summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/twofish/twofish.go
blob: 0616e7b82863735ab646734b3c024ffd54104c13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package twofish implements Bruce Schneier's Twofish encryption algorithm.
package twofish

// Twofish is defined in http://www.schneier.com/paper-twofish-paper.pdf [TWOFISH]

// This code is a port of the LibTom C implementation.
// See http://libtom.org/?page=features&newsitems=5&whatfile=crypt.
// LibTomCrypt is free for all purposes under the public domain.
// It was heavily inspired by the go blowfish package.

import "strconv"

// BlockSize is the constant block size of Twofish.
const BlockSize = 16

const mdsPolynomial = 0x169 // x^8 + x^6 + x^5 + x^3 + 1, see [TWOFISH] 4.2
const rsPolynomial = 0x14d  // x^8 + x^6 + x^3 + x^2 + 1, see [TWOFISH] 4.3

// A Cipher is an instance of Twofish encryption using a particular key.
type Cipher struct {
	s [4][256]uint32
	k [40]uint32
}

type KeySizeError int

func (k KeySizeError) Error() string {
	return "crypto/twofish: invalid key size " + strconv.Itoa(int(k))
}

// NewCipher creates and returns a Cipher.
// The key argument should be the Twofish key, 16, 24 or 32 bytes.
func NewCipher(key []byte) (*Cipher, error) {
	keylen := len(key)

	if keylen != 16 && keylen != 24 && keylen != 32 {
		return nil, KeySizeError(keylen)
	}

	// k is the number of 64 bit words in key
	k := keylen / 8

	// Create the S[..] words
	var S [4 * 4]byte
	for i := 0; i < k; i++ {
		// Computes [y0 y1 y2 y3] = rs . [x0 x1 x2 x3 x4 x5 x6 x7]
		for j, rsRow := range rs {
			for k, rsVal := range rsRow {
				S[4*i+j] ^= gfMult(key[8*i+k], rsVal, rsPolynomial)
			}
		}
	}

	// Calculate subkeys
	c := new(Cipher)
	var tmp [4]byte
	for i := byte(0); i < 20; i++ {
		// A = h(p * 2x, Me)
		for j := range tmp {
			tmp[j] = 2 * i
		}
		A := h(tmp[:], key, 0)

		// B = rolc(h(p * (2x + 1), Mo), 8)
		for j := range tmp {
			tmp[j] = 2*i + 1
		}
		B := h(tmp[:], key, 1)
		B = rol(B, 8)

		c.k[2*i] = A + B

		// K[2i+1] = (A + 2B) <<< 9
		c.k[2*i+1] = rol(2*B+A, 9)
	}

	// Calculate sboxes
	switch k {
	case 2:
		for i := range c.s[0] {
			c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][byte(i)]^S[0]]^S[4]], 0)
			c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][byte(i)]^S[1]]^S[5]], 1)
			c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][byte(i)]^S[2]]^S[6]], 2)
			c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][byte(i)]^S[3]]^S[7]], 3)
		}
	case 3:
		for i := range c.s[0] {
			c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][sbox[1][byte(i)]^S[0]]^S[4]]^S[8]], 0)
			c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][sbox[1][byte(i)]^S[1]]^S[5]]^S[9]], 1)
			c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][sbox[0][byte(i)]^S[2]]^S[6]]^S[10]], 2)
			c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][sbox[0][byte(i)]^S[3]]^S[7]]^S[11]], 3)
		}
	default:
		for i := range c.s[0] {
			c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][sbox[1][sbox[1][byte(i)]^S[0]]^S[4]]^S[8]]^S[12]], 0)
			c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][sbox[1][sbox[0][byte(i)]^S[1]]^S[5]]^S[9]]^S[13]], 1)
			c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][sbox[0][sbox[0][byte(i)]^S[2]]^S[6]]^S[10]]^S[14]], 2)
			c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][sbox[0][sbox[1][byte(i)]^S[3]]^S[7]]^S[11]]^S[15]], 3)
		}
	}

	return c, nil
}

// Reset zeros the key data, so that it will no longer appear in the process's
// memory.
func (c *Cipher) Reset() {
	for i := range c.k {
		c.k[i] = 0
	}
	for i := range c.s {
		for j := 0; j < 256; j++ {
			c.s[i][j] = 0
		}
	}
}

// BlockSize returns the Twofish block size, 16 bytes.
func (c *Cipher) BlockSize() int { return BlockSize }

// store32l stores src in dst in little-endian form.
func store32l(dst []byte, src uint32) {
	dst[0] = byte(src)
	dst[1] = byte(src >> 8)
	dst[2] = byte(src >> 16)
	dst[3] = byte(src >> 24)
	return
}

// load32l reads a little-endian uint32 from src.
func load32l(src []byte) uint32 {
	return uint32(src[0]) | uint32(src[1])<<8 | uint32(src[2])<<16 | uint32(src[3])<<24
}

// rol returns x after a left circular rotation of y bits.
func rol(x, y uint32) uint32 {
	return (x << (y & 31)) | (x >> (32 - (y & 31)))
}

// ror returns x after a right circular rotation of y bits.
func ror(x, y uint32) uint32 {
	return (x >> (y & 31)) | (x << (32 - (y & 31)))
}

// The RS matrix. See [TWOFISH] 4.3
var rs = [4][8]byte{
	{0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E},
	{0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5},
	{0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19},
	{0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03},
}

// sbox tables
var sbox = [2][256]byte{
	{
		0xa9, 0x67, 0xb3, 0xe8, 0x04, 0xfd, 0xa3, 0x76, 0x9a, 0x92, 0x80, 0x78, 0xe4, 0xdd, 0xd1, 0x38,
		0x0d, 0xc6, 0x35, 0x98, 0x18, 0xf7, 0xec, 0x6c, 0x43, 0x75, 0x37, 0x26, 0xfa, 0x13, 0x94, 0x48,
		0xf2, 0xd0, 0x8b, 0x30, 0x84, 0x54, 0xdf, 0x23, 0x19, 0x5b, 0x3d, 0x59, 0xf3, 0xae, 0xa2, 0x82,
		0x63, 0x01, 0x83, 0x2e, 0xd9, 0x51, 0x9b, 0x7c, 0xa6, 0xeb, 0xa5, 0xbe, 0x16, 0x0c, 0xe3, 0x61,
		0xc0, 0x8c, 0x3a, 0xf5, 0x73, 0x2c, 0x25, 0x0b, 0xbb, 0x4e, 0x89, 0x6b, 0x53, 0x6a, 0xb4, 0xf1,
		0xe1, 0xe6, 0xbd, 0x45, 0xe2, 0xf4, 0xb6, 0x66, 0xcc, 0x95, 0x03, 0x56, 0xd4, 0x1c, 0x1e, 0xd7,
		0xfb, 0xc3, 0x8e, 0xb5, 0xe9, 0xcf, 0xbf, 0xba, 0xea, 0x77, 0x39, 0xaf, 0x33, 0xc9, 0x62, 0x71,
		0x81, 0x79, 0x09, 0xad, 0x24, 0xcd, 0xf9, 0xd8, 0xe5, 0xc5, 0xb9, 0x4d, 0x44, 0x08, 0x86, 0xe7,
		0xa1, 0x1d, 0xaa, 0xed, 0x06, 0x70, 0xb2, 0xd2, 0x41, 0x7b, 0xa0, 0x11, 0x31, 0xc2, 0x27, 0x90,
		0x20, 0xf6, 0x60, 0xff, 0x96, 0x5c, 0xb1, 0xab, 0x9e, 0x9c, 0x52, 0x1b, 0x5f, 0x93, 0x0a, 0xef,
		0x91, 0x85, 0x49, 0xee, 0x2d, 0x4f, 0x8f, 0x3b, 0x47, 0x87, 0x6d, 0x46, 0xd6, 0x3e, 0x69, 0x64,
		0x2a, 0xce, 0xcb, 0x2f, 0xfc, 0x97, 0x05, 0x7a, 0xac, 0x7f, 0xd5, 0x1a, 0x4b, 0x0e, 0xa7, 0x5a,
		0x28, 0x14, 0x3f, 0x29, 0x88, 0x3c, 0x4c, 0x02, 0xb8, 0xda, 0xb0, 0x17, 0x55, 0x1f, 0x8a, 0x7d,
		0x57, 0xc7, 0x8d, 0x74, 0xb7, 0xc4, 0x9f, 0x72, 0x7e, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
		0x6e, 0x50, 0xde, 0x68, 0x65, 0xbc, 0xdb, 0xf8, 0xc8, 0xa8, 0x2b, 0x40, 0xdc, 0xfe, 0x32, 0xa4,
		0xca, 0x10, 0x21, 0xf0, 0xd3, 0x5d, 0x0f, 0x00, 0x6f, 0x9d, 0x36, 0x42, 0x4a, 0x5e, 0xc1, 0xe0,
	},
	{
		0x75, 0xf3, 0xc6, 0xf4, 0xdb, 0x7b, 0xfb, 0xc8, 0x4a, 0xd3, 0xe6, 0x6b, 0x45, 0x7d, 0xe8, 0x4b,
		0xd6, 0x32, 0xd8, 0xfd, 0x37, 0x71, 0xf1, 0xe1, 0x30, 0x0f, 0xf8, 0x1b, 0x87, 0xfa, 0x06, 0x3f,
		0x5e, 0xba, 0xae, 0x5b, 0x8a, 0x00, 0xbc, 0x9d, 0x6d, 0xc1, 0xb1, 0x0e, 0x80, 0x5d, 0xd2, 0xd5,
		0xa0, 0x84, 0x07, 0x14, 0xb5, 0x90, 0x2c, 0xa3, 0xb2, 0x73, 0x4c, 0x54, 0x92, 0x74, 0x36, 0x51,
		0x38, 0xb0, 0xbd, 0x5a, 0xfc, 0x60, 0x62, 0x96, 0x6c, 0x42, 0xf7, 0x10, 0x7c, 0x28, 0x27, 0x8c,
		0x13, 0x95, 0x9c, 0xc7, 0x24, 0x46, 0x3b, 0x70, 0xca, 0xe3, 0x85, 0xcb, 0x11, 0xd0, 0x93, 0xb8,
		0xa6, 0x83, 0x20, 0xff, 0x9f, 0x77, 0xc3, 0xcc, 0x03, 0x6f, 0x08, 0xbf, 0x40, 0xe7, 0x2b, 0xe2,
		0x79, 0x0c, 0xaa, 0x82, 0x41, 0x3a, 0xea, 0xb9, 0xe4, 0x9a, 0xa4, 0x97, 0x7e, 0xda, 0x7a, 0x17,
		0x66, 0x94, 0xa1, 0x1d, 0x3d, 0xf0, 0xde, 0xb3, 0x0b, 0x72, 0xa7, 0x1c, 0xef, 0xd1, 0x53, 0x3e,
		0x8f, 0x33, 0x26, 0x5f, 0xec, 0x76, 0x2a, 0x49, 0x81, 0x88, 0xee, 0x21, 0xc4, 0x1a, 0xeb, 0xd9,
		0xc5, 0x39, 0x99, 0xcd, 0xad, 0x31, 0x8b, 0x01, 0x18, 0x23, 0xdd, 0x1f, 0x4e, 0x2d, 0xf9, 0x48,
		0x4f, 0xf2, 0x65, 0x8e, 0x78, 0x5c, 0x58, 0x19, 0x8d, 0xe5, 0x98, 0x57, 0x67, 0x7f, 0x05, 0x64,
		0xaf, 0x63, 0xb6, 0xfe, 0xf5, 0xb7, 0x3c, 0xa5, 0xce, 0xe9, 0x68, 0x44, 0xe0, 0x4d, 0x43, 0x69,
		0x29, 0x2e, 0xac, 0x15, 0x59, 0xa8, 0x0a, 0x9e, 0x6e, 0x47, 0xdf, 0x34, 0x35, 0x6a, 0xcf, 0xdc,
		0x22, 0xc9, 0xc0, 0x9b, 0x89, 0xd4, 0xed, 0xab, 0x12, 0xa2, 0x0d, 0x52, 0xbb, 0x02, 0x2f, 0xa9,
		0xd7, 0x61, 0x1e, 0xb4, 0x50, 0x04, 0xf6, 0xc2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xbe, 0x91,
	},
}

// gfMult returns a·b in GF(2^8)/p
func gfMult(a, b byte, p uint32) byte {
	B := [2]uint32{0, uint32(b)}
	P := [2]uint32{0, p}
	var result uint32

	// branchless GF multiplier
	for i := 0; i < 7; i++ {
		result ^= B[a&1]
		a >>= 1
		B[1] = P[B[1]>>7] ^ (B[1] << 1)
	}
	result ^= B[a&1]
	return byte(result)
}

// mdsColumnMult calculates y{col} where [y0 y1 y2 y3] = MDS · [x0]
func mdsColumnMult(in byte, col int) uint32 {
	mul01 := in
	mul5B := gfMult(in, 0x5B, mdsPolynomial)
	mulEF := gfMult(in, 0xEF, mdsPolynomial)

	switch col {
	case 0:
		return uint32(mul01) | uint32(mul5B)<<8 | uint32(mulEF)<<16 | uint32(mulEF)<<24
	case 1:
		return uint32(mulEF) | uint32(mulEF)<<8 | uint32(mul5B)<<16 | uint32(mul01)<<24
	case 2:
		return uint32(mul5B) | uint32(mulEF)<<8 | uint32(mul01)<<16 | uint32(mulEF)<<24
	case 3:
		return uint32(mul5B) | uint32(mul01)<<8 | uint32(mulEF)<<16 | uint32(mul5B)<<24
	}

	panic("unreachable")
}

// h implements the S-box generation function. See [TWOFISH] 4.3.5
func h(in, key []byte, offset int) uint32 {
	var y [4]byte
	for x := range y {
		y[x] = in[x]
	}
	switch len(key) / 8 {
	case 4:
		y[0] = sbox[1][y[0]] ^ key[4*(6+offset)+0]
		y[1] = sbox[0][y[1]] ^ key[4*(6+offset)+1]
		y[2] = sbox[0][y[2]] ^ key[4*(6+offset)+2]
		y[3] = sbox[1][y[3]] ^ key[4*(6+offset)+3]
		fallthrough
	case 3:
		y[0] = sbox[1][y[0]] ^ key[4*(4+offset)+0]
		y[1] = sbox[1][y[1]] ^ key[4*(4+offset)+1]
		y[2] = sbox[0][y[2]] ^ key[4*(4+offset)+2]
		y[3] = sbox[0][y[3]] ^ key[4*(4+offset)+3]
		fallthrough
	case 2:
		y[0] = sbox[1][sbox[0][sbox[0][y[0]]^key[4*(2+offset)+0]]^key[4*(0+offset)+0]]
		y[1] = sbox[0][sbox[0][sbox[1][y[1]]^key[4*(2+offset)+1]]^key[4*(0+offset)+1]]
		y[2] = sbox[1][sbox[1][sbox[0][y[2]]^key[4*(2+offset)+2]]^key[4*(0+offset)+2]]
		y[3] = sbox[0][sbox[1][sbox[1][y[3]]^key[4*(2+offset)+3]]^key[4*(0+offset)+3]]
	}
	// [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3]
	var mdsMult uint32
	for i := range y {
		mdsMult ^= mdsColumnMult(y[i], i)
	}
	return mdsMult
}

// Encrypt encrypts a 16-byte block from src to dst, which may overlap.
// Note that for amounts of data larger than a block,
// it is not safe to just call Encrypt on successive blocks;
// instead, use an encryption mode like CBC (see crypto/cipher/cbc.go).
func (c *Cipher) Encrypt(dst, src []byte) {
	S1 := c.s[0]
	S2 := c.s[1]
	S3 := c.s[2]
	S4 := c.s[3]

	// Load input
	ia := load32l(src[0:4])
	ib := load32l(src[4:8])
	ic := load32l(src[8:12])
	id := load32l(src[12:16])

	// Pre-whitening
	ia ^= c.k[0]
	ib ^= c.k[1]
	ic ^= c.k[2]
	id ^= c.k[3]

	for i := 0; i < 8; i++ {
		k := c.k[8+i*4 : 12+i*4]
		t2 := S2[byte(ib)] ^ S3[byte(ib>>8)] ^ S4[byte(ib>>16)] ^ S1[byte(ib>>24)]
		t1 := S1[byte(ia)] ^ S2[byte(ia>>8)] ^ S3[byte(ia>>16)] ^ S4[byte(ia>>24)] + t2
		ic = ror(ic^(t1+k[0]), 1)
		id = rol(id, 1) ^ (t2 + t1 + k[1])

		t2 = S2[byte(id)] ^ S3[byte(id>>8)] ^ S4[byte(id>>16)] ^ S1[byte(id>>24)]
		t1 = S1[byte(ic)] ^ S2[byte(ic>>8)] ^ S3[byte(ic>>16)] ^ S4[byte(ic>>24)] + t2
		ia = ror(ia^(t1+k[2]), 1)
		ib = rol(ib, 1) ^ (t2 + t1 + k[3])
	}

	// Output with "undo last swap"
	ta := ic ^ c.k[4]
	tb := id ^ c.k[5]
	tc := ia ^ c.k[6]
	td := ib ^ c.k[7]

	store32l(dst[0:4], ta)
	store32l(dst[4:8], tb)
	store32l(dst[8:12], tc)
	store32l(dst[12:16], td)
}

// Decrypt decrypts a 16-byte block from src to dst, which may overlap.
func (c *Cipher) Decrypt(dst, src []byte) {
	S1 := c.s[0]
	S2 := c.s[1]
	S3 := c.s[2]
	S4 := c.s[3]

	// Load input
	ta := load32l(src[0:4])
	tb := load32l(src[4:8])
	tc := load32l(src[8:12])
	td := load32l(src[12:16])

	// Undo undo final swap
	ia := tc ^ c.k[6]
	ib := td ^ c.k[7]
	ic := ta ^ c.k[4]
	id := tb ^ c.k[5]

	for i := 8; i > 0; i-- {
		k := c.k[4+i*4 : 8+i*4]
		t2 := S2[byte(id)] ^ S3[byte(id>>8)] ^ S4[byte(id>>16)] ^ S1[byte(id>>24)]
		t1 := S1[byte(ic)] ^ S2[byte(ic>>8)] ^ S3[byte(ic>>16)] ^ S4[byte(ic>>24)] + t2
		ia = rol(ia, 1) ^ (t1 + k[2])
		ib = ror(ib^(t2+t1+k[3]), 1)

		t2 = S2[byte(ib)] ^ S3[byte(ib>>8)] ^ S4[byte(ib>>16)] ^ S1[byte(ib>>24)]
		t1 = S1[byte(ia)] ^ S2[byte(ia>>8)] ^ S3[byte(ia>>16)] ^ S4[byte(ia>>24)] + t2
		ic = rol(ic, 1) ^ (t1 + k[0])
		id = ror(id^(t2+t1+k[1]), 1)
	}

	// Undo pre-whitening
	ia ^= c.k[0]
	ib ^= c.k[1]
	ic ^= c.k[2]
	id ^= c.k[3]

	store32l(dst[0:4], ia)
	store32l(dst[4:8], ib)
	store32l(dst[8:12], ic)
	store32l(dst[12:16], id)
}