summaryrefslogtreecommitdiff
path: root/libgo/go/encoding/json/encode.go
blob: 69ac7e03c8db81c2ebcc5d14765e6b5a3a441215 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
// Copyright 2010 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package json implements encoding and decoding of JSON objects as defined in
// RFC 4627. The mapping between JSON objects and Go values is described
// in the documentation for the Marshal and Unmarshal functions.
//
// See "JSON and Go" for an introduction to this package:
// https://golang.org/doc/articles/json_and_go.html
package json

import (
	"bytes"
	"encoding"
	"encoding/base64"
	"fmt"
	"math"
	"reflect"
	"runtime"
	"sort"
	"strconv"
	"strings"
	"sync"
	"unicode"
	"unicode/utf8"
)

// Marshal returns the JSON encoding of v.
//
// Marshal traverses the value v recursively.
// If an encountered value implements the Marshaler interface
// and is not a nil pointer, Marshal calls its MarshalJSON method
// to produce JSON. If no MarshalJSON method is present but the
// value implements encoding.TextMarshaler instead, Marshal calls
// its MarshalText method.
// The nil pointer exception is not strictly necessary
// but mimics a similar, necessary exception in the behavior of
// UnmarshalJSON.
//
// Otherwise, Marshal uses the following type-dependent default encodings:
//
// Boolean values encode as JSON booleans.
//
// Floating point, integer, and Number values encode as JSON numbers.
//
// String values encode as JSON strings coerced to valid UTF-8,
// replacing invalid bytes with the Unicode replacement rune.
// The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
// to keep some browsers from misinterpreting JSON output as HTML.
// Ampersand "&" is also escaped to "\u0026" for the same reason.
//
// Array and slice values encode as JSON arrays, except that
// []byte encodes as a base64-encoded string, and a nil slice
// encodes as the null JSON object.
//
// Struct values encode as JSON objects. Each exported struct field
// becomes a member of the object unless
//   - the field's tag is "-", or
//   - the field is empty and its tag specifies the "omitempty" option.
// The empty values are false, 0, any
// nil pointer or interface value, and any array, slice, map, or string of
// length zero. The object's default key string is the struct field name
// but can be specified in the struct field's tag value. The "json" key in
// the struct field's tag value is the key name, followed by an optional comma
// and options. Examples:
//
//   // Field is ignored by this package.
//   Field int `json:"-"`
//
//   // Field appears in JSON as key "myName".
//   Field int `json:"myName"`
//
//   // Field appears in JSON as key "myName" and
//   // the field is omitted from the object if its value is empty,
//   // as defined above.
//   Field int `json:"myName,omitempty"`
//
//   // Field appears in JSON as key "Field" (the default), but
//   // the field is skipped if empty.
//   // Note the leading comma.
//   Field int `json:",omitempty"`
//
// The "string" option signals that a field is stored as JSON inside a
// JSON-encoded string. It applies only to fields of string, floating point,
// integer, or boolean types. This extra level of encoding is sometimes used
// when communicating with JavaScript programs:
//
//    Int64String int64 `json:",string"`
//
// The key name will be used if it's a non-empty string consisting of
// only Unicode letters, digits, dollar signs, percent signs, hyphens,
// underscores and slashes.
//
// Anonymous struct fields are usually marshaled as if their inner exported fields
// were fields in the outer struct, subject to the usual Go visibility rules amended
// as described in the next paragraph.
// An anonymous struct field with a name given in its JSON tag is treated as
// having that name, rather than being anonymous.
// An anonymous struct field of interface type is treated the same as having
// that type as its name, rather than being anonymous.
//
// The Go visibility rules for struct fields are amended for JSON when
// deciding which field to marshal or unmarshal. If there are
// multiple fields at the same level, and that level is the least
// nested (and would therefore be the nesting level selected by the
// usual Go rules), the following extra rules apply:
//
// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
// even if there are multiple untagged fields that would otherwise conflict.
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
//
// Handling of anonymous struct fields is new in Go 1.1.
// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
// an anonymous struct field in both current and earlier versions, give the field
// a JSON tag of "-".
//
// Map values encode as JSON objects.
// The map's key type must be string; the map keys are used as JSON object
// keys, subject to the UTF-8 coercion described for string values above.
//
// Pointer values encode as the value pointed to.
// A nil pointer encodes as the null JSON object.
//
// Interface values encode as the value contained in the interface.
// A nil interface value encodes as the null JSON object.
//
// Channel, complex, and function values cannot be encoded in JSON.
// Attempting to encode such a value causes Marshal to return
// an UnsupportedTypeError.
//
// JSON cannot represent cyclic data structures and Marshal does not
// handle them.  Passing cyclic structures to Marshal will result in
// an infinite recursion.
//
func Marshal(v interface{}) ([]byte, error) {
	e := &encodeState{}
	err := e.marshal(v)
	if err != nil {
		return nil, err
	}
	return e.Bytes(), nil
}

// MarshalIndent is like Marshal but applies Indent to format the output.
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
	b, err := Marshal(v)
	if err != nil {
		return nil, err
	}
	var buf bytes.Buffer
	err = Indent(&buf, b, prefix, indent)
	if err != nil {
		return nil, err
	}
	return buf.Bytes(), nil
}

// HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
// characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
// so that the JSON will be safe to embed inside HTML <script> tags.
// For historical reasons, web browsers don't honor standard HTML
// escaping within <script> tags, so an alternative JSON encoding must
// be used.
func HTMLEscape(dst *bytes.Buffer, src []byte) {
	// The characters can only appear in string literals,
	// so just scan the string one byte at a time.
	start := 0
	for i, c := range src {
		if c == '<' || c == '>' || c == '&' {
			if start < i {
				dst.Write(src[start:i])
			}
			dst.WriteString(`\u00`)
			dst.WriteByte(hex[c>>4])
			dst.WriteByte(hex[c&0xF])
			start = i + 1
		}
		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
			if start < i {
				dst.Write(src[start:i])
			}
			dst.WriteString(`\u202`)
			dst.WriteByte(hex[src[i+2]&0xF])
			start = i + 3
		}
	}
	if start < len(src) {
		dst.Write(src[start:])
	}
}

// Marshaler is the interface implemented by objects that
// can marshal themselves into valid JSON.
type Marshaler interface {
	MarshalJSON() ([]byte, error)
}

// An UnsupportedTypeError is returned by Marshal when attempting
// to encode an unsupported value type.
type UnsupportedTypeError struct {
	Type reflect.Type
}

func (e *UnsupportedTypeError) Error() string {
	return "json: unsupported type: " + e.Type.String()
}

type UnsupportedValueError struct {
	Value reflect.Value
	Str   string
}

func (e *UnsupportedValueError) Error() string {
	return "json: unsupported value: " + e.Str
}

// Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
// attempting to encode a string value with invalid UTF-8 sequences.
// As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
// replacing invalid bytes with the Unicode replacement rune U+FFFD.
// This error is no longer generated but is kept for backwards compatibility
// with programs that might mention it.
type InvalidUTF8Error struct {
	S string // the whole string value that caused the error
}

func (e *InvalidUTF8Error) Error() string {
	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
}

type MarshalerError struct {
	Type reflect.Type
	Err  error
}

func (e *MarshalerError) Error() string {
	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
}

var hex = "0123456789abcdef"

// An encodeState encodes JSON into a bytes.Buffer.
type encodeState struct {
	bytes.Buffer // accumulated output
	scratch      [64]byte
}

var encodeStatePool sync.Pool

func newEncodeState() *encodeState {
	if v := encodeStatePool.Get(); v != nil {
		e := v.(*encodeState)
		e.Reset()
		return e
	}
	return new(encodeState)
}

func (e *encodeState) marshal(v interface{}) (err error) {
	defer func() {
		if r := recover(); r != nil {
			if _, ok := r.(runtime.Error); ok {
				panic(r)
			}
			if s, ok := r.(string); ok {
				panic(s)
			}
			err = r.(error)
		}
	}()
	e.reflectValue(reflect.ValueOf(v))
	return nil
}

func (e *encodeState) error(err error) {
	panic(err)
}

func isEmptyValue(v reflect.Value) bool {
	switch v.Kind() {
	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
		return v.Len() == 0
	case reflect.Bool:
		return !v.Bool()
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return v.Int() == 0
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		return v.Uint() == 0
	case reflect.Float32, reflect.Float64:
		return v.Float() == 0
	case reflect.Interface, reflect.Ptr:
		return v.IsNil()
	}
	return false
}

func (e *encodeState) reflectValue(v reflect.Value) {
	valueEncoder(v)(e, v, false)
}

type encoderFunc func(e *encodeState, v reflect.Value, quoted bool)

var encoderCache struct {
	sync.RWMutex
	m map[reflect.Type]encoderFunc
}

func valueEncoder(v reflect.Value) encoderFunc {
	if !v.IsValid() {
		return invalidValueEncoder
	}
	return typeEncoder(v.Type())
}

func typeEncoder(t reflect.Type) encoderFunc {
	encoderCache.RLock()
	f := encoderCache.m[t]
	encoderCache.RUnlock()
	if f != nil {
		return f
	}

	// To deal with recursive types, populate the map with an
	// indirect func before we build it. This type waits on the
	// real func (f) to be ready and then calls it.  This indirect
	// func is only used for recursive types.
	encoderCache.Lock()
	if encoderCache.m == nil {
		encoderCache.m = make(map[reflect.Type]encoderFunc)
	}
	var wg sync.WaitGroup
	wg.Add(1)
	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
		wg.Wait()
		f(e, v, quoted)
	}
	encoderCache.Unlock()

	// Compute fields without lock.
	// Might duplicate effort but won't hold other computations back.
	f = newTypeEncoder(t, true)
	wg.Done()
	encoderCache.Lock()
	encoderCache.m[t] = f
	encoderCache.Unlock()
	return f
}

var (
	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
)

// newTypeEncoder constructs an encoderFunc for a type.
// The returned encoder only checks CanAddr when allowAddr is true.
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
	if t.Implements(marshalerType) {
		return marshalerEncoder
	}
	if t.Kind() != reflect.Ptr && allowAddr {
		if reflect.PtrTo(t).Implements(marshalerType) {
			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
		}
	}

	if t.Implements(textMarshalerType) {
		return textMarshalerEncoder
	}
	if t.Kind() != reflect.Ptr && allowAddr {
		if reflect.PtrTo(t).Implements(textMarshalerType) {
			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
		}
	}

	switch t.Kind() {
	case reflect.Bool:
		return boolEncoder
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return intEncoder
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		return uintEncoder
	case reflect.Float32:
		return float32Encoder
	case reflect.Float64:
		return float64Encoder
	case reflect.String:
		return stringEncoder
	case reflect.Interface:
		return interfaceEncoder
	case reflect.Struct:
		return newStructEncoder(t)
	case reflect.Map:
		return newMapEncoder(t)
	case reflect.Slice:
		return newSliceEncoder(t)
	case reflect.Array:
		return newArrayEncoder(t)
	case reflect.Ptr:
		return newPtrEncoder(t)
	default:
		return unsupportedTypeEncoder
	}
}

func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
	e.WriteString("null")
}

func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
	if v.Kind() == reflect.Ptr && v.IsNil() {
		e.WriteString("null")
		return
	}
	m := v.Interface().(Marshaler)
	b, err := m.MarshalJSON()
	if err == nil {
		// copy JSON into buffer, checking validity.
		err = compact(&e.Buffer, b, true)
	}
	if err != nil {
		e.error(&MarshalerError{v.Type(), err})
	}
}

func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
	va := v.Addr()
	if va.IsNil() {
		e.WriteString("null")
		return
	}
	m := va.Interface().(Marshaler)
	b, err := m.MarshalJSON()
	if err == nil {
		// copy JSON into buffer, checking validity.
		err = compact(&e.Buffer, b, true)
	}
	if err != nil {
		e.error(&MarshalerError{v.Type(), err})
	}
}

func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
	if v.Kind() == reflect.Ptr && v.IsNil() {
		e.WriteString("null")
		return
	}
	m := v.Interface().(encoding.TextMarshaler)
	b, err := m.MarshalText()
	if err != nil {
		e.error(&MarshalerError{v.Type(), err})
	}
	e.stringBytes(b)
}

func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
	va := v.Addr()
	if va.IsNil() {
		e.WriteString("null")
		return
	}
	m := va.Interface().(encoding.TextMarshaler)
	b, err := m.MarshalText()
	if err != nil {
		e.error(&MarshalerError{v.Type(), err})
	}
	e.stringBytes(b)
}

func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
	if quoted {
		e.WriteByte('"')
	}
	if v.Bool() {
		e.WriteString("true")
	} else {
		e.WriteString("false")
	}
	if quoted {
		e.WriteByte('"')
	}
}

func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
	if quoted {
		e.WriteByte('"')
	}
	e.Write(b)
	if quoted {
		e.WriteByte('"')
	}
}

func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
	if quoted {
		e.WriteByte('"')
	}
	e.Write(b)
	if quoted {
		e.WriteByte('"')
	}
}

type floatEncoder int // number of bits

func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
	f := v.Float()
	if math.IsInf(f, 0) || math.IsNaN(f) {
		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
	}
	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
	if quoted {
		e.WriteByte('"')
	}
	e.Write(b)
	if quoted {
		e.WriteByte('"')
	}
}

var (
	float32Encoder = (floatEncoder(32)).encode
	float64Encoder = (floatEncoder(64)).encode
)

func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
	if v.Type() == numberType {
		numStr := v.String()
		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
		// we keep compatibility so check validity after this.
		if numStr == "" {
			numStr = "0" // Number's zero-val
		}
		if !isValidNumber(numStr) {
			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
		}
		e.WriteString(numStr)
		return
	}
	if quoted {
		sb, err := Marshal(v.String())
		if err != nil {
			e.error(err)
		}
		e.string(string(sb))
	} else {
		e.string(v.String())
	}
}

func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	e.reflectValue(v.Elem())
}

func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
	e.error(&UnsupportedTypeError{v.Type()})
}

type structEncoder struct {
	fields    []field
	fieldEncs []encoderFunc
}

func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
	e.WriteByte('{')
	first := true
	for i, f := range se.fields {
		fv := fieldByIndex(v, f.index)
		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
			continue
		}
		if first {
			first = false
		} else {
			e.WriteByte(',')
		}
		e.string(f.name)
		e.WriteByte(':')
		se.fieldEncs[i](e, fv, f.quoted)
	}
	e.WriteByte('}')
}

func newStructEncoder(t reflect.Type) encoderFunc {
	fields := cachedTypeFields(t)
	se := &structEncoder{
		fields:    fields,
		fieldEncs: make([]encoderFunc, len(fields)),
	}
	for i, f := range fields {
		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
	}
	return se.encode
}

type mapEncoder struct {
	elemEnc encoderFunc
}

func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	e.WriteByte('{')
	var sv stringValues = v.MapKeys()
	sort.Sort(sv)
	for i, k := range sv {
		if i > 0 {
			e.WriteByte(',')
		}
		e.string(k.String())
		e.WriteByte(':')
		me.elemEnc(e, v.MapIndex(k), false)
	}
	e.WriteByte('}')
}

func newMapEncoder(t reflect.Type) encoderFunc {
	if t.Key().Kind() != reflect.String {
		return unsupportedTypeEncoder
	}
	me := &mapEncoder{typeEncoder(t.Elem())}
	return me.encode
}

func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	s := v.Bytes()
	e.WriteByte('"')
	if len(s) < 1024 {
		// for small buffers, using Encode directly is much faster.
		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
		base64.StdEncoding.Encode(dst, s)
		e.Write(dst)
	} else {
		// for large buffers, avoid unnecessary extra temporary
		// buffer space.
		enc := base64.NewEncoder(base64.StdEncoding, e)
		enc.Write(s)
		enc.Close()
	}
	e.WriteByte('"')
}

// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
type sliceEncoder struct {
	arrayEnc encoderFunc
}

func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	se.arrayEnc(e, v, false)
}

func newSliceEncoder(t reflect.Type) encoderFunc {
	// Byte slices get special treatment; arrays don't.
	if t.Elem().Kind() == reflect.Uint8 {
		return encodeByteSlice
	}
	enc := &sliceEncoder{newArrayEncoder(t)}
	return enc.encode
}

type arrayEncoder struct {
	elemEnc encoderFunc
}

func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
	e.WriteByte('[')
	n := v.Len()
	for i := 0; i < n; i++ {
		if i > 0 {
			e.WriteByte(',')
		}
		ae.elemEnc(e, v.Index(i), false)
	}
	e.WriteByte(']')
}

func newArrayEncoder(t reflect.Type) encoderFunc {
	enc := &arrayEncoder{typeEncoder(t.Elem())}
	return enc.encode
}

type ptrEncoder struct {
	elemEnc encoderFunc
}

func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	pe.elemEnc(e, v.Elem(), quoted)
}

func newPtrEncoder(t reflect.Type) encoderFunc {
	enc := &ptrEncoder{typeEncoder(t.Elem())}
	return enc.encode
}

type condAddrEncoder struct {
	canAddrEnc, elseEnc encoderFunc
}

func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
	if v.CanAddr() {
		ce.canAddrEnc(e, v, quoted)
	} else {
		ce.elseEnc(e, v, quoted)
	}
}

// newCondAddrEncoder returns an encoder that checks whether its value
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
	return enc.encode
}

func isValidTag(s string) bool {
	if s == "" {
		return false
	}
	for _, c := range s {
		switch {
		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
			// Backslash and quote chars are reserved, but
			// otherwise any punctuation chars are allowed
			// in a tag name.
		default:
			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
				return false
			}
		}
	}
	return true
}

func fieldByIndex(v reflect.Value, index []int) reflect.Value {
	for _, i := range index {
		if v.Kind() == reflect.Ptr {
			if v.IsNil() {
				return reflect.Value{}
			}
			v = v.Elem()
		}
		v = v.Field(i)
	}
	return v
}

func typeByIndex(t reflect.Type, index []int) reflect.Type {
	for _, i := range index {
		if t.Kind() == reflect.Ptr {
			t = t.Elem()
		}
		t = t.Field(i).Type
	}
	return t
}

// stringValues is a slice of reflect.Value holding *reflect.StringValue.
// It implements the methods to sort by string.
type stringValues []reflect.Value

func (sv stringValues) Len() int           { return len(sv) }
func (sv stringValues) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) }
func (sv stringValues) get(i int) string   { return sv[i].String() }

// NOTE: keep in sync with stringBytes below.
func (e *encodeState) string(s string) int {
	len0 := e.Len()
	e.WriteByte('"')
	start := 0
	for i := 0; i < len(s); {
		if b := s[i]; b < utf8.RuneSelf {
			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
				i++
				continue
			}
			if start < i {
				e.WriteString(s[start:i])
			}
			switch b {
			case '\\', '"':
				e.WriteByte('\\')
				e.WriteByte(b)
			case '\n':
				e.WriteByte('\\')
				e.WriteByte('n')
			case '\r':
				e.WriteByte('\\')
				e.WriteByte('r')
			case '\t':
				e.WriteByte('\\')
				e.WriteByte('t')
			default:
				// This encodes bytes < 0x20 except for \n and \r,
				// as well as <, > and &. The latter are escaped because they
				// can lead to security holes when user-controlled strings
				// are rendered into JSON and served to some browsers.
				e.WriteString(`\u00`)
				e.WriteByte(hex[b>>4])
				e.WriteByte(hex[b&0xF])
			}
			i++
			start = i
			continue
		}
		c, size := utf8.DecodeRuneInString(s[i:])
		if c == utf8.RuneError && size == 1 {
			if start < i {
				e.WriteString(s[start:i])
			}
			e.WriteString(`\ufffd`)
			i += size
			start = i
			continue
		}
		// U+2028 is LINE SEPARATOR.
		// U+2029 is PARAGRAPH SEPARATOR.
		// They are both technically valid characters in JSON strings,
		// but don't work in JSONP, which has to be evaluated as JavaScript,
		// and can lead to security holes there. It is valid JSON to
		// escape them, so we do so unconditionally.
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
		if c == '\u2028' || c == '\u2029' {
			if start < i {
				e.WriteString(s[start:i])
			}
			e.WriteString(`\u202`)
			e.WriteByte(hex[c&0xF])
			i += size
			start = i
			continue
		}
		i += size
	}
	if start < len(s) {
		e.WriteString(s[start:])
	}
	e.WriteByte('"')
	return e.Len() - len0
}

// NOTE: keep in sync with string above.
func (e *encodeState) stringBytes(s []byte) int {
	len0 := e.Len()
	e.WriteByte('"')
	start := 0
	for i := 0; i < len(s); {
		if b := s[i]; b < utf8.RuneSelf {
			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
				i++
				continue
			}
			if start < i {
				e.Write(s[start:i])
			}
			switch b {
			case '\\', '"':
				e.WriteByte('\\')
				e.WriteByte(b)
			case '\n':
				e.WriteByte('\\')
				e.WriteByte('n')
			case '\r':
				e.WriteByte('\\')
				e.WriteByte('r')
			case '\t':
				e.WriteByte('\\')
				e.WriteByte('t')
			default:
				// This encodes bytes < 0x20 except for \n and \r,
				// as well as <, >, and &. The latter are escaped because they
				// can lead to security holes when user-controlled strings
				// are rendered into JSON and served to some browsers.
				e.WriteString(`\u00`)
				e.WriteByte(hex[b>>4])
				e.WriteByte(hex[b&0xF])
			}
			i++
			start = i
			continue
		}
		c, size := utf8.DecodeRune(s[i:])
		if c == utf8.RuneError && size == 1 {
			if start < i {
				e.Write(s[start:i])
			}
			e.WriteString(`\ufffd`)
			i += size
			start = i
			continue
		}
		// U+2028 is LINE SEPARATOR.
		// U+2029 is PARAGRAPH SEPARATOR.
		// They are both technically valid characters in JSON strings,
		// but don't work in JSONP, which has to be evaluated as JavaScript,
		// and can lead to security holes there. It is valid JSON to
		// escape them, so we do so unconditionally.
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
		if c == '\u2028' || c == '\u2029' {
			if start < i {
				e.Write(s[start:i])
			}
			e.WriteString(`\u202`)
			e.WriteByte(hex[c&0xF])
			i += size
			start = i
			continue
		}
		i += size
	}
	if start < len(s) {
		e.Write(s[start:])
	}
	e.WriteByte('"')
	return e.Len() - len0
}

// A field represents a single field found in a struct.
type field struct {
	name      string
	nameBytes []byte                 // []byte(name)
	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent

	tag       bool
	index     []int
	typ       reflect.Type
	omitEmpty bool
	quoted    bool
}

func fillField(f field) field {
	f.nameBytes = []byte(f.name)
	f.equalFold = foldFunc(f.nameBytes)
	return f
}

// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from json tag", then
// breaking ties with index sequence.
type byName []field

func (x byName) Len() int { return len(x) }

func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }

func (x byName) Less(i, j int) bool {
	if x[i].name != x[j].name {
		return x[i].name < x[j].name
	}
	if len(x[i].index) != len(x[j].index) {
		return len(x[i].index) < len(x[j].index)
	}
	if x[i].tag != x[j].tag {
		return x[i].tag
	}
	return byIndex(x).Less(i, j)
}

// byIndex sorts field by index sequence.
type byIndex []field

func (x byIndex) Len() int { return len(x) }

func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }

func (x byIndex) Less(i, j int) bool {
	for k, xik := range x[i].index {
		if k >= len(x[j].index) {
			return false
		}
		if xik != x[j].index[k] {
			return xik < x[j].index[k]
		}
	}
	return len(x[i].index) < len(x[j].index)
}

// typeFields returns a list of fields that JSON should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
	// Anonymous fields to explore at the current level and the next.
	current := []field{}
	next := []field{{typ: t}}

	// Count of queued names for current level and the next.
	count := map[reflect.Type]int{}
	nextCount := map[reflect.Type]int{}

	// Types already visited at an earlier level.
	visited := map[reflect.Type]bool{}

	// Fields found.
	var fields []field

	for len(next) > 0 {
		current, next = next, current[:0]
		count, nextCount = nextCount, map[reflect.Type]int{}

		for _, f := range current {
			if visited[f.typ] {
				continue
			}
			visited[f.typ] = true

			// Scan f.typ for fields to include.
			for i := 0; i < f.typ.NumField(); i++ {
				sf := f.typ.Field(i)
				if sf.PkgPath != "" && !sf.Anonymous { // unexported
					continue
				}
				tag := sf.Tag.Get("json")
				if tag == "-" {
					continue
				}
				name, opts := parseTag(tag)
				if !isValidTag(name) {
					name = ""
				}
				index := make([]int, len(f.index)+1)
				copy(index, f.index)
				index[len(f.index)] = i

				ft := sf.Type
				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
					// Follow pointer.
					ft = ft.Elem()
				}

				// Only strings, floats, integers, and booleans can be quoted.
				quoted := false
				if opts.Contains("string") {
					switch ft.Kind() {
					case reflect.Bool,
						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
						reflect.Float32, reflect.Float64,
						reflect.String:
						quoted = true
					}
				}

				// Record found field and index sequence.
				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
					tagged := name != ""
					if name == "" {
						name = sf.Name
					}
					fields = append(fields, fillField(field{
						name:      name,
						tag:       tagged,
						index:     index,
						typ:       ft,
						omitEmpty: opts.Contains("omitempty"),
						quoted:    quoted,
					}))
					if count[f.typ] > 1 {
						// If there were multiple instances, add a second,
						// so that the annihilation code will see a duplicate.
						// It only cares about the distinction between 1 or 2,
						// so don't bother generating any more copies.
						fields = append(fields, fields[len(fields)-1])
					}
					continue
				}

				// Record new anonymous struct to explore in next round.
				nextCount[ft]++
				if nextCount[ft] == 1 {
					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
				}
			}
		}
	}

	sort.Sort(byName(fields))

	// Delete all fields that are hidden by the Go rules for embedded fields,
	// except that fields with JSON tags are promoted.

	// The fields are sorted in primary order of name, secondary order
	// of field index length. Loop over names; for each name, delete
	// hidden fields by choosing the one dominant field that survives.
	out := fields[:0]
	for advance, i := 0, 0; i < len(fields); i += advance {
		// One iteration per name.
		// Find the sequence of fields with the name of this first field.
		fi := fields[i]
		name := fi.name
		for advance = 1; i+advance < len(fields); advance++ {
			fj := fields[i+advance]
			if fj.name != name {
				break
			}
		}
		if advance == 1 { // Only one field with this name
			out = append(out, fi)
			continue
		}
		dominant, ok := dominantField(fields[i : i+advance])
		if ok {
			out = append(out, dominant)
		}
	}

	fields = out
	sort.Sort(byIndex(fields))

	return fields
}

// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// JSON tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
	// The fields are sorted in increasing index-length order. The winner
	// must therefore be one with the shortest index length. Drop all
	// longer entries, which is easy: just truncate the slice.
	length := len(fields[0].index)
	tagged := -1 // Index of first tagged field.
	for i, f := range fields {
		if len(f.index) > length {
			fields = fields[:i]
			break
		}
		if f.tag {
			if tagged >= 0 {
				// Multiple tagged fields at the same level: conflict.
				// Return no field.
				return field{}, false
			}
			tagged = i
		}
	}
	if tagged >= 0 {
		return fields[tagged], true
	}
	// All remaining fields have the same length. If there's more than one,
	// we have a conflict (two fields named "X" at the same level) and we
	// return no field.
	if len(fields) > 1 {
		return field{}, false
	}
	return fields[0], true
}

var fieldCache struct {
	sync.RWMutex
	m map[reflect.Type][]field
}

// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
	fieldCache.RLock()
	f := fieldCache.m[t]
	fieldCache.RUnlock()
	if f != nil {
		return f
	}

	// Compute fields without lock.
	// Might duplicate effort but won't hold other computations back.
	f = typeFields(t)
	if f == nil {
		f = []field{}
	}

	fieldCache.Lock()
	if fieldCache.m == nil {
		fieldCache.m = map[reflect.Type][]field{}
	}
	fieldCache.m[t] = f
	fieldCache.Unlock()
	return f
}