summaryrefslogtreecommitdiff
path: root/libgo/go/exp/draw/x11/conn.go
blob: 81c67267db64ebc820fed0588b9db603bd5e19f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package x11 implements an X11 backend for the exp/draw package.
//
// The X protocol specification is at ftp://ftp.x.org/pub/X11R7.0/doc/PDF/proto.pdf.
// A summary of the wire format can be found in XCB's xproto.xml.
package x11

import (
	"bufio"
	"exp/draw"
	"image"
	"io"
	"log"
	"net"
	"os"
	"strconv"
	"strings"
	"time"
)

type resID uint32 // X resource IDs.

// TODO(nigeltao): Handle window resizes.
const (
	windowHeight = 600
	windowWidth  = 800
)

const (
	keymapLo = 8
	keymapHi = 255
)

type conn struct {
	c io.Closer
	r *bufio.Reader
	w *bufio.Writer

	gc, window, root, visual resID

	img        *image.RGBA
	eventc     chan interface{}
	mouseState draw.MouseEvent

	buf [256]byte // General purpose scratch buffer.

	flush     chan bool
	flushBuf0 [24]byte
	flushBuf1 [4 * 1024]byte
}

// writeSocket runs in its own goroutine, serving both FlushImage calls
// directly from the exp/draw client and indirectly from X expose events.
// It paints c.img to the X server via PutImage requests.
func (c *conn) writeSocket() {
	defer c.c.Close()
	for _ = range c.flush {
		b := c.img.Bounds()
		if b.Empty() {
			continue
		}
		// Each X request has a 16-bit length (in terms of 4-byte units). To avoid going over
		// this limit, we send PutImage for each row of the image, rather than trying to paint
		// the entire image in one X request. This approach could easily be optimized (or the
		// X protocol may have an escape sequence to delimit very large requests).
		// TODO(nigeltao): See what XCB's xcb_put_image does in this situation.
		units := 6 + b.Dx()
		if units > 0xffff || b.Dy() > 0xffff {
			log.Print("x11: window is too large for PutImage")
			return
		}

		c.flushBuf0[0] = 0x48 // PutImage opcode.
		c.flushBuf0[1] = 0x02 // XCB_IMAGE_FORMAT_Z_PIXMAP.
		c.flushBuf0[2] = uint8(units)
		c.flushBuf0[3] = uint8(units >> 8)
		setU32LE(c.flushBuf0[4:8], uint32(c.window))
		setU32LE(c.flushBuf0[8:12], uint32(c.gc))
		setU32LE(c.flushBuf0[12:16], 1<<16|uint32(b.Dx()))
		c.flushBuf0[21] = 0x18 // depth = 24 bits.

		for y := b.Min.Y; y < b.Max.Y; y++ {
			setU32LE(c.flushBuf0[16:20], uint32(y<<16))
			if _, err := c.w.Write(c.flushBuf0[0:24]); err != nil {
				if err != os.EOF {
					log.Println("x11:", err.String())
				}
				return
			}
			p := c.img.Pix[y*c.img.Stride : (y+1)*c.img.Stride]
			for x := b.Min.X; x < b.Max.X; {
				nx := b.Max.X - x
				if nx > len(c.flushBuf1)/4 {
					nx = len(c.flushBuf1) / 4
				}
				for i, rgba := range p[x : x+nx] {
					c.flushBuf1[4*i+0] = rgba.B
					c.flushBuf1[4*i+1] = rgba.G
					c.flushBuf1[4*i+2] = rgba.R
				}
				x += nx
				if _, err := c.w.Write(c.flushBuf1[0 : 4*nx]); err != nil {
					if err != os.EOF {
						log.Println("x11:", err.String())
					}
					return
				}
			}
		}
		if err := c.w.Flush(); err != nil {
			if err != os.EOF {
				log.Println("x11:", err.String())
			}
			return
		}
	}
}

func (c *conn) Screen() draw.Image { return c.img }

func (c *conn) FlushImage() {
	select {
	case c.flush <- false:
		// Flush notification sent.
	default:
		// Could not send.
		// Flush notification must be pending already.
	}
}

func (c *conn) Close() os.Error {
	// Shut down the writeSocket goroutine. This will close the socket to the
	// X11 server, which will cause c.eventc to close.
	close(c.flush)
	for _ = range c.eventc {
		// Drain the channel to allow the readSocket goroutine to shut down.
	}
	return nil
}

func (c *conn) EventChan() <-chan interface{} { return c.eventc }

// readSocket runs in its own goroutine, reading X events and sending draw
// events on c's EventChan.
func (c *conn) readSocket() {
	var (
		keymap            [256][]int
		keysymsPerKeycode int
	)
	defer close(c.eventc)
	for {
		// X events are always 32 bytes long.
		if _, err := io.ReadFull(c.r, c.buf[0:32]); err != nil {
			if err != os.EOF {
				c.eventc <- draw.ErrEvent{err}
			}
			return
		}
		switch c.buf[0] {
		case 0x01: // Reply from a request (e.g. GetKeyboardMapping).
			cookie := int(c.buf[3])<<8 | int(c.buf[2])
			if cookie != 1 {
				// We issued only one request (GetKeyboardMapping) with a cookie of 1,
				// so we shouldn't get any other reply from the X server.
				c.eventc <- draw.ErrEvent{os.NewError("x11: unexpected cookie")}
				return
			}
			keysymsPerKeycode = int(c.buf[1])
			b := make([]int, 256*keysymsPerKeycode)
			for i := range keymap {
				keymap[i] = b[i*keysymsPerKeycode : (i+1)*keysymsPerKeycode]
			}
			for i := keymapLo; i <= keymapHi; i++ {
				m := keymap[i]
				for j := range m {
					u, err := readU32LE(c.r, c.buf[0:4])
					if err != nil {
						if err != os.EOF {
							c.eventc <- draw.ErrEvent{err}
						}
						return
					}
					m[j] = int(u)
				}
			}
		case 0x02, 0x03: // Key press, key release.
			// X Keyboard Encoding is documented at http://tronche.com/gui/x/xlib/input/keyboard-encoding.html
			// TODO(nigeltao): Do we need to implement the "MODE SWITCH / group modifier" feature
			// or is that some no-longer-used X construct?
			if keysymsPerKeycode < 2 {
				// Either we haven't yet received the GetKeyboardMapping reply or
				// the X server has sent one that's too short.
				continue
			}
			keycode := int(c.buf[1])
			shift := int(c.buf[28]) & 0x01
			keysym := keymap[keycode][shift]
			if keysym == 0 {
				keysym = keymap[keycode][0]
			}
			// TODO(nigeltao): Should we send KeyEvents for Shift/Ctrl/Alt? Should Shift-A send
			// the same int down the channel as the sent on just the A key?
			// TODO(nigeltao): How should IME events (e.g. key presses that should generate CJK text) work? Or
			// is that outside the scope of the draw.Window interface?
			if c.buf[0] == 0x03 {
				keysym = -keysym
			}
			c.eventc <- draw.KeyEvent{keysym}
		case 0x04, 0x05: // Button press, button release.
			mask := 1 << (c.buf[1] - 1)
			if c.buf[0] == 0x04 {
				c.mouseState.Buttons |= mask
			} else {
				c.mouseState.Buttons &^= mask
			}
			c.mouseState.Nsec = time.Nanoseconds()
			c.eventc <- c.mouseState
		case 0x06: // Motion notify.
			c.mouseState.Loc.X = int(int16(c.buf[25])<<8 | int16(c.buf[24]))
			c.mouseState.Loc.Y = int(int16(c.buf[27])<<8 | int16(c.buf[26]))
			c.mouseState.Nsec = time.Nanoseconds()
			c.eventc <- c.mouseState
		case 0x0c: // Expose.
			// A single user action could trigger multiple expose events (e.g. if moving another
			// window with XShape'd rounded corners over our window). In that case, the X server will
			// send a uint16 count (in bytes 16-17) of the number of additional expose events coming.
			// We could parse each event for the (x, y, width, height) and maintain a minimal dirty
			// rectangle, but for now, the simplest approach is to paint the entire window, when
			// receiving the final event in the series.
			if c.buf[17] == 0 && c.buf[16] == 0 {
				// TODO(nigeltao): Should we ignore the very first expose event? A freshly mapped window
				// will trigger expose, but until the first c.FlushImage call, there's probably nothing to
				// paint but black. For an 800x600 window, at 4 bytes per pixel, each repaint writes about
				// 2MB over the socket.
				c.FlushImage()
			}
			// TODO(nigeltao): Should we listen to DestroyNotify (0x11) and ResizeRequest (0x19) events?
			// What about EnterNotify (0x07) and LeaveNotify (0x08)?
		}
	}
}

// connect connects to the X server given by the full X11 display name (e.g.
// ":12.0") and returns the connection as well as the portion of the full name
// that is the display number (e.g. "12").
// Examples:
//	connect(":1")                 // calls net.Dial("unix", "", "/tmp/.X11-unix/X1"), displayStr="1"
//	connect("/tmp/launch-123/:0") // calls net.Dial("unix", "", "/tmp/launch-123/:0"), displayStr="0"
//	connect("hostname:2.1")       // calls net.Dial("tcp", "", "hostname:6002"), displayStr="2"
//	connect("tcp/hostname:1.0")   // calls net.Dial("tcp", "", "hostname:6001"), displayStr="1"
func connect(display string) (conn net.Conn, displayStr string, err os.Error) {
	colonIdx := strings.LastIndex(display, ":")
	if colonIdx < 0 {
		return nil, "", os.NewError("bad display: " + display)
	}
	// Parse the section before the colon.
	var protocol, host, socket string
	if display[0] == '/' {
		socket = display[0:colonIdx]
	} else {
		if i := strings.LastIndex(display, "/"); i < 0 {
			// The default protocol is TCP.
			protocol = "tcp"
			host = display[0:colonIdx]
		} else {
			protocol = display[0:i]
			host = display[i+1 : colonIdx]
		}
	}
	// Parse the section after the colon.
	after := display[colonIdx+1:]
	if after == "" {
		return nil, "", os.NewError("bad display: " + display)
	}
	if i := strings.LastIndex(after, "."); i < 0 {
		displayStr = after
	} else {
		displayStr = after[0:i]
	}
	displayInt, err := strconv.Atoi(displayStr)
	if err != nil || displayInt < 0 {
		return nil, "", os.NewError("bad display: " + display)
	}
	// Make the connection.
	if socket != "" {
		conn, err = net.Dial("unix", socket+":"+displayStr)
	} else if host != "" {
		conn, err = net.Dial(protocol, host+":"+strconv.Itoa(6000+displayInt))
	} else {
		conn, err = net.Dial("unix", "/tmp/.X11-unix/X"+displayStr)
	}
	if err != nil {
		return nil, "", os.NewError("cannot connect to " + display + ": " + err.String())
	}
	return
}

// authenticate authenticates ourselves with the X server.
// displayStr is the "12" out of ":12.0".
func authenticate(w *bufio.Writer, displayStr string) os.Error {
	key, value, err := readAuth(displayStr)
	if err != nil {
		return err
	}
	// Assume that the authentication protocol is "MIT-MAGIC-COOKIE-1".
	if len(key) != 18 || len(value) != 16 {
		return os.NewError("unsupported Xauth")
	}
	// 0x006c means little-endian. 0x000b, 0x0000 means X major version 11, minor version 0.
	// 0x0012 and 0x0010 means the auth key and value have lenths 18 and 16.
	// The final 0x0000 is padding, so that the string length is a multiple of 4.
	_, err = io.WriteString(w, "\x6c\x00\x0b\x00\x00\x00\x12\x00\x10\x00\x00\x00")
	if err != nil {
		return err
	}
	_, err = io.WriteString(w, key)
	if err != nil {
		return err
	}
	// Again, the 0x0000 is padding.
	_, err = io.WriteString(w, "\x00\x00")
	if err != nil {
		return err
	}
	_, err = io.WriteString(w, value)
	if err != nil {
		return err
	}
	err = w.Flush()
	if err != nil {
		return err
	}
	return nil
}

// readU8 reads a uint8 from r, using b as a scratch buffer.
func readU8(r io.Reader, b []byte) (uint8, os.Error) {
	_, err := io.ReadFull(r, b[0:1])
	if err != nil {
		return 0, err
	}
	return uint8(b[0]), nil
}

// readU16LE reads a little-endian uint16 from r, using b as a scratch buffer.
func readU16LE(r io.Reader, b []byte) (uint16, os.Error) {
	_, err := io.ReadFull(r, b[0:2])
	if err != nil {
		return 0, err
	}
	return uint16(b[0]) | uint16(b[1])<<8, nil
}

// readU32LE reads a little-endian uint32 from r, using b as a scratch buffer.
func readU32LE(r io.Reader, b []byte) (uint32, os.Error) {
	_, err := io.ReadFull(r, b[0:4])
	if err != nil {
		return 0, err
	}
	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24, nil
}

// setU32LE sets b[0:4] to be the little-endian representation of u.
func setU32LE(b []byte, u uint32) {
	b[0] = byte((u >> 0) & 0xff)
	b[1] = byte((u >> 8) & 0xff)
	b[2] = byte((u >> 16) & 0xff)
	b[3] = byte((u >> 24) & 0xff)
}

// checkPixmapFormats checks that we have an agreeable X pixmap Format.
func checkPixmapFormats(r io.Reader, b []byte, n int) (agree bool, err os.Error) {
	for i := 0; i < n; i++ {
		_, err = io.ReadFull(r, b[0:8])
		if err != nil {
			return
		}
		// Byte 0 is depth, byte 1 is bits-per-pixel, byte 2 is scanline-pad, the rest (5) is padding.
		if b[0] == 24 && b[1] == 32 {
			agree = true
		}
	}
	return
}

// checkDepths checks that we have an agreeable X Depth (i.e. one that has an agreeable X VisualType).
func checkDepths(r io.Reader, b []byte, n int, visual uint32) (agree bool, err os.Error) {
	for i := 0; i < n; i++ {
		depth, err := readU16LE(r, b)
		if err != nil {
			return
		}
		depth &= 0xff
		visualsLen, err := readU16LE(r, b)
		if err != nil {
			return
		}
		// Ignore 4 bytes of padding.
		_, err = io.ReadFull(r, b[0:4])
		if err != nil {
			return
		}
		for j := 0; j < int(visualsLen); j++ {
			// Read 24 bytes: visual(4), class(1), bits per rgb value(1), colormap entries(2),
			// red mask(4), green mask(4), blue mask(4), padding(4).
			v, err := readU32LE(r, b)
			_, err = readU32LE(r, b)
			rm, err := readU32LE(r, b)
			gm, err := readU32LE(r, b)
			bm, err := readU32LE(r, b)
			_, err = readU32LE(r, b)
			if err != nil {
				return
			}
			if v == visual && rm == 0xff0000 && gm == 0xff00 && bm == 0xff && depth == 24 {
				agree = true
			}
		}
	}
	return
}

// checkScreens checks that we have an agreeable X Screen.
func checkScreens(r io.Reader, b []byte, n int) (root, visual uint32, err os.Error) {
	for i := 0; i < n; i++ {
		root0, err := readU32LE(r, b)
		if err != nil {
			return
		}
		// Ignore the next 7x4 bytes, which is: colormap, whitepixel, blackpixel, current input masks,
		// width and height (pixels), width and height (mm), min and max installed maps.
		_, err = io.ReadFull(r, b[0:28])
		if err != nil {
			return
		}
		visual0, err := readU32LE(r, b)
		if err != nil {
			return
		}
		// Next 4 bytes: backing stores, save unders, root depth, allowed depths length.
		x, err := readU32LE(r, b)
		if err != nil {
			return
		}
		nDepths := int(x >> 24)
		agree, err := checkDepths(r, b, nDepths, visual0)
		if err != nil {
			return
		}
		if agree && root == 0 {
			root = root0
			visual = visual0
		}
	}
	return
}

// handshake performs the protocol handshake with the X server, and ensures
// that the server provides a compatible Screen, Depth, etc.
func (c *conn) handshake() os.Error {
	_, err := io.ReadFull(c.r, c.buf[0:8])
	if err != nil {
		return err
	}
	// Byte 0:1 should be 1 (success), bytes 2:6 should be 0xb0000000 (major/minor version 11.0).
	if c.buf[0] != 1 || c.buf[2] != 11 || c.buf[3] != 0 || c.buf[4] != 0 || c.buf[5] != 0 {
		return os.NewError("unsupported X version")
	}
	// Ignore the release number.
	_, err = io.ReadFull(c.r, c.buf[0:4])
	if err != nil {
		return err
	}
	// Read the resource ID base.
	resourceIdBase, err := readU32LE(c.r, c.buf[0:4])
	if err != nil {
		return err
	}
	// Read the resource ID mask.
	resourceIdMask, err := readU32LE(c.r, c.buf[0:4])
	if err != nil {
		return err
	}
	if resourceIdMask < 256 {
		return os.NewError("X resource ID mask is too small")
	}
	// Ignore the motion buffer size.
	_, err = io.ReadFull(c.r, c.buf[0:4])
	if err != nil {
		return err
	}
	// Read the vendor length and round it up to a multiple of 4,
	// for X11 protocol alignment reasons.
	vendorLen, err := readU16LE(c.r, c.buf[0:2])
	if err != nil {
		return err
	}
	vendorLen = (vendorLen + 3) &^ 3
	// Read the maximum request length.
	maxReqLen, err := readU16LE(c.r, c.buf[0:2])
	if err != nil {
		return err
	}
	if maxReqLen != 0xffff {
		return os.NewError("unsupported X maximum request length")
	}
	// Read the roots length.
	rootsLen, err := readU8(c.r, c.buf[0:1])
	if err != nil {
		return err
	}
	// Read the pixmap formats length.
	pixmapFormatsLen, err := readU8(c.r, c.buf[0:1])
	if err != nil {
		return err
	}
	// Ignore some things that we don't care about (totalling 10 + vendorLen bytes):
	// imageByteOrder(1), bitmapFormatBitOrder(1), bitmapFormatScanlineUnit(1) bitmapFormatScanlinePad(1),
	// minKeycode(1), maxKeycode(1), padding(4), vendor (vendorLen).
	if 10+int(vendorLen) > cap(c.buf) {
		return os.NewError("unsupported X vendor")
	}
	_, err = io.ReadFull(c.r, c.buf[0:10+int(vendorLen)])
	if err != nil {
		return err
	}
	// Check that we have an agreeable pixmap format.
	agree, err := checkPixmapFormats(c.r, c.buf[0:8], int(pixmapFormatsLen))
	if err != nil {
		return err
	}
	if !agree {
		return os.NewError("unsupported X pixmap formats")
	}
	// Check that we have an agreeable screen.
	root, visual, err := checkScreens(c.r, c.buf[0:24], int(rootsLen))
	if err != nil {
		return err
	}
	if root == 0 || visual == 0 {
		return os.NewError("unsupported X screen")
	}
	c.gc = resID(resourceIdBase)
	c.window = resID(resourceIdBase + 1)
	c.root = resID(root)
	c.visual = resID(visual)
	return nil
}

// NewWindow calls NewWindowDisplay with $DISPLAY.
func NewWindow() (draw.Window, os.Error) {
	display := os.Getenv("DISPLAY")
	if len(display) == 0 {
		return nil, os.NewError("$DISPLAY not set")
	}
	return NewWindowDisplay(display)
}

// NewWindowDisplay returns a new draw.Window, backed by a newly created and
// mapped X11 window. The X server to connect to is specified by the display
// string, such as ":1".
func NewWindowDisplay(display string) (draw.Window, os.Error) {
	socket, displayStr, err := connect(display)
	if err != nil {
		return nil, err
	}
	c := new(conn)
	c.c = socket
	c.r = bufio.NewReader(socket)
	c.w = bufio.NewWriter(socket)
	err = authenticate(c.w, displayStr)
	if err != nil {
		return nil, err
	}
	err = c.handshake()
	if err != nil {
		return nil, err
	}

	// Now that we're connected, show a window, via three X protocol messages.
	// First, issue a GetKeyboardMapping request. This is the first request, and
	// will be associated with a cookie of 1.
	setU32LE(c.buf[0:4], 0x00020065) // 0x65 is the GetKeyboardMapping opcode, and the message is 2 x 4 bytes long.
	setU32LE(c.buf[4:8], uint32((keymapHi-keymapLo+1)<<8|keymapLo))
	// Second, create a graphics context (GC).
	setU32LE(c.buf[8:12], 0x00060037) // 0x37 is the CreateGC opcode, and the message is 6 x 4 bytes long.
	setU32LE(c.buf[12:16], uint32(c.gc))
	setU32LE(c.buf[16:20], uint32(c.root))
	setU32LE(c.buf[20:24], 0x00010004) // Bit 2 is XCB_GC_FOREGROUND, bit 16 is XCB_GC_GRAPHICS_EXPOSURES.
	setU32LE(c.buf[24:28], 0x00000000) // The Foreground is black.
	setU32LE(c.buf[28:32], 0x00000000) // GraphicsExposures' value is unused.
	// Third, create the window.
	setU32LE(c.buf[32:36], 0x000a0001) // 0x01 is the CreateWindow opcode, and the message is 10 x 4 bytes long.
	setU32LE(c.buf[36:40], uint32(c.window))
	setU32LE(c.buf[40:44], uint32(c.root))
	setU32LE(c.buf[44:48], 0x00000000) // Initial (x, y) is (0, 0).
	setU32LE(c.buf[48:52], windowHeight<<16|windowWidth)
	setU32LE(c.buf[52:56], 0x00010000) // Border width is 0, XCB_WINDOW_CLASS_INPUT_OUTPUT is 1.
	setU32LE(c.buf[56:60], uint32(c.visual))
	setU32LE(c.buf[60:64], 0x00000802) // Bit 1 is XCB_CW_BACK_PIXEL, bit 11 is XCB_CW_EVENT_MASK.
	setU32LE(c.buf[64:68], 0x00000000) // The Back-Pixel is black.
	setU32LE(c.buf[68:72], 0x0000804f) // Key/button press and release, pointer motion, and expose event masks.
	// Fourth, map the window.
	setU32LE(c.buf[72:76], 0x00020008) // 0x08 is the MapWindow opcode, and the message is 2 x 4 bytes long.
	setU32LE(c.buf[76:80], uint32(c.window))
	// Write the bytes.
	_, err = c.w.Write(c.buf[0:80])
	if err != nil {
		return nil, err
	}
	err = c.w.Flush()
	if err != nil {
		return nil, err
	}

	c.img = image.NewRGBA(windowWidth, windowHeight)
	c.eventc = make(chan interface{}, 16)
	c.flush = make(chan bool, 1)
	go c.readSocket()
	go c.writeSocket()
	return c, nil
}