMT_E or FMT_F from DEC fortran
   LRM (table 11-2, Chapter 11, "I/O Formatting", P11-25) is:

   Data Magnitude                              Equivalent Conversion
   0< m < 0.1-0.5*10**(-d-1)                   Ew.d[Ee]
   m = 0                                       F(w-n).(d-1), n' '
   0.1-0.5*10**(-d-1)<= m < 1-0.5*10**(-d)     F(w-n).d, n' '
   1-0.5*10**(-d)<= m < 10-0.5*10**(-d+1)      F(w-n).(d-1), n' '
   10-0.5*10**(-d+1)<= m < 100-0.5*10**(-d+2)  F(w-n).(d-2), n' '
   ................                           ..........
   10**(d-1)-0.5*10**(-1)<= m <10**d-0.5       F(w-n).0,n(' ')
   m >= 10**d-0.5                              Ew.d[Ee]

   notes: for Gw.d ,  n' ' means 4 blanks
          for Gw.dEe, n' ' means e+2 blanks  */

#define OUTPUT_FLOAT_FMT_G(x) \
static void \
output_float_FMT_G_ ## x (st_parameter_dt *dtp, const fnode *f, \
		      GFC_REAL_ ## x m, char *buffer, size_t size, \
		      int sign_bit, bool zero_flag, int ndigits, int edigits) \
{ \
  int e = f->u.real.e;\
  int d = f->u.real.d;\
  int w = f->u.real.w;\
  fnode *newf;\
  GFC_REAL_ ## x rexp_d;\
  int low, high, mid;\
  int ubound, lbound;\
  char *p;\
  int save_scale_factor, nb = 0;\
\
  save_scale_factor = dtp->u.p.scale_factor;\
  newf = (fnode *) get_mem (sizeof (fnode));\
\
  rexp_d = calculate_exp_ ## x (-d);\
  if ((m > 0.0 && m < 0.1 - 0.05 * rexp_d) || (rexp_d * (m + 0.5) >= 1.0) ||\
      ((m == 0.0) && !(compile_options.allow_std & GFC_STD_F2003)))\
    { \
      newf->format = FMT_E;\
      newf->u.real.w = w;\
      newf->u.real.d = d;\
      newf->u.real.e = e;\
      nb = 0;\
      goto finish;\
    }\
\
  mid = 0;\
  low = 0;\
  high = d + 1;\
  lbound = 0;\
  ubound = d + 1;\
\
  while (low <= high)\
    { \
      GFC_REAL_ ## x temp;\
      mid = (low + high) / 2;\
\
      temp = (calculate_exp_ ## x (mid - 1) * (1 - 0.5 * rexp_d));\
\
      if (m < temp)\
        { \
          ubound = mid;\
          if (ubound == lbound + 1)\
            break;\
          high = mid - 1;\
        }\
      else if (m > temp)\
        { \
          lbound = mid;\
          if (ubound == lbound + 1)\
            { \
              mid ++;\
              break;\
            }\
          low = mid + 1;\
        }\
      else\
	{\
	  mid++;\
	  break;\
	}\
    }\
\
  if (e < 0)\
    nb = 4;\
  else\
    nb = e + 2;\
\
  newf->format = FMT_F;\
  newf->u.real.w = f->u.real.w - nb;\
\
  if (m == 0.0)\
    newf->u.real.d = d - 1;\
  else\
    newf->u.real.d = - (mid - d - 1);\
\
  dtp->u.p.scale_factor = 0;\
\
 finish:\
  output_float (dtp, newf, buffer, size, sign_bit, zero_flag, ndigits, \
		edigits);\
  dtp->u.p.scale_factor = save_scale_factor;\
\
  free_mem(newf);\
\
  if (nb > 0 && !dtp->u.p.g0_no_blanks)\
    { \
      p = write_block (dtp, nb);\
      if (p == NULL)\
	return;\
      memset (p, ' ', nb);\
    }\
}\

OUTPUT_FLOAT_FMT_G(4)

OUTPUT_FLOAT_FMT_G(8)

#ifdef HAVE_GFC_REAL_10
OUTPUT_FLOAT_FMT_G(10)
#endif

#ifdef HAVE_GFC_REAL_16
OUTPUT_FLOAT_FMT_G(16)
#endif

#undef OUTPUT_FLOAT_FMT_G


/* Define a macro to build code for write_float.  */

  /* Note: Before output_float is called, sprintf is used to print to buffer the
     number in the format +D.DDDDe+ddd. For an N digit exponent, this gives us
     (MIN_FIELD_WIDTH-5)-N digits after the decimal point, plus another one
     before the decimal point.

     #   The result will always contain a decimal point, even if no
	 digits follow it

     -   The converted value is to be left adjusted on the field boundary

     +   A sign (+ or -) always be placed before a number

     MIN_FIELD_WIDTH  minimum field width

     *   (ndigits-1) is used as the precision

     e format: [-]d.ddde±dd where there is one digit before the
       decimal-point character and the number of digits after it is
       equal to the precision. The exponent always contains at least two
       digits; if the value is zero, the exponent is 00.  */

#ifdef HAVE_SNPRINTF

#define DTOA \
snprintf (buffer, size, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \
	  "e", ndigits - 1, tmp);

#define DTOAL \
snprintf (buffer, size, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \
	  "Le", ndigits - 1, tmp);

#else

#define DTOA \
sprintf (buffer, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \
	 "e", ndigits - 1, tmp);

#define DTOAL \
sprintf (buffer, "%+-#" STR(MIN_FIELD_WIDTH) ".*" \
	 "Le", ndigits - 1, tmp);

#endif

#define WRITE_FLOAT(x,y)\
{\
	GFC_REAL_ ## x tmp;\
	tmp = * (GFC_REAL_ ## x *)source;\
	sign_bit = signbit (tmp);\
	if (!isfinite (tmp))\
	  { \
	    write_infnan (dtp, f, isnan (tmp), sign_bit);\
	    return;\
	  }\
	tmp = sign_bit ? -tmp : tmp;\
	if (f->u.real.d == 0 && f->format == FMT_F\
	    && dtp->u.p.scale_factor == 0)\
	  {\
	    if (tmp < 0.5)\
	      tmp = 0.0;\
	    else if (tmp < 1.0)\
	      tmp = 1.0;\
	  }\
	zero_flag = (tmp == 0.0);\
\
	DTOA ## y\
\
	if (f->format != FMT_G)\
	  output_float (dtp, f, buffer, size, sign_bit, zero_flag, ndigits, \
			edigits);\
	else \
	  output_float_FMT_G_ ## x (dtp, f, tmp, buffer, size, sign_bit, \
				    zero_flag, ndigits, edigits);\
}\

/* Output a real number according to its format.  */

static void
write_float (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
{

#if defined(HAVE_GFC_REAL_16) && __LDBL_DIG__ > 18
# define MIN_FIELD_WIDTH 46
#else
# define MIN_FIELD_WIDTH 31
#endif
#define STR(x) STR1(x)
#define STR1(x) #x

  /* This must be large enough to accurately hold any value.  */
  char buffer[MIN_FIELD_WIDTH+1];
  int sign_bit, ndigits, edigits;
  bool zero_flag;
  size_t size;

  size = MIN_FIELD_WIDTH+1;

  /* printf pads blanks for us on the exponent so we just need it big enough
     to handle the largest number of exponent digits expected.  */
  edigits=4;

  if (f->format == FMT_F || f->format == FMT_EN || f->format == FMT_G 
      || ((f->format == FMT_D || f->format == FMT_E)
      && dtp->u.p.scale_factor != 0))
    {
      /* Always convert at full precision to avoid double rounding.  */
      ndigits = MIN_FIELD_WIDTH - 4 - edigits;
    }
  else
    {
      /* The number of digits is known, so let printf do the rounding.  */
      if (f->format == FMT_ES)
	ndigits = f->u.real.d + 1;
      else
	ndigits = f->u.real.d;
      if (ndigits > MIN_FIELD_WIDTH - 4 - edigits)
	ndigits = MIN_FIELD_WIDTH - 4 - edigits;
    }

  switch (len)
    {
    case 4:
      WRITE_FLOAT(4,)
      break;

    case 8:
      WRITE_FLOAT(8,)
      break;

#ifdef HAVE_GFC_REAL_10
    case 10:
      WRITE_FLOAT(10,L)
      break;
#endif
#ifdef HAVE_GFC_REAL_16
    case 16:
      WRITE_FLOAT(16,L)
      break;
#endif
    default:
      internal_error (NULL, "bad real kind");
    }
}