summaryrefslogtreecommitdiff
path: root/libgo/go/internal/trace/gc_test.go
blob: da1cb90f5cdf3a35ec6d6bfabbec972d84f735f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package trace

import (
	"bytes"
	"io/ioutil"
	"math"
	"testing"
	"time"
)

// aeq returns true if x and y are equal up to 8 digits (1 part in 100
// million).
func aeq(x, y float64) bool {
	if x < 0 && y < 0 {
		x, y = -x, -y
	}
	const digits = 8
	factor := 1 - math.Pow(10, -digits+1)
	return x*factor <= y && y*factor <= x
}

func TestMMU(t *testing.T) {
	t.Parallel()

	// MU
	// 1.0  *****   *****   *****
	// 0.5      *   *   *   *
	// 0.0      *****   *****
	//      0   1   2   3   4   5
	util := [][]MutatorUtil{{
		{0e9, 1},
		{1e9, 0},
		{2e9, 1},
		{3e9, 0},
		{4e9, 1},
		{5e9, 0},
	}}
	mmuCurve := NewMMUCurve(util)

	for _, test := range []struct {
		window time.Duration
		want   float64
		worst  []float64
	}{
		{0, 0, []float64{}},
		{time.Millisecond, 0, []float64{0, 0}},
		{time.Second, 0, []float64{0, 0}},
		{2 * time.Second, 0.5, []float64{0.5, 0.5}},
		{3 * time.Second, 1 / 3.0, []float64{1 / 3.0}},
		{4 * time.Second, 0.5, []float64{0.5}},
		{5 * time.Second, 3 / 5.0, []float64{3 / 5.0}},
		{6 * time.Second, 3 / 5.0, []float64{3 / 5.0}},
	} {
		if got := mmuCurve.MMU(test.window); !aeq(test.want, got) {
			t.Errorf("for %s window, want mu = %f, got %f", test.window, test.want, got)
		}
		worst := mmuCurve.Examples(test.window, 2)
		// Which exact windows are returned is unspecified
		// (and depends on the exact banding), so we just
		// check that we got the right number with the right
		// utilizations.
		if len(worst) != len(test.worst) {
			t.Errorf("for %s window, want worst %v, got %v", test.window, test.worst, worst)
		} else {
			for i := range worst {
				if worst[i].MutatorUtil != test.worst[i] {
					t.Errorf("for %s window, want worst %v, got %v", test.window, test.worst, worst)
					break
				}
			}
		}
	}
}

func TestMMUTrace(t *testing.T) {
	// Can't be t.Parallel() because it modifies the
	// testingOneBand package variable.

	data, err := ioutil.ReadFile("testdata/stress_1_10_good")
	if err != nil {
		t.Fatalf("failed to read input file: %v", err)
	}
	_, events, err := parse(bytes.NewReader(data), "")
	if err != nil {
		t.Fatalf("failed to parse trace: %s", err)
	}
	mu := MutatorUtilization(events.Events, UtilSTW|UtilBackground|UtilAssist)
	mmuCurve := NewMMUCurve(mu)

	// Test the optimized implementation against the "obviously
	// correct" implementation.
	for window := time.Nanosecond; window < 10*time.Second; window *= 10 {
		want := mmuSlow(mu[0], window)
		got := mmuCurve.MMU(window)
		if !aeq(want, got) {
			t.Errorf("want %f, got %f mutator utilization in window %s", want, got, window)
		}
	}

	// Test MUD with band optimization against MUD without band
	// optimization. We don't have a simple testing implementation
	// of MUDs (the simplest implementation is still quite
	// complex), but this is still a pretty good test.
	defer func(old int) { bandsPerSeries = old }(bandsPerSeries)
	bandsPerSeries = 1
	mmuCurve2 := NewMMUCurve(mu)
	quantiles := []float64{0, 1 - .999, 1 - .99}
	for window := time.Microsecond; window < time.Second; window *= 10 {
		mud1 := mmuCurve.MUD(window, quantiles)
		mud2 := mmuCurve2.MUD(window, quantiles)
		for i := range mud1 {
			if !aeq(mud1[i], mud2[i]) {
				t.Errorf("for quantiles %v at window %v, want %v, got %v", quantiles, window, mud2, mud1)
				break
			}
		}
	}
}

func BenchmarkMMU(b *testing.B) {
	data, err := ioutil.ReadFile("testdata/stress_1_10_good")
	if err != nil {
		b.Fatalf("failed to read input file: %v", err)
	}
	_, events, err := parse(bytes.NewReader(data), "")
	if err != nil {
		b.Fatalf("failed to parse trace: %s", err)
	}
	mu := MutatorUtilization(events.Events, UtilSTW|UtilBackground|UtilAssist|UtilSweep)
	b.ResetTimer()

	for i := 0; i < b.N; i++ {
		mmuCurve := NewMMUCurve(mu)
		xMin, xMax := time.Microsecond, time.Second
		logMin, logMax := math.Log(float64(xMin)), math.Log(float64(xMax))
		const samples = 100
		for i := 0; i < samples; i++ {
			window := time.Duration(math.Exp(float64(i)/(samples-1)*(logMax-logMin) + logMin))
			mmuCurve.MMU(window)
		}
	}
}

func mmuSlow(util []MutatorUtil, window time.Duration) (mmu float64) {
	if max := time.Duration(util[len(util)-1].Time - util[0].Time); window > max {
		window = max
	}

	mmu = 1.0

	// muInWindow returns the mean mutator utilization between
	// util[0].Time and end.
	muInWindow := func(util []MutatorUtil, end int64) float64 {
		total := 0.0
		var prevU MutatorUtil
		for _, u := range util {
			if u.Time > end {
				total += prevU.Util * float64(end-prevU.Time)
				break
			}
			total += prevU.Util * float64(u.Time-prevU.Time)
			prevU = u
		}
		return total / float64(end-util[0].Time)
	}
	update := func() {
		for i, u := range util {
			if u.Time+int64(window) > util[len(util)-1].Time {
				break
			}
			mmu = math.Min(mmu, muInWindow(util[i:], u.Time+int64(window)))
		}
	}

	// Consider all left-aligned windows.
	update()
	// Reverse the trace. Slightly subtle because each MutatorUtil
	// is a *change*.
	rutil := make([]MutatorUtil, len(util))
	if util[len(util)-1].Util != 0 {
		panic("irreversible trace")
	}
	for i, u := range util {
		util1 := 0.0
		if i != 0 {
			util1 = util[i-1].Util
		}
		rutil[len(rutil)-i-1] = MutatorUtil{Time: -u.Time, Util: util1}
	}
	util = rutil
	// Consider all right-aligned windows.
	update()
	return
}