1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package build
import (
"exp/locale/collate"
"exp/norm"
"fmt"
"io"
"log"
"sort"
"strings"
"unicode/utf8"
)
// TODO: optimizations:
// - expandElem is currently 20K. By putting unique colElems in a separate
// table and having a byte array of indexes into this table, we can reduce
// the total size to about 7K. By also factoring out the length bytes, we
// can reduce this to about 6K.
// - trie valueBlocks are currently 100K. There are a lot of sparse blocks
// and many consecutive values with the same stride. This can be further
// compacted.
// - Compress secondary weights into 8 bits.
// - Some LDML specs specify a context element. Currently we simply concatenate
// those. Context can be implemented using the contraction trie. If Builder
// could analyze and detect when using a context makes sense, there is no
// need to expose this construct in the API.
// A Builder builds a root collation table. The user must specify the
// collation elements for each entry. A common use will be to base the weights
// on those specified in the allkeys* file as provided by the UCA or CLDR.
type Builder struct {
index *trieBuilder
root ordering
locale []*Tailoring
t *table
err error
built bool
minNonVar int // lowest primary recorded for a variable
varTop int // highest primary recorded for a non-variable
// indexes used for reusing expansions and contractions
expIndex map[string]int // positions of expansions keyed by their string representation
ctHandle map[string]ctHandle // contraction handles keyed by a concatenation of the suffixes
ctElem map[string]int // contraction elements keyed by their string representation
}
// A Tailoring builds a collation table based on another collation table.
// The table is defined by specifying tailorings to the underlying table.
// See http://unicode.org/reports/tr35/ for an overview of tailoring
// collation tables. The CLDR contains pre-defined tailorings for a variety
// of languages (See http://www.unicode.org/Public/cldr/2.0.1/core.zip.)
type Tailoring struct {
id string
builder *Builder
index *ordering
// TODO: implement.
}
// NewBuilder returns a new Builder.
func NewBuilder() *Builder {
return &Builder{
index: newTrieBuilder(),
root: makeRootOrdering(),
expIndex: make(map[string]int),
ctHandle: make(map[string]ctHandle),
ctElem: make(map[string]int),
}
}
// Tailoring returns a Tailoring for the given locale. One should
// have completed all calls to Add before calling Tailoring.
func (b *Builder) Tailoring(locale string) *Tailoring {
t := &Tailoring{
id: locale,
builder: b,
index: b.root.clone(),
}
b.locale = append(b.locale, t)
return t
}
// Add adds an entry to the collation element table, mapping
// a slice of runes to a sequence of collation elements.
// A collation element is specified as list of weights: []int{primary, secondary, ...}.
// The entries are typically obtained from a collation element table
// as defined in http://www.unicode.org/reports/tr10/#Data_Table_Format.
// Note that the collation elements specified by colelems are only used
// as a guide. The actual weights generated by Builder may differ.
// The argument variables is a list of indices into colelems that should contain
// a value for each colelem that is a variable. (See the reference above.)
func (b *Builder) Add(runes []rune, colelems [][]int, variables []int) error {
str := string(runes)
elems := make([][]int, len(colelems))
for i, ce := range colelems {
elems[i] = append(elems[i], ce...)
if len(ce) == 0 {
elems[i] = append(elems[i], []int{0, 0, 0, 0}...)
break
}
if len(ce) == 1 {
elems[i] = append(elems[i], defaultSecondary)
}
if len(ce) <= 2 {
elems[i] = append(elems[i], defaultTertiary)
}
if len(ce) <= 3 {
elems[i] = append(elems[i], ce[0])
}
}
for i, ce := range elems {
isvar := false
for _, j := range variables {
if i == j {
isvar = true
}
}
if isvar {
if ce[0] >= b.minNonVar && b.minNonVar > 0 {
return fmt.Errorf("primary value %X of variable is larger than the smallest non-variable %X", ce[0], b.minNonVar)
}
if ce[0] > b.varTop {
b.varTop = ce[0]
}
} else if ce[0] > 0 {
if ce[0] <= b.varTop {
return fmt.Errorf("primary value %X of non-variable is smaller than the highest variable %X", ce[0], b.varTop)
}
if b.minNonVar == 0 || ce[0] < b.minNonVar {
b.minNonVar = ce[0]
}
}
}
elems, err := convertLargeWeights(elems)
if err != nil {
return err
}
b.root.newEntry(str, elems)
return nil
}
// SetAnchor sets the point after which elements passed in subsequent calls to
// Insert will be inserted. It is equivalent to the reset directive in an LDML
// specification. See Insert for an example.
// SetAnchor supports the following logical reset positions:
// <first_tertiary_ignorable/>, <last_teriary_ignorable/>, <first_primary_ignorable/>,
// and <last_non_ignorable/>.
func (t *Tailoring) SetAnchor(anchor string) error {
// TODO: implement.
return nil
}
// SetAnchorBefore is similar to SetAnchor, except that subsequent calls to
// Insert will insert entries before the anchor.
func (t *Tailoring) SetAnchorBefore(anchor string) error {
// TODO: implement.
return nil
}
// Insert sets the ordering of str relative to the entry set by the previous
// call to SetAnchor or Insert. The argument extend corresponds
// to the extend elements as defined in LDML. A non-empty value for extend
// will cause the collation elements corresponding to extend to be appended
// to the collation elements generated for the entry added by Insert.
// This has the same net effect as sorting str after the string anchor+extend.
// See http://www.unicode.org/reports/tr10/#Tailoring_Example for details
// on parametric tailoring and http://unicode.org/reports/tr35/#Collation_Elements
// for full details on LDML.
//
// Examples: create a tailoring for Swedish, where "ä" is ordered after "z"
// at the primary sorting level:
// t := b.Tailoring("se")
// t.SetAnchor("z")
// t.Insert(collate.Primary, "ä", "")
// Order "ü" after "ue" at the secondary sorting level:
// t.SetAnchor("ue")
// t.Insert(collate.Secondary, "ü","")
// or
// t.SetAnchor("u")
// t.Insert(collate.Secondary, "ü", "e")
// Order "q" afer "ab" at the secondary level and "Q" after "q"
// at the tertiary level:
// t.SetAnchor("ab")
// t.Insert(collate.Secondary, "q", "")
// t.Insert(collate.Tertiary, "Q", "")
// Order "b" before "a":
// t.SetAnchorBefore("a")
// t.Insert(collate.Primary, "b", "")
// Order "0" after the last primary ignorable:
// t.SetAnchor("<last_primary_ignorable/>")
// t.Insert(collate.Primary, "0", "")
func (t *Tailoring) Insert(level collate.Level, str, extend string) error {
// TODO: implement.
return nil
}
func (b *Builder) error(e error) {
if e != nil {
b.err = e
}
}
func (b *Builder) buildOrdering(o *ordering) {
o.sort()
simplify(o)
b.processExpansions(o) // requires simplify
b.processContractions(o) // requires simplify
t := newNode()
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if !e.skip() {
ce, err := e.encode()
b.error(err)
t.insert(e.runes[0], ce)
}
}
o.handle = b.index.addTrie(t)
}
func (b *Builder) build() (*table, error) {
if b.built {
return b.t, b.err
}
b.built = true
b.t = &table{
maxContractLen: utf8.UTFMax,
variableTop: uint32(b.varTop),
}
b.buildOrdering(&b.root)
b.t.root = b.root.handle
for _, t := range b.locale {
b.buildOrdering(t.index)
if b.err != nil {
break
}
}
i, err := b.index.generate()
b.t.index = *i
b.error(err)
return b.t, b.err
}
// Build builds the root Collator.
func (b *Builder) Build() (*collate.Collator, error) {
t, err := b.build()
if err != nil {
return nil, err
}
return collate.Init(t), nil
}
// Build builds a Collator for Tailoring t.
func (t *Tailoring) Build() (*collate.Collator, error) {
// TODO: implement.
return nil, nil
}
// Print prints the tables for b and all its Tailorings as a Go file
// that can be included in the Collate package.
func (b *Builder) Print(w io.Writer) (n int, err error) {
p := func(nn int, e error) {
n += nn
if err == nil {
err = e
}
}
t, err := b.build()
if err != nil {
return 0, err
}
p(fmt.Fprintf(w, "var availableLocales = []string{"))
for _, loc := range b.locale {
p(fmt.Fprintf(w, "%q, ", loc.id))
}
p(fmt.Fprintln(w, "}\n"))
p(fmt.Fprintln(w, "var locales = map[string]tableIndex{"))
for _, loc := range b.locale {
p(fmt.Fprintf(w, "\t%q: ", loc.id))
p(t.fprintIndex(w, loc.index.handle))
p(fmt.Fprintln(w, ","))
}
p(fmt.Fprint(w, "}\n\n"))
n, _, err = t.fprint(w, "main")
return
}
// reproducibleFromNFKD checks whether the given expansion could be generated
// from an NFKD expansion.
func reproducibleFromNFKD(e *entry, exp, nfkd [][]int) bool {
// Length must be equal.
if len(exp) != len(nfkd) {
return false
}
for i, ce := range exp {
// Primary and secondary values should be equal.
if ce[0] != nfkd[i][0] || ce[1] != nfkd[i][1] {
return false
}
// Tertiary values should be equal to maxTertiary for third element onwards.
// TODO: there seem to be a lot of cases in CLDR (e.g. ㏭ in zh.xml) that can
// simply be dropped. Try this out by dropping the following code.
if i >= 2 && ce[2] != maxTertiary {
return false
}
}
return true
}
func simplify(o *ordering) {
// Runes that are a starter of a contraction should not be removed.
// (To date, there is only Kannada character 0CCA.)
keep := make(map[rune]bool)
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if len(e.runes) > 1 {
keep[e.runes[0]] = true
}
}
// Remove entries for which the runes normalize (using NFD) to identical values.
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
s := e.str
nfd := norm.NFD.String(s)
if len(e.runes) > 1 || keep[e.runes[0]] || nfd == s {
continue
}
if equalCEArrays(o.genColElems(nfd), e.elems) {
e.remove()
}
}
// Tag entries for which the runes NFKD decompose to identical values.
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
s := e.str
nfkd := norm.NFKD.String(s)
if len(e.runes) > 1 || keep[e.runes[0]] || nfkd == s {
continue
}
if reproducibleFromNFKD(e, e.elems, o.genColElems(nfkd)) {
e.decompose = true
}
}
}
// appendExpansion converts the given collation sequence to
// collation elements and adds them to the expansion table.
// It returns an index to the expansion table.
func (b *Builder) appendExpansion(e *entry) int {
t := b.t
i := len(t.expandElem)
ce := uint32(len(e.elems))
t.expandElem = append(t.expandElem, ce)
for _, w := range e.elems {
ce, err := makeCE(w)
if err != nil {
b.error(err)
return -1
}
t.expandElem = append(t.expandElem, ce)
}
return i
}
// processExpansions extracts data necessary to generate
// the extraction tables.
func (b *Builder) processExpansions(o *ordering) {
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if !e.expansion() {
continue
}
key := fmt.Sprintf("%v", e.elems)
i, ok := b.expIndex[key]
if !ok {
i = b.appendExpansion(e)
b.expIndex[key] = i
}
e.expansionIndex = i
}
}
func (b *Builder) processContractions(o *ordering) {
// Collate contractions per starter rune.
starters := []rune{}
cm := make(map[rune][]*entry)
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if e.contraction() {
if len(e.str) > b.t.maxContractLen {
b.t.maxContractLen = len(e.str)
}
r := e.runes[0]
if _, ok := cm[r]; !ok {
starters = append(starters, r)
}
cm[r] = append(cm[r], e)
}
}
// Add entries of single runes that are at a start of a contraction.
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if !e.contraction() {
r := e.runes[0]
if _, ok := cm[r]; ok {
cm[r] = append(cm[r], e)
}
}
}
// Build the tries for the contractions.
t := b.t
for _, r := range starters {
l := cm[r]
// Compute suffix strings. There are 31 different contraction suffix
// sets for 715 contractions and 82 contraction starter runes as of
// version 6.0.0.
sufx := []string{}
hasSingle := false
for _, e := range l {
if len(e.runes) > 1 {
sufx = append(sufx, string(e.runes[1:]))
} else {
hasSingle = true
}
}
if !hasSingle {
b.error(fmt.Errorf("no single entry for starter rune %U found", r))
continue
}
// Unique the suffix set.
sort.Strings(sufx)
key := strings.Join(sufx, "\n")
handle, ok := b.ctHandle[key]
if !ok {
var err error
handle, err = t.contractTries.appendTrie(sufx)
if err != nil {
b.error(err)
}
b.ctHandle[key] = handle
}
// Bucket sort entries in index order.
es := make([]*entry, len(l))
for _, e := range l {
var o, sn int
if len(e.runes) > 1 {
str := []byte(string(e.runes[1:]))
o, sn = t.contractTries.lookup(handle, str)
if sn != len(str) {
log.Fatalf("processContractions: unexpected length for '%X'; len=%d; want %d", e.runes, sn, len(str))
}
}
if es[o] != nil {
log.Fatalf("Multiple contractions for position %d for rune %U", o, e.runes[0])
}
es[o] = e
}
// Create collation elements for contractions.
elems := []uint32{}
for _, e := range es {
ce, err := e.encodeBase()
b.error(err)
elems = append(elems, ce)
}
key = fmt.Sprintf("%v", elems)
i, ok := b.ctElem[key]
if !ok {
i = len(t.contractElem)
b.ctElem[key] = i
t.contractElem = append(t.contractElem, elems...)
}
// Store info in entry for starter rune.
es[0].contractionIndex = i
es[0].contractionHandle = handle
}
}
|