summaryrefslogtreecommitdiff
path: root/libgo/go/go/types/predicates.go
blob: 3468da5a5761fc7e6426030956f7b051cf397229 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements commonly used type predicates.

package types

func isNamed(typ Type) bool {
	if _, ok := typ.(*Basic); ok {
		return ok
	}
	_, ok := typ.(*NamedType)
	return ok
}

func isBoolean(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsBoolean != 0
}

func isInteger(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsInteger != 0
}

func isUnsigned(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsUnsigned != 0
}

func isFloat(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsFloat != 0
}

func isComplex(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsComplex != 0
}

func isNumeric(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsNumeric != 0
}

func isString(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsString != 0
}

func isUntyped(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsUntyped != 0
}

func isOrdered(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsOrdered != 0
}

func isConstType(typ Type) bool {
	t, ok := underlying(typ).(*Basic)
	return ok && t.Info&IsConstType != 0
}

func isComparable(typ Type) bool {
	switch t := underlying(typ).(type) {
	case *Basic:
		return t.Kind != Invalid && t.Kind != UntypedNil
	case *Pointer, *Interface, *Chan:
		// assumes types are equal for pointers and channels
		return true
	case *Struct:
		for _, f := range t.Fields {
			if !isComparable(f.Type) {
				return false
			}
		}
		return true
	case *Array:
		return isComparable(t.Elt)
	}
	return false
}

func hasNil(typ Type) bool {
	switch underlying(typ).(type) {
	case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
		return true
	}
	return false
}

// IsIdentical returns true if x and y are identical.
func IsIdentical(x, y Type) bool {
	if x == y {
		return true
	}

	switch x := x.(type) {
	case *Basic:
		// Basic types are singletons except for the rune and byte
		// aliases, thus we cannot solely rely on the x == y check
		// above.
		if y, ok := y.(*Basic); ok {
			return x.Kind == y.Kind
		}

	case *Array:
		// Two array types are identical if they have identical element types
		// and the same array length.
		if y, ok := y.(*Array); ok {
			return x.Len == y.Len && IsIdentical(x.Elt, y.Elt)
		}

	case *Slice:
		// Two slice types are identical if they have identical element types.
		if y, ok := y.(*Slice); ok {
			return IsIdentical(x.Elt, y.Elt)
		}

	case *Struct:
		// Two struct types are identical if they have the same sequence of fields,
		// and if corresponding fields have the same names, and identical types,
		// and identical tags. Two anonymous fields are considered to have the same
		// name. Lower-case field names from different packages are always different.
		if y, ok := y.(*Struct); ok {
			if len(x.Fields) == len(y.Fields) {
				for i, f := range x.Fields {
					g := y.Fields[i]
					if !f.QualifiedName.IsSame(g.QualifiedName) ||
						!IsIdentical(f.Type, g.Type) ||
						f.Tag != g.Tag ||
						f.IsAnonymous != g.IsAnonymous {
						return false
					}
				}
				return true
			}
		}

	case *Pointer:
		// Two pointer types are identical if they have identical base types.
		if y, ok := y.(*Pointer); ok {
			return IsIdentical(x.Base, y.Base)
		}

	case *Signature:
		// Two function types are identical if they have the same number of parameters
		// and result values, corresponding parameter and result types are identical,
		// and either both functions are variadic or neither is. Parameter and result
		// names are not required to match.
		if y, ok := y.(*Signature); ok {
			return identicalTypes(x.Params, y.Params) &&
				identicalTypes(x.Results, y.Results) &&
				x.IsVariadic == y.IsVariadic
		}

	case *Interface:
		// Two interface types are identical if they have the same set of methods with
		// the same names and identical function types. Lower-case method names from
		// different packages are always different. The order of the methods is irrelevant.
		if y, ok := y.(*Interface); ok {
			return identicalMethods(x.Methods, y.Methods) // methods are sorted
		}

	case *Map:
		// Two map types are identical if they have identical key and value types.
		if y, ok := y.(*Map); ok {
			return IsIdentical(x.Key, y.Key) && IsIdentical(x.Elt, y.Elt)
		}

	case *Chan:
		// Two channel types are identical if they have identical value types
		// and the same direction.
		if y, ok := y.(*Chan); ok {
			return x.Dir == y.Dir && IsIdentical(x.Elt, y.Elt)
		}

	case *NamedType:
		// Two named types are identical if their type names originate
		// in the same type declaration.
		if y, ok := y.(*NamedType); ok {
			return x.Obj == y.Obj
		}
	}

	return false
}

// identicalTypes returns true if both lists a and b have the
// same length and corresponding objects have identical types.
func identicalTypes(a, b []*Var) bool {
	if len(a) != len(b) {
		return false
	}
	for i, x := range a {
		y := b[i]
		if !IsIdentical(x.Type, y.Type) {
			return false
		}
	}
	return true
}

// identicalMethods returns true if both lists a and b have the
// same length and corresponding methods have identical types.
// TODO(gri) make this more efficient
func identicalMethods(a, b []*Method) bool {
	if len(a) != len(b) {
		return false
	}
	m := make(map[QualifiedName]*Method)
	for _, x := range a {
		assert(m[x.QualifiedName] == nil) // method list must not have duplicate entries
		m[x.QualifiedName] = x
	}
	for _, y := range b {
		if x := m[y.QualifiedName]; x == nil || !IsIdentical(x.Type, y.Type) {
			return false
		}
	}
	return true
}

// underlying returns the underlying type of typ.
func underlying(typ Type) Type {
	// Basic types are representing themselves directly even though they are named.
	if typ, ok := typ.(*NamedType); ok {
		return typ.Underlying // underlying types are never NamedTypes
	}
	return typ
}

// deref returns a pointer's base type; otherwise it returns typ.
func deref(typ Type) Type {
	if typ, ok := underlying(typ).(*Pointer); ok {
		return typ.Base
	}
	return typ
}

// defaultType returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. If there is no
// corresponding untyped type, the result is Typ[Invalid].
//
func defaultType(typ Type) Type {
	if t, ok := typ.(*Basic); ok {
		k := Invalid
		switch t.Kind {
		// case UntypedNil:
		//      There is no default type for nil. For a good error message,
		//      catch this case before calling this function.
		case UntypedBool:
			k = Bool
		case UntypedInt:
			k = Int
		case UntypedRune:
			k = Rune
		case UntypedFloat:
			k = Float64
		case UntypedComplex:
			k = Complex128
		case UntypedString:
			k = String
		}
		typ = Typ[k]
	}
	return typ
}

// missingMethod returns (nil, false) if typ implements T, otherwise
// it returns the first missing method required by T and whether it
// is missing or simply has the wrong type.
//
func missingMethod(typ Type, T *Interface) (method *Method, wrongType bool) {
	// TODO(gri): this needs to correctly compare method names (taking package into account)
	// TODO(gri): distinguish pointer and non-pointer receivers
	// an interface type implements T if it has no methods with conflicting signatures
	// Note: This is stronger than the current spec. Should the spec require this?
	if ityp, _ := underlying(typ).(*Interface); ityp != nil {
		for _, m := range T.Methods {
			mode, sig := lookupField(ityp, m.QualifiedName) // TODO(gri) no need to go via lookupField
			if mode != invalid && !IsIdentical(sig, m.Type) {
				return m, true
			}
		}
		return
	}

	// a concrete type implements T if it implements all methods of T.
	for _, m := range T.Methods {
		mode, sig := lookupField(typ, m.QualifiedName)
		if mode == invalid {
			return m, false
		}
		if !IsIdentical(sig, m.Type) {
			return m, true
		}
	}
	return
}