1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package png implements a PNG image decoder and encoder.
//
// The PNG specification is at http://www.w3.org/TR/PNG/.
package png
import (
"compress/zlib"
"encoding/binary"
"fmt"
"hash"
"hash/crc32"
"image"
"image/color"
"io"
)
// Color type, as per the PNG spec.
const (
ctGrayscale = 0
ctTrueColor = 2
ctPaletted = 3
ctGrayscaleAlpha = 4
ctTrueColorAlpha = 6
)
// A cb is a combination of color type and bit depth.
const (
cbInvalid = iota
cbG1
cbG2
cbG4
cbG8
cbGA8
cbTC8
cbP1
cbP2
cbP4
cbP8
cbTCA8
cbG16
cbGA16
cbTC16
cbTCA16
)
func cbPaletted(cb int) bool {
return cbP1 <= cb && cb <= cbP8
}
// Filter type, as per the PNG spec.
const (
ftNone = 0
ftSub = 1
ftUp = 2
ftAverage = 3
ftPaeth = 4
nFilter = 5
)
// Interlace type.
const (
itNone = 0
itAdam7 = 1
)
// interlaceScan defines the placement and size of a pass for Adam7 interlacing.
type interlaceScan struct {
xFactor, yFactor, xOffset, yOffset int
}
// interlacing defines Adam7 interlacing, with 7 passes of reduced images.
// See http://www.w3.org/TR/PNG/#8Interlace
var interlacing = []interlaceScan{
{8, 8, 0, 0},
{8, 8, 4, 0},
{4, 8, 0, 4},
{4, 4, 2, 0},
{2, 4, 0, 2},
{2, 2, 1, 0},
{1, 2, 0, 1},
}
// Decoding stage.
// The PNG specification says that the IHDR, PLTE (if present), tRNS (if
// present), IDAT and IEND chunks must appear in that order. There may be
// multiple IDAT chunks, and IDAT chunks must be sequential (i.e. they may not
// have any other chunks between them).
// http://www.w3.org/TR/PNG/#5ChunkOrdering
const (
dsStart = iota
dsSeenIHDR
dsSeenPLTE
dsSeentRNS
dsSeenIDAT
dsSeenIEND
)
const pngHeader = "\x89PNG\r\n\x1a\n"
type decoder struct {
r io.Reader
img image.Image
crc hash.Hash32
width, height int
depth int
palette color.Palette
cb int
stage int
idatLength uint32
tmp [3 * 256]byte
interlace int
// useTransparent and transparent are used for grayscale and truecolor
// transparency, as opposed to palette transparency.
useTransparent bool
transparent [6]byte
}
// A FormatError reports that the input is not a valid PNG.
type FormatError string
func (e FormatError) Error() string { return "png: invalid format: " + string(e) }
var chunkOrderError = FormatError("chunk out of order")
// An UnsupportedError reports that the input uses a valid but unimplemented PNG feature.
type UnsupportedError string
func (e UnsupportedError) Error() string { return "png: unsupported feature: " + string(e) }
func min(a, b int) int {
if a < b {
return a
}
return b
}
func (d *decoder) parseIHDR(length uint32) error {
if length != 13 {
return FormatError("bad IHDR length")
}
if _, err := io.ReadFull(d.r, d.tmp[:13]); err != nil {
return err
}
d.crc.Write(d.tmp[:13])
if d.tmp[10] != 0 {
return UnsupportedError("compression method")
}
if d.tmp[11] != 0 {
return UnsupportedError("filter method")
}
if d.tmp[12] != itNone && d.tmp[12] != itAdam7 {
return FormatError("invalid interlace method")
}
d.interlace = int(d.tmp[12])
w := int32(binary.BigEndian.Uint32(d.tmp[0:4]))
h := int32(binary.BigEndian.Uint32(d.tmp[4:8]))
if w <= 0 || h <= 0 {
return FormatError("non-positive dimension")
}
nPixels := int64(w) * int64(h)
if nPixels != int64(int(nPixels)) {
return UnsupportedError("dimension overflow")
}
// There can be up to 8 bytes per pixel, for 16 bits per channel RGBA.
if nPixels != (nPixels*8)/8 {
return UnsupportedError("dimension overflow")
}
d.cb = cbInvalid
d.depth = int(d.tmp[8])
switch d.depth {
case 1:
switch d.tmp[9] {
case ctGrayscale:
d.cb = cbG1
case ctPaletted:
d.cb = cbP1
}
case 2:
switch d.tmp[9] {
case ctGrayscale:
d.cb = cbG2
case ctPaletted:
d.cb = cbP2
}
case 4:
switch d.tmp[9] {
case ctGrayscale:
d.cb = cbG4
case ctPaletted:
d.cb = cbP4
}
case 8:
switch d.tmp[9] {
case ctGrayscale:
d.cb = cbG8
case ctTrueColor:
d.cb = cbTC8
case ctPaletted:
d.cb = cbP8
case ctGrayscaleAlpha:
d.cb = cbGA8
case ctTrueColorAlpha:
d.cb = cbTCA8
}
case 16:
switch d.tmp[9] {
case ctGrayscale:
d.cb = cbG16
case ctTrueColor:
d.cb = cbTC16
case ctGrayscaleAlpha:
d.cb = cbGA16
case ctTrueColorAlpha:
d.cb = cbTCA16
}
}
if d.cb == cbInvalid {
return UnsupportedError(fmt.Sprintf("bit depth %d, color type %d", d.tmp[8], d.tmp[9]))
}
d.width, d.height = int(w), int(h)
return d.verifyChecksum()
}
func (d *decoder) parsePLTE(length uint32) error {
np := int(length / 3) // The number of palette entries.
if length%3 != 0 || np <= 0 || np > 256 || np > 1<<uint(d.depth) {
return FormatError("bad PLTE length")
}
n, err := io.ReadFull(d.r, d.tmp[:3*np])
if err != nil {
return err
}
d.crc.Write(d.tmp[:n])
switch d.cb {
case cbP1, cbP2, cbP4, cbP8:
d.palette = make(color.Palette, 256)
for i := 0; i < np; i++ {
d.palette[i] = color.RGBA{d.tmp[3*i+0], d.tmp[3*i+1], d.tmp[3*i+2], 0xff}
}
for i := np; i < 256; i++ {
// Initialize the rest of the palette to opaque black. The spec (section
// 11.2.3) says that "any out-of-range pixel value found in the image data
// is an error", but some real-world PNG files have out-of-range pixel
// values. We fall back to opaque black, the same as libpng 1.5.13;
// ImageMagick 6.5.7 returns an error.
d.palette[i] = color.RGBA{0x00, 0x00, 0x00, 0xff}
}
d.palette = d.palette[:np]
case cbTC8, cbTCA8, cbTC16, cbTCA16:
// As per the PNG spec, a PLTE chunk is optional (and for practical purposes,
// ignorable) for the ctTrueColor and ctTrueColorAlpha color types (section 4.1.2).
default:
return FormatError("PLTE, color type mismatch")
}
return d.verifyChecksum()
}
func (d *decoder) parsetRNS(length uint32) error {
switch d.cb {
case cbG1, cbG2, cbG4, cbG8, cbG16:
if length != 2 {
return FormatError("bad tRNS length")
}
n, err := io.ReadFull(d.r, d.tmp[:length])
if err != nil {
return err
}
d.crc.Write(d.tmp[:n])
copy(d.transparent[:], d.tmp[:length])
switch d.cb {
case cbG1:
d.transparent[1] *= 0xff
case cbG2:
d.transparent[1] *= 0x55
case cbG4:
d.transparent[1] *= 0x11
}
d.useTransparent = true
case cbTC8, cbTC16:
if length != 6 {
return FormatError("bad tRNS length")
}
n, err := io.ReadFull(d.r, d.tmp[:length])
if err != nil {
return err
}
d.crc.Write(d.tmp[:n])
copy(d.transparent[:], d.tmp[:length])
d.useTransparent = true
case cbP1, cbP2, cbP4, cbP8:
if length > 256 {
return FormatError("bad tRNS length")
}
n, err := io.ReadFull(d.r, d.tmp[:length])
if err != nil {
return err
}
d.crc.Write(d.tmp[:n])
if len(d.palette) < n {
d.palette = d.palette[:n]
}
for i := 0; i < n; i++ {
rgba := d.palette[i].(color.RGBA)
d.palette[i] = color.NRGBA{rgba.R, rgba.G, rgba.B, d.tmp[i]}
}
default:
return FormatError("tRNS, color type mismatch")
}
return d.verifyChecksum()
}
// Read presents one or more IDAT chunks as one continuous stream (minus the
// intermediate chunk headers and footers). If the PNG data looked like:
// ... len0 IDAT xxx crc0 len1 IDAT yy crc1 len2 IEND crc2
// then this reader presents xxxyy. For well-formed PNG data, the decoder state
// immediately before the first Read call is that d.r is positioned between the
// first IDAT and xxx, and the decoder state immediately after the last Read
// call is that d.r is positioned between yy and crc1.
func (d *decoder) Read(p []byte) (int, error) {
if len(p) == 0 {
return 0, nil
}
for d.idatLength == 0 {
// We have exhausted an IDAT chunk. Verify the checksum of that chunk.
if err := d.verifyChecksum(); err != nil {
return 0, err
}
// Read the length and chunk type of the next chunk, and check that
// it is an IDAT chunk.
if _, err := io.ReadFull(d.r, d.tmp[:8]); err != nil {
return 0, err
}
d.idatLength = binary.BigEndian.Uint32(d.tmp[:4])
if string(d.tmp[4:8]) != "IDAT" {
return 0, FormatError("not enough pixel data")
}
d.crc.Reset()
d.crc.Write(d.tmp[4:8])
}
if int(d.idatLength) < 0 {
return 0, UnsupportedError("IDAT chunk length overflow")
}
n, err := d.r.Read(p[:min(len(p), int(d.idatLength))])
d.crc.Write(p[:n])
d.idatLength -= uint32(n)
return n, err
}
// decode decodes the IDAT data into an image.
func (d *decoder) decode() (image.Image, error) {
r, err := zlib.NewReader(d)
if err != nil {
return nil, err
}
defer r.Close()
var img image.Image
if d.interlace == itNone {
img, err = d.readImagePass(r, 0, false)
if err != nil {
return nil, err
}
} else if d.interlace == itAdam7 {
// Allocate a blank image of the full size.
img, err = d.readImagePass(nil, 0, true)
if err != nil {
return nil, err
}
for pass := 0; pass < 7; pass++ {
imagePass, err := d.readImagePass(r, pass, false)
if err != nil {
return nil, err
}
if imagePass != nil {
d.mergePassInto(img, imagePass, pass)
}
}
}
// Check for EOF, to verify the zlib checksum.
n := 0
for i := 0; n == 0 && err == nil; i++ {
if i == 100 {
return nil, io.ErrNoProgress
}
n, err = r.Read(d.tmp[:1])
}
if err != nil && err != io.EOF {
return nil, FormatError(err.Error())
}
if n != 0 || d.idatLength != 0 {
return nil, FormatError("too much pixel data")
}
return img, nil
}
// readImagePass reads a single image pass, sized according to the pass number.
func (d *decoder) readImagePass(r io.Reader, pass int, allocateOnly bool) (image.Image, error) {
bitsPerPixel := 0
pixOffset := 0
var (
gray *image.Gray
rgba *image.RGBA
paletted *image.Paletted
nrgba *image.NRGBA
gray16 *image.Gray16
rgba64 *image.RGBA64
nrgba64 *image.NRGBA64
img image.Image
)
width, height := d.width, d.height
if d.interlace == itAdam7 && !allocateOnly {
p := interlacing[pass]
// Add the multiplication factor and subtract one, effectively rounding up.
width = (width - p.xOffset + p.xFactor - 1) / p.xFactor
height = (height - p.yOffset + p.yFactor - 1) / p.yFactor
// A PNG image can't have zero width or height, but for an interlaced
// image, an individual pass might have zero width or height. If so, we
// shouldn't even read a per-row filter type byte, so return early.
if width == 0 || height == 0 {
return nil, nil
}
}
switch d.cb {
case cbG1, cbG2, cbG4, cbG8:
bitsPerPixel = d.depth
if d.useTransparent {
nrgba = image.NewNRGBA(image.Rect(0, 0, width, height))
img = nrgba
} else {
gray = image.NewGray(image.Rect(0, 0, width, height))
img = gray
}
case cbGA8:
bitsPerPixel = 16
nrgba = image.NewNRGBA(image.Rect(0, 0, width, height))
img = nrgba
case cbTC8:
bitsPerPixel = 24
if d.useTransparent {
nrgba = image.NewNRGBA(image.Rect(0, 0, width, height))
img = nrgba
} else {
rgba = image.NewRGBA(image.Rect(0, 0, width, height))
img = rgba
}
case cbP1, cbP2, cbP4, cbP8:
bitsPerPixel = d.depth
paletted = image.NewPaletted(image.Rect(0, 0, width, height), d.palette)
img = paletted
case cbTCA8:
bitsPerPixel = 32
nrgba = image.NewNRGBA(image.Rect(0, 0, width, height))
img = nrgba
case cbG16:
bitsPerPixel = 16
if d.useTransparent {
nrgba64 = image.NewNRGBA64(image.Rect(0, 0, width, height))
img = nrgba64
} else {
gray16 = image.NewGray16(image.Rect(0, 0, width, height))
img = gray16
}
case cbGA16:
bitsPerPixel = 32
nrgba64 = image.NewNRGBA64(image.Rect(0, 0, width, height))
img = nrgba64
case cbTC16:
bitsPerPixel = 48
if d.useTransparent {
nrgba64 = image.NewNRGBA64(image.Rect(0, 0, width, height))
img = nrgba64
} else {
rgba64 = image.NewRGBA64(image.Rect(0, 0, width, height))
img = rgba64
}
case cbTCA16:
bitsPerPixel = 64
nrgba64 = image.NewNRGBA64(image.Rect(0, 0, width, height))
img = nrgba64
}
if allocateOnly {
return img, nil
}
bytesPerPixel := (bitsPerPixel + 7) / 8
// The +1 is for the per-row filter type, which is at cr[0].
rowSize := 1 + (bitsPerPixel*width+7)/8
// cr and pr are the bytes for the current and previous row.
cr := make([]uint8, rowSize)
pr := make([]uint8, rowSize)
for y := 0; y < height; y++ {
// Read the decompressed bytes.
_, err := io.ReadFull(r, cr)
if err != nil {
if err == io.EOF || err == io.ErrUnexpectedEOF {
return nil, FormatError("not enough pixel data")
}
return nil, err
}
// Apply the filter.
cdat := cr[1:]
pdat := pr[1:]
switch cr[0] {
case ftNone:
// No-op.
case ftSub:
for i := bytesPerPixel; i < len(cdat); i++ {
cdat[i] += cdat[i-bytesPerPixel]
}
case ftUp:
for i, p := range pdat {
cdat[i] += p
}
case ftAverage:
// The first column has no column to the left of it, so it is a
// special case. We know that the first column exists because we
// check above that width != 0, and so len(cdat) != 0.
for i := 0; i < bytesPerPixel; i++ {
cdat[i] += pdat[i] / 2
}
for i := bytesPerPixel; i < len(cdat); i++ {
cdat[i] += uint8((int(cdat[i-bytesPerPixel]) + int(pdat[i])) / 2)
}
case ftPaeth:
filterPaeth(cdat, pdat, bytesPerPixel)
default:
return nil, FormatError("bad filter type")
}
// Convert from bytes to colors.
switch d.cb {
case cbG1:
if d.useTransparent {
ty := d.transparent[1]
for x := 0; x < width; x += 8 {
b := cdat[x/8]
for x2 := 0; x2 < 8 && x+x2 < width; x2++ {
ycol := (b >> 7) * 0xff
acol := uint8(0xff)
if ycol == ty {
acol = 0x00
}
nrgba.SetNRGBA(x+x2, y, color.NRGBA{ycol, ycol, ycol, acol})
b <<= 1
}
}
} else {
for x := 0; x < width; x += 8 {
b := cdat[x/8]
for x2 := 0; x2 < 8 && x+x2 < width; x2++ {
gray.SetGray(x+x2, y, color.Gray{(b >> 7) * 0xff})
b <<= 1
}
}
}
case cbG2:
if d.useTransparent {
ty := d.transparent[1]
for x := 0; x < width; x += 4 {
b := cdat[x/4]
for x2 := 0; x2 < 4 && x+x2 < width; x2++ {
ycol := (b >> 6) * 0x55
acol := uint8(0xff)
if ycol == ty {
acol = 0x00
}
nrgba.SetNRGBA(x+x2, y, color.NRGBA{ycol, ycol, ycol, acol})
b <<= 2
}
}
} else {
for x := 0; x < width; x += 4 {
b := cdat[x/4]
for x2 := 0; x2 < 4 && x+x2 < width; x2++ {
gray.SetGray(x+x2, y, color.Gray{(b >> 6) * 0x55})
b <<= 2
}
}
}
case cbG4:
if d.useTransparent {
ty := d.transparent[1]
for x := 0; x < width; x += 2 {
b := cdat[x/2]
for x2 := 0; x2 < 2 && x+x2 < width; x2++ {
ycol := (b >> 4) * 0x11
acol := uint8(0xff)
if ycol == ty {
acol = 0x00
}
nrgba.SetNRGBA(x+x2, y, color.NRGBA{ycol, ycol, ycol, acol})
b <<= 4
}
}
} else {
for x := 0; x < width; x += 2 {
b := cdat[x/2]
for x2 := 0; x2 < 2 && x+x2 < width; x2++ {
gray.SetGray(x+x2, y, color.Gray{(b >> 4) * 0x11})
b <<= 4
}
}
}
case cbG8:
if d.useTransparent {
ty := d.transparent[1]
for x := 0; x < width; x++ {
ycol := cdat[x]
acol := uint8(0xff)
if ycol == ty {
acol = 0x00
}
nrgba.SetNRGBA(x, y, color.NRGBA{ycol, ycol, ycol, acol})
}
} else {
copy(gray.Pix[pixOffset:], cdat)
pixOffset += gray.Stride
}
case cbGA8:
for x := 0; x < width; x++ {
ycol := cdat[2*x+0]
nrgba.SetNRGBA(x, y, color.NRGBA{ycol, ycol, ycol, cdat[2*x+1]})
}
case cbTC8:
if d.useTransparent {
pix, i, j := nrgba.Pix, pixOffset, 0
tr, tg, tb := d.transparent[1], d.transparent[3], d.transparent[5]
for x := 0; x < width; x++ {
r := cdat[j+0]
g := cdat[j+1]
b := cdat[j+2]
a := uint8(0xff)
if r == tr && g == tg && b == tb {
a = 0x00
}
pix[i+0] = r
pix[i+1] = g
pix[i+2] = b
pix[i+3] = a
i += 4
j += 3
}
pixOffset += nrgba.Stride
} else {
pix, i, j := rgba.Pix, pixOffset, 0
for x := 0; x < width; x++ {
pix[i+0] = cdat[j+0]
pix[i+1] = cdat[j+1]
pix[i+2] = cdat[j+2]
pix[i+3] = 0xff
i += 4
j += 3
}
pixOffset += rgba.Stride
}
case cbP1:
for x := 0; x < width; x += 8 {
b := cdat[x/8]
for x2 := 0; x2 < 8 && x+x2 < width; x2++ {
idx := b >> 7
if len(paletted.Palette) <= int(idx) {
paletted.Palette = paletted.Palette[:int(idx)+1]
}
paletted.SetColorIndex(x+x2, y, idx)
b <<= 1
}
}
case cbP2:
for x := 0; x < width; x += 4 {
b := cdat[x/4]
for x2 := 0; x2 < 4 && x+x2 < width; x2++ {
idx := b >> 6
if len(paletted.Palette) <= int(idx) {
paletted.Palette = paletted.Palette[:int(idx)+1]
}
paletted.SetColorIndex(x+x2, y, idx)
b <<= 2
}
}
case cbP4:
for x := 0; x < width; x += 2 {
b := cdat[x/2]
for x2 := 0; x2 < 2 && x+x2 < width; x2++ {
idx := b >> 4
if len(paletted.Palette) <= int(idx) {
paletted.Palette = paletted.Palette[:int(idx)+1]
}
paletted.SetColorIndex(x+x2, y, idx)
b <<= 4
}
}
case cbP8:
if len(paletted.Palette) != 255 {
for x := 0; x < width; x++ {
if len(paletted.Palette) <= int(cdat[x]) {
paletted.Palette = paletted.Palette[:int(cdat[x])+1]
}
}
}
copy(paletted.Pix[pixOffset:], cdat)
pixOffset += paletted.Stride
case cbTCA8:
copy(nrgba.Pix[pixOffset:], cdat)
pixOffset += nrgba.Stride
case cbG16:
if d.useTransparent {
ty := uint16(d.transparent[0])<<8 | uint16(d.transparent[1])
for x := 0; x < width; x++ {
ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1])
acol := uint16(0xffff)
if ycol == ty {
acol = 0x0000
}
nrgba64.SetNRGBA64(x, y, color.NRGBA64{ycol, ycol, ycol, acol})
}
} else {
for x := 0; x < width; x++ {
ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1])
gray16.SetGray16(x, y, color.Gray16{ycol})
}
}
case cbGA16:
for x := 0; x < width; x++ {
ycol := uint16(cdat[4*x+0])<<8 | uint16(cdat[4*x+1])
acol := uint16(cdat[4*x+2])<<8 | uint16(cdat[4*x+3])
nrgba64.SetNRGBA64(x, y, color.NRGBA64{ycol, ycol, ycol, acol})
}
case cbTC16:
if d.useTransparent {
tr := uint16(d.transparent[0])<<8 | uint16(d.transparent[1])
tg := uint16(d.transparent[2])<<8 | uint16(d.transparent[3])
tb := uint16(d.transparent[4])<<8 | uint16(d.transparent[5])
for x := 0; x < width; x++ {
rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1])
gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3])
bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5])
acol := uint16(0xffff)
if rcol == tr && gcol == tg && bcol == tb {
acol = 0x0000
}
nrgba64.SetNRGBA64(x, y, color.NRGBA64{rcol, gcol, bcol, acol})
}
} else {
for x := 0; x < width; x++ {
rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1])
gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3])
bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5])
rgba64.SetRGBA64(x, y, color.RGBA64{rcol, gcol, bcol, 0xffff})
}
}
case cbTCA16:
for x := 0; x < width; x++ {
rcol := uint16(cdat[8*x+0])<<8 | uint16(cdat[8*x+1])
gcol := uint16(cdat[8*x+2])<<8 | uint16(cdat[8*x+3])
bcol := uint16(cdat[8*x+4])<<8 | uint16(cdat[8*x+5])
acol := uint16(cdat[8*x+6])<<8 | uint16(cdat[8*x+7])
nrgba64.SetNRGBA64(x, y, color.NRGBA64{rcol, gcol, bcol, acol})
}
}
// The current row for y is the previous row for y+1.
pr, cr = cr, pr
}
return img, nil
}
// mergePassInto merges a single pass into a full sized image.
func (d *decoder) mergePassInto(dst image.Image, src image.Image, pass int) {
p := interlacing[pass]
var (
srcPix []uint8
dstPix []uint8
stride int
rect image.Rectangle
bytesPerPixel int
)
switch target := dst.(type) {
case *image.Alpha:
srcPix = src.(*image.Alpha).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 1
case *image.Alpha16:
srcPix = src.(*image.Alpha16).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 2
case *image.Gray:
srcPix = src.(*image.Gray).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 1
case *image.Gray16:
srcPix = src.(*image.Gray16).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 2
case *image.NRGBA:
srcPix = src.(*image.NRGBA).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 4
case *image.NRGBA64:
srcPix = src.(*image.NRGBA64).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 8
case *image.Paletted:
srcPix = src.(*image.Paletted).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 1
case *image.RGBA:
srcPix = src.(*image.RGBA).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 4
case *image.RGBA64:
srcPix = src.(*image.RGBA64).Pix
dstPix, stride, rect = target.Pix, target.Stride, target.Rect
bytesPerPixel = 8
}
s, bounds := 0, src.Bounds()
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
dBase := (y*p.yFactor+p.yOffset-rect.Min.Y)*stride + (p.xOffset-rect.Min.X)*bytesPerPixel
for x := bounds.Min.X; x < bounds.Max.X; x++ {
d := dBase + x*p.xFactor*bytesPerPixel
copy(dstPix[d:], srcPix[s:s+bytesPerPixel])
s += bytesPerPixel
}
}
}
func (d *decoder) parseIDAT(length uint32) (err error) {
d.idatLength = length
d.img, err = d.decode()
if err != nil {
return err
}
return d.verifyChecksum()
}
func (d *decoder) parseIEND(length uint32) error {
if length != 0 {
return FormatError("bad IEND length")
}
return d.verifyChecksum()
}
func (d *decoder) parseChunk() error {
// Read the length and chunk type.
n, err := io.ReadFull(d.r, d.tmp[:8])
if err != nil {
return err
}
length := binary.BigEndian.Uint32(d.tmp[:4])
d.crc.Reset()
d.crc.Write(d.tmp[4:8])
// Read the chunk data.
switch string(d.tmp[4:8]) {
case "IHDR":
if d.stage != dsStart {
return chunkOrderError
}
d.stage = dsSeenIHDR
return d.parseIHDR(length)
case "PLTE":
if d.stage != dsSeenIHDR {
return chunkOrderError
}
d.stage = dsSeenPLTE
return d.parsePLTE(length)
case "tRNS":
if cbPaletted(d.cb) {
if d.stage != dsSeenPLTE {
return chunkOrderError
}
} else if d.stage != dsSeenIHDR {
return chunkOrderError
}
d.stage = dsSeentRNS
return d.parsetRNS(length)
case "IDAT":
if d.stage < dsSeenIHDR || d.stage > dsSeenIDAT || (d.stage == dsSeenIHDR && cbPaletted(d.cb)) {
return chunkOrderError
} else if d.stage == dsSeenIDAT {
// Ignore trailing zero-length or garbage IDAT chunks.
//
// This does not affect valid PNG images that contain multiple IDAT
// chunks, since the first call to parseIDAT below will consume all
// consecutive IDAT chunks required for decoding the image.
break
}
d.stage = dsSeenIDAT
return d.parseIDAT(length)
case "IEND":
if d.stage != dsSeenIDAT {
return chunkOrderError
}
d.stage = dsSeenIEND
return d.parseIEND(length)
}
if length > 0x7fffffff {
return FormatError(fmt.Sprintf("Bad chunk length: %d", length))
}
// Ignore this chunk (of a known length).
var ignored [4096]byte
for length > 0 {
n, err = io.ReadFull(d.r, ignored[:min(len(ignored), int(length))])
if err != nil {
return err
}
d.crc.Write(ignored[:n])
length -= uint32(n)
}
return d.verifyChecksum()
}
func (d *decoder) verifyChecksum() error {
if _, err := io.ReadFull(d.r, d.tmp[:4]); err != nil {
return err
}
if binary.BigEndian.Uint32(d.tmp[:4]) != d.crc.Sum32() {
return FormatError("invalid checksum")
}
return nil
}
func (d *decoder) checkHeader() error {
_, err := io.ReadFull(d.r, d.tmp[:len(pngHeader)])
if err != nil {
return err
}
if string(d.tmp[:len(pngHeader)]) != pngHeader {
return FormatError("not a PNG file")
}
return nil
}
// Decode reads a PNG image from r and returns it as an image.Image.
// The type of Image returned depends on the PNG contents.
func Decode(r io.Reader) (image.Image, error) {
d := &decoder{
r: r,
crc: crc32.NewIEEE(),
}
if err := d.checkHeader(); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return nil, err
}
for d.stage != dsSeenIEND {
if err := d.parseChunk(); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return nil, err
}
}
return d.img, nil
}
// DecodeConfig returns the color model and dimensions of a PNG image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
d := &decoder{
r: r,
crc: crc32.NewIEEE(),
}
if err := d.checkHeader(); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return image.Config{}, err
}
for {
if err := d.parseChunk(); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return image.Config{}, err
}
paletted := cbPaletted(d.cb)
if d.stage == dsSeenIHDR && !paletted {
break
}
if d.stage == dsSeenPLTE && paletted {
break
}
}
var cm color.Model
switch d.cb {
case cbG1, cbG2, cbG4, cbG8:
cm = color.GrayModel
case cbGA8:
cm = color.NRGBAModel
case cbTC8:
cm = color.RGBAModel
case cbP1, cbP2, cbP4, cbP8:
cm = d.palette
case cbTCA8:
cm = color.NRGBAModel
case cbG16:
cm = color.Gray16Model
case cbGA16:
cm = color.NRGBA64Model
case cbTC16:
cm = color.RGBA64Model
case cbTCA16:
cm = color.NRGBA64Model
}
return image.Config{
ColorModel: cm,
Width: d.width,
Height: d.height,
}, nil
}
func init() {
image.RegisterFormat("png", pngHeader, Decode, DecodeConfig)
}
|