summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/proc.go
blob: 05dd53d886fa770e8350cc803b498697fc8e7688 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/cpu"
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// Functions called by C code.
//go:linkname main runtime.main
//go:linkname goparkunlock runtime.goparkunlock
//go:linkname newextram runtime.newextram
//go:linkname acquirep runtime.acquirep
//go:linkname releasep runtime.releasep
//go:linkname incidlelocked runtime.incidlelocked
//go:linkname schedinit runtime.schedinit
//go:linkname ready runtime.ready
//go:linkname stopm runtime.stopm
//go:linkname handoffp runtime.handoffp
//go:linkname wakep runtime.wakep
//go:linkname stoplockedm runtime.stoplockedm
//go:linkname schedule runtime.schedule
//go:linkname execute runtime.execute
//go:linkname goexit1 runtime.goexit1
//go:linkname reentersyscall runtime.reentersyscall
//go:linkname reentersyscallblock runtime.reentersyscallblock
//go:linkname exitsyscall runtime.exitsyscall
//go:linkname gfget runtime.gfget
//go:linkname kickoff runtime.kickoff
//go:linkname mstart1 runtime.mstart1
//go:linkname mexit runtime.mexit
//go:linkname globrunqput runtime.globrunqput
//go:linkname pidleget runtime.pidleget

// Exported for test (see runtime/testdata/testprogcgo/dropm_stub.go).
//go:linkname getm runtime.getm

// Function called by misc/cgo/test.
//go:linkname lockedOSThread runtime.lockedOSThread

// C functions for thread and context management.
func newosproc(*m)

//go:noescape
func malg(bool, bool, *unsafe.Pointer, *uintptr) *g

//go:noescape
func resetNewG(*g, *unsafe.Pointer, *uintptr)
func gogo(*g)
func setGContext()
func makeGContext(*g, unsafe.Pointer, uintptr)
func getTraceback(me, gp *g)
func gtraceback(*g)
func _cgo_notify_runtime_init_done()
func alreadyInCallers() bool
func stackfree(*g)

// Functions created by the compiler.
//extern __go_init_main
func main_init()

//extern main.main
func main_main()

var buildVersion = sys.TheVersion

// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
//     M must have an associated P to execute Go code, however it can be
//     blocked or in a syscall w/o an associated P.
//
// Design doc at https://golang.org/s/go11sched.

// Worker thread parking/unparking.
// We need to balance between keeping enough running worker threads to utilize
// available hardware parallelism and parking excessive running worker threads
// to conserve CPU resources and power. This is not simple for two reasons:
// (1) scheduler state is intentionally distributed (in particular, per-P work
// queues), so it is not possible to compute global predicates on fast paths;
// (2) for optimal thread management we would need to know the future (don't park
// a worker thread when a new goroutine will be readied in near future).
//
// Three rejected approaches that would work badly:
// 1. Centralize all scheduler state (would inhibit scalability).
// 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
//    is a spare P, unpark a thread and handoff it the thread and the goroutine.
//    This would lead to thread state thrashing, as the thread that readied the
//    goroutine can be out of work the very next moment, we will need to park it.
//    Also, it would destroy locality of computation as we want to preserve
//    dependent goroutines on the same thread; and introduce additional latency.
// 3. Unpark an additional thread whenever we ready a goroutine and there is an
//    idle P, but don't do handoff. This would lead to excessive thread parking/
//    unparking as the additional threads will instantly park without discovering
//    any work to do.
//
// The current approach:
// We unpark an additional thread when we ready a goroutine if (1) there is an
// idle P and there are no "spinning" worker threads. A worker thread is considered
// spinning if it is out of local work and did not find work in global run queue/
// netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
// Threads unparked this way are also considered spinning; we don't do goroutine
// handoff so such threads are out of work initially. Spinning threads do some
// spinning looking for work in per-P run queues before parking. If a spinning
// thread finds work it takes itself out of the spinning state and proceeds to
// execution. If it does not find work it takes itself out of the spinning state
// and then parks.
// If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
// new threads when readying goroutines. To compensate for that, if the last spinning
// thread finds work and stops spinning, it must unpark a new spinning thread.
// This approach smooths out unjustified spikes of thread unparking,
// but at the same time guarantees eventual maximal CPU parallelism utilization.
//
// The main implementation complication is that we need to be very careful during
// spinning->non-spinning thread transition. This transition can race with submission
// of a new goroutine, and either one part or another needs to unpark another worker
// thread. If they both fail to do that, we can end up with semi-persistent CPU
// underutilization. The general pattern for goroutine readying is: submit a goroutine
// to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
// The general pattern for spinning->non-spinning transition is: decrement nmspinning,
// #StoreLoad-style memory barrier, check all per-P work queues for new work.
// Note that all this complexity does not apply to global run queue as we are not
// sloppy about thread unparking when submitting to global queue. Also see comments
// for nmspinning manipulation.

var (
	m0 m
	g0 g
)

// main_init_done is a signal used by cgocallbackg that initialization
// has been completed. It is made before _cgo_notify_runtime_init_done,
// so all cgo calls can rely on it existing. When main_init is complete,
// it is closed, meaning cgocallbackg can reliably receive from it.
var main_init_done chan bool

// mainStarted indicates that the main M has started.
var mainStarted bool

// runtimeInitTime is the nanotime() at which the runtime started.
var runtimeInitTime int64

// Value to use for signal mask for newly created M's.
var initSigmask sigset

// The main goroutine.
func main() {
	g := getg()

	// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
	// Using decimal instead of binary GB and MB because
	// they look nicer in the stack overflow failure message.
	if sys.PtrSize == 8 {
		maxstacksize = 1000000000
	} else {
		maxstacksize = 250000000
	}

	// Allow newproc to start new Ms.
	mainStarted = true

	if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
		systemstack(func() {
			newm(sysmon, nil)
		})
	}

	// Lock the main goroutine onto this, the main OS thread,
	// during initialization. Most programs won't care, but a few
	// do require certain calls to be made by the main thread.
	// Those can arrange for main.main to run in the main thread
	// by calling runtime.LockOSThread during initialization
	// to preserve the lock.
	lockOSThread()

	if g.m != &m0 {
		throw("runtime.main not on m0")
	}

	// Defer unlock so that runtime.Goexit during init does the unlock too.
	needUnlock := true
	defer func() {
		if needUnlock {
			unlockOSThread()
		}
	}()

	// Record when the world started.
	runtimeInitTime = nanotime()

	main_init_done = make(chan bool)
	if iscgo {
		// Start the template thread in case we enter Go from
		// a C-created thread and need to create a new thread.
		startTemplateThread()
		_cgo_notify_runtime_init_done()
	}

	fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
	fn()
	createGcRootsIndex()
	close(main_init_done)

	needUnlock = false
	unlockOSThread()

	// For gccgo we have to wait until after main is initialized
	// to enable GC, because initializing main registers the GC roots.
	gcenable()

	if isarchive || islibrary {
		// A program compiled with -buildmode=c-archive or c-shared
		// has a main, but it is not executed.
		return
	}
	fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
	fn()
	if raceenabled {
		racefini()
	}

	// Make racy client program work: if panicking on
	// another goroutine at the same time as main returns,
	// let the other goroutine finish printing the panic trace.
	// Once it does, it will exit. See issues 3934 and 20018.
	if atomic.Load(&runningPanicDefers) != 0 {
		// Running deferred functions should not take long.
		for c := 0; c < 1000; c++ {
			if atomic.Load(&runningPanicDefers) == 0 {
				break
			}
			Gosched()
		}
	}
	if atomic.Load(&panicking) != 0 {
		gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
	}

	exit(0)
	for {
		var x *int32
		*x = 0
	}
}

// os_beforeExit is called from os.Exit(0).
//go:linkname os_beforeExit os.runtime_beforeExit
func os_beforeExit() {
	if raceenabled {
		racefini()
	}
}

// start forcegc helper goroutine
func init() {
	expectSystemGoroutine()
	go forcegchelper()
}

func forcegchelper() {
	setSystemGoroutine()

	forcegc.g = getg()
	for {
		lock(&forcegc.lock)
		if forcegc.idle != 0 {
			throw("forcegc: phase error")
		}
		atomic.Store(&forcegc.idle, 1)
		goparkunlock(&forcegc.lock, waitReasonForceGGIdle, traceEvGoBlock, 1)
		// this goroutine is explicitly resumed by sysmon
		if debug.gctrace > 0 {
			println("GC forced")
		}
		// Time-triggered, fully concurrent.
		gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()})
	}
}

//go:nosplit

// Gosched yields the processor, allowing other goroutines to run. It does not
// suspend the current goroutine, so execution resumes automatically.
func Gosched() {
	checkTimeouts()
	mcall(gosched_m)
}

// goschedguarded yields the processor like gosched, but also checks
// for forbidden states and opts out of the yield in those cases.
//go:nosplit
func goschedguarded() {
	mcall(goschedguarded_m)
}

// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
// unlockf must not access this G's stack, as it may be moved between
// the call to gopark and the call to unlockf.
// Reason explains why the goroutine has been parked.
// It is displayed in stack traces and heap dumps.
// Reasons should be unique and descriptive.
// Do not re-use reasons, add new ones.
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
	if reason != waitReasonSleep {
		checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy
	}
	mp := acquirem()
	gp := mp.curg
	status := readgstatus(gp)
	if status != _Grunning && status != _Gscanrunning {
		throw("gopark: bad g status")
	}
	mp.waitlock = lock
	mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
	gp.waitreason = reason
	mp.waittraceev = traceEv
	mp.waittraceskip = traceskip
	releasem(mp)
	// can't do anything that might move the G between Ms here.
	mcall(park_m)
}

// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling goready(gp).
func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) {
	gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
}

func goready(gp *g, traceskip int) {
	systemstack(func() {
		ready(gp, traceskip, true)
	})
}

//go:nosplit
func acquireSudog() *sudog {
	// Delicate dance: the semaphore implementation calls
	// acquireSudog, acquireSudog calls new(sudog),
	// new calls malloc, malloc can call the garbage collector,
	// and the garbage collector calls the semaphore implementation
	// in stopTheWorld.
	// Break the cycle by doing acquirem/releasem around new(sudog).
	// The acquirem/releasem increments m.locks during new(sudog),
	// which keeps the garbage collector from being invoked.
	mp := acquirem()
	pp := mp.p.ptr()
	if len(pp.sudogcache) == 0 {
		lock(&sched.sudoglock)
		// First, try to grab a batch from central cache.
		for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
			s := sched.sudogcache
			sched.sudogcache = s.next
			s.next = nil
			pp.sudogcache = append(pp.sudogcache, s)
		}
		unlock(&sched.sudoglock)
		// If the central cache is empty, allocate a new one.
		if len(pp.sudogcache) == 0 {
			pp.sudogcache = append(pp.sudogcache, new(sudog))
		}
	}
	n := len(pp.sudogcache)
	s := pp.sudogcache[n-1]
	pp.sudogcache[n-1] = nil
	pp.sudogcache = pp.sudogcache[:n-1]
	if s.elem != nil {
		throw("acquireSudog: found s.elem != nil in cache")
	}
	releasem(mp)
	return s
}

//go:nosplit
func releaseSudog(s *sudog) {
	if s.elem != nil {
		throw("runtime: sudog with non-nil elem")
	}
	if s.isSelect {
		throw("runtime: sudog with non-false isSelect")
	}
	if s.next != nil {
		throw("runtime: sudog with non-nil next")
	}
	if s.prev != nil {
		throw("runtime: sudog with non-nil prev")
	}
	if s.waitlink != nil {
		throw("runtime: sudog with non-nil waitlink")
	}
	if s.c != nil {
		throw("runtime: sudog with non-nil c")
	}
	gp := getg()
	if gp.param != nil {
		throw("runtime: releaseSudog with non-nil gp.param")
	}
	mp := acquirem() // avoid rescheduling to another P
	pp := mp.p.ptr()
	if len(pp.sudogcache) == cap(pp.sudogcache) {
		// Transfer half of local cache to the central cache.
		var first, last *sudog
		for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
			n := len(pp.sudogcache)
			p := pp.sudogcache[n-1]
			pp.sudogcache[n-1] = nil
			pp.sudogcache = pp.sudogcache[:n-1]
			if first == nil {
				first = p
			} else {
				last.next = p
			}
			last = p
		}
		lock(&sched.sudoglock)
		last.next = sched.sudogcache
		sched.sudogcache = first
		unlock(&sched.sudoglock)
	}
	pp.sudogcache = append(pp.sudogcache, s)
	releasem(mp)
}

// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
// CAREFUL: In programs with plugins, funcPC can return different values
// for the same function (because there are actually multiple copies of
// the same function in the address space). To be safe, don't use the
// results of this function in any == expression. It is only safe to
// use the result as an address at which to start executing code.
//
// For gccgo note that this differs from the gc implementation; the gc
// implementation adds sys.PtrSize to the address of the interface
// value, but GCC's alias analysis decides that that can not be a
// reference to the second field of the interface, and in some cases
// it drops the initialization of the second field as a dead store.
//go:nosplit
func funcPC(f interface{}) uintptr {
	i := (*iface)(unsafe.Pointer(&f))
	return **(**uintptr)(i.data)
}

func lockedOSThread() bool {
	gp := getg()
	return gp.lockedm != 0 && gp.m.lockedg != 0
}

var (
	allgs    []*g
	allglock mutex
)

func allgadd(gp *g) {
	if readgstatus(gp) == _Gidle {
		throw("allgadd: bad status Gidle")
	}

	lock(&allglock)
	allgs = append(allgs, gp)
	allglen = uintptr(len(allgs))
	unlock(&allglock)
}

const (
	// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
	// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
	_GoidCacheBatch = 16
)

// cpuinit extracts the environment variable GODEBUG from the environment on
// Unix-like operating systems and calls internal/cpu.Initialize.
func cpuinit() {
	const prefix = "GODEBUG="
	var env string

	switch GOOS {
	case "aix", "darwin", "dragonfly", "freebsd", "netbsd", "openbsd", "solaris", "linux":
		cpu.DebugOptions = true

		// Similar to goenv_unix but extracts the environment value for
		// GODEBUG directly.
		// TODO(moehrmann): remove when general goenvs() can be called before cpuinit()
		n := int32(0)
		for argv_index(argv, argc+1+n) != nil {
			n++
		}

		for i := int32(0); i < n; i++ {
			p := argv_index(argv, argc+1+i)
			s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)}))

			if hasPrefix(s, prefix) {
				env = gostring(p)[len(prefix):]
				break
			}
		}
	}

	cpu.Initialize(env)
}

// The bootstrap sequence is:
//
//	call osinit
//	call schedinit
//	make & queue new G
//	call runtime·mstart
//
// The new G calls runtime·main.
func schedinit() {
	_m_ := &m0
	_g_ := &g0
	_m_.g0 = _g_
	_m_.curg = _g_
	_g_.m = _m_
	setg(_g_)

	sched.maxmcount = 10000

	usestackmaps = probestackmaps()

	mallocinit()
	mcommoninit(_g_.m)
	cpuinit() // must run before alginit
	alginit() // maps must not be used before this call

	msigsave(_g_.m)
	initSigmask = _g_.m.sigmask

	goargs()
	goenvs()
	parsedebugvars()
	gcinit()

	sched.lastpoll = uint64(nanotime())
	procs := ncpu
	if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
		procs = n
	}
	if procresize(procs) != nil {
		throw("unknown runnable goroutine during bootstrap")
	}

	// For cgocheck > 1, we turn on the write barrier at all times
	// and check all pointer writes. We can't do this until after
	// procresize because the write barrier needs a P.
	if debug.cgocheck > 1 {
		writeBarrier.cgo = true
		writeBarrier.enabled = true
		for _, p := range allp {
			p.wbBuf.reset()
		}
	}

	if buildVersion == "" {
		// Condition should never trigger. This code just serves
		// to ensure runtime·buildVersion is kept in the resulting binary.
		buildVersion = "unknown"
	}
}

func dumpgstatus(gp *g) {
	_g_ := getg()
	print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
	print("runtime:  g:  g=", _g_, ", goid=", _g_.goid, ",  g->atomicstatus=", readgstatus(_g_), "\n")
}

func checkmcount() {
	// sched lock is held
	if mcount() > sched.maxmcount {
		print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
		throw("thread exhaustion")
	}
}

func mcommoninit(mp *m) {
	_g_ := getg()

	// g0 stack won't make sense for user (and is not necessary unwindable).
	if _g_ != _g_.m.g0 {
		callers(1, mp.createstack[:])
	}

	lock(&sched.lock)
	if sched.mnext+1 < sched.mnext {
		throw("runtime: thread ID overflow")
	}
	mp.id = sched.mnext
	sched.mnext++
	checkmcount()

	mp.fastrand[0] = 1597334677 * uint32(mp.id)
	mp.fastrand[1] = uint32(cputicks())
	if mp.fastrand[0]|mp.fastrand[1] == 0 {
		mp.fastrand[1] = 1
	}

	mpreinit(mp)

	// Add to allm so garbage collector doesn't free g->m
	// when it is just in a register or thread-local storage.
	mp.alllink = allm

	// NumCgoCall() iterates over allm w/o schedlock,
	// so we need to publish it safely.
	atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
	unlock(&sched.lock)
}

// Mark gp ready to run.
func ready(gp *g, traceskip int, next bool) {
	if trace.enabled {
		traceGoUnpark(gp, traceskip)
	}

	status := readgstatus(gp)

	// Mark runnable.
	_g_ := getg()
	_g_.m.locks++ // disable preemption because it can be holding p in a local var
	if status&^_Gscan != _Gwaiting {
		dumpgstatus(gp)
		throw("bad g->status in ready")
	}

	// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
	casgstatus(gp, _Gwaiting, _Grunnable)
	runqput(_g_.m.p.ptr(), gp, next)
	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
		wakep()
	}
	_g_.m.locks--
}

// freezeStopWait is a large value that freezetheworld sets
// sched.stopwait to in order to request that all Gs permanently stop.
const freezeStopWait = 0x7fffffff

// freezing is set to non-zero if the runtime is trying to freeze the
// world.
var freezing uint32

// Similar to stopTheWorld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
func freezetheworld() {
	atomic.Store(&freezing, 1)
	// stopwait and preemption requests can be lost
	// due to races with concurrently executing threads,
	// so try several times
	for i := 0; i < 5; i++ {
		// this should tell the scheduler to not start any new goroutines
		sched.stopwait = freezeStopWait
		atomic.Store(&sched.gcwaiting, 1)
		// this should stop running goroutines
		if !preemptall() {
			break // no running goroutines
		}
		usleep(1000)
	}
	// to be sure
	usleep(1000)
	preemptall()
	usleep(1000)
}

func isscanstatus(status uint32) bool {
	if status == _Gscan {
		throw("isscanstatus: Bad status Gscan")
	}
	return status&_Gscan == _Gscan
}

// All reads and writes of g's status go through readgstatus, casgstatus
// castogscanstatus, casfrom_Gscanstatus.
//go:nosplit
func readgstatus(gp *g) uint32 {
	return atomic.Load(&gp.atomicstatus)
}

// Ownership of gcscanvalid:
//
// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
// then gp owns gp.gcscanvalid, and other goroutines must not modify it.
//
// Otherwise, a second goroutine can lock the scan state by setting _Gscan
// in the status bit and then modify gcscanvalid, and then unlock the scan state.
//
// Note that the first condition implies an exception to the second:
// if a second goroutine changes gp's status to _Grunning|_Gscan,
// that second goroutine still does not have the right to modify gcscanvalid.

// The Gscanstatuses are acting like locks and this releases them.
// If it proves to be a performance hit we should be able to make these
// simple atomic stores but for now we are going to throw if
// we see an inconsistent state.
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
	success := false

	// Check that transition is valid.
	switch oldval {
	default:
		print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
		dumpgstatus(gp)
		throw("casfrom_Gscanstatus:top gp->status is not in scan state")
	case _Gscanrunnable,
		_Gscanwaiting,
		_Gscanrunning,
		_Gscansyscall:
		if newval == oldval&^_Gscan {
			success = atomic.Cas(&gp.atomicstatus, oldval, newval)
		}
	}
	if !success {
		print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
		dumpgstatus(gp)
		throw("casfrom_Gscanstatus: gp->status is not in scan state")
	}
}

// This will return false if the gp is not in the expected status and the cas fails.
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
func castogscanstatus(gp *g, oldval, newval uint32) bool {
	switch oldval {
	case _Grunnable,
		_Grunning,
		_Gwaiting,
		_Gsyscall:
		if newval == oldval|_Gscan {
			return atomic.Cas(&gp.atomicstatus, oldval, newval)
		}
	}
	print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
	throw("castogscanstatus")
	panic("not reached")
}

// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
// and casfrom_Gscanstatus instead.
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
// put it in the Gscan state is finished.
//go:nosplit
func casgstatus(gp *g, oldval, newval uint32) {
	if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
		systemstack(func() {
			print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
			throw("casgstatus: bad incoming values")
		})
	}

	if oldval == _Grunning && gp.gcscanvalid {
		// If oldvall == _Grunning, then the actual status must be
		// _Grunning or _Grunning|_Gscan; either way,
		// we own gp.gcscanvalid, so it's safe to read.
		// gp.gcscanvalid must not be true when we are running.
		systemstack(func() {
			print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
			throw("casgstatus")
		})
	}

	// See https://golang.org/cl/21503 for justification of the yield delay.
	const yieldDelay = 5 * 1000
	var nextYield int64

	// loop if gp->atomicstatus is in a scan state giving
	// GC time to finish and change the state to oldval.
	for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
		if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
			throw("casgstatus: waiting for Gwaiting but is Grunnable")
		}
		// Help GC if needed.
		// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
		// 	gp.preemptscan = false
		// 	systemstack(func() {
		// 		gcphasework(gp)
		// 	})
		// }
		// But meanwhile just yield.
		if i == 0 {
			nextYield = nanotime() + yieldDelay
		}
		if nanotime() < nextYield {
			for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
				procyield(1)
			}
		} else {
			osyield()
			nextYield = nanotime() + yieldDelay/2
		}
	}
	if newval == _Grunning {
		gp.gcscanvalid = false
	}
}

// scang blocks until gp's stack has been scanned.
// It might be scanned by scang or it might be scanned by the goroutine itself.
// Either way, the stack scan has completed when scang returns.
func scang(gp *g, gcw *gcWork) {
	// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
	// Nothing is racing with us now, but gcscandone might be set to true left over
	// from an earlier round of stack scanning (we scan twice per GC).
	// We use gcscandone to record whether the scan has been done during this round.

	gp.gcscandone = false

	// See https://golang.org/cl/21503 for justification of the yield delay.
	const yieldDelay = 10 * 1000
	var nextYield int64

	// Endeavor to get gcscandone set to true,
	// either by doing the stack scan ourselves or by coercing gp to scan itself.
	// gp.gcscandone can transition from false to true when we're not looking
	// (if we asked for preemption), so any time we lock the status using
	// castogscanstatus we have to double-check that the scan is still not done.
loop:
	for i := 0; !gp.gcscandone; i++ {
		switch s := readgstatus(gp); s {
		default:
			dumpgstatus(gp)
			throw("stopg: invalid status")

		case _Gdead:
			// No stack.
			gp.gcscandone = true
			break loop

		case _Gcopystack:
		// Stack being switched. Go around again.

		case _Gsyscall:
			if usestackmaps {
				// Claim goroutine by setting scan bit.
				// Racing with execution or readying of gp.
				// The scan bit keeps them from running
				// the goroutine until we're done.
				if castogscanstatus(gp, s, s|_Gscan) {
					if gp.scanningself {
						// Don't try to scan the stack
						// if the goroutine is going to do
						// it itself.
						// FIXME: can this happen?
						restartg(gp)
						break
					}
					if !gp.gcscandone {
						// Send a signal to let the goroutine scan
						// itself. This races with enter/exitsyscall.
						// If the goroutine is not stopped at a safepoint,
						// it will not scan the stack and we'll try again.
						mp := gp.m
						noteclear(&mp.scannote)
						gp.scangcw = uintptr(unsafe.Pointer(gcw))
						tgkill(getpid(), _pid_t(mp.procid), _SIGURG)

						// Wait for gp to scan its own stack.
						notesleep(&mp.scannote)

						if !gp.gcscandone {
							// The signal delivered at a bad time.
							// Try again.
							restartg(gp)
							break
						}
					}
					restartg(gp)
					break loop
				}
				break
			}
			fallthrough

		case _Grunnable, _Gwaiting:
			// Claim goroutine by setting scan bit.
			// Racing with execution or readying of gp.
			// The scan bit keeps them from running
			// the goroutine until we're done.
			if castogscanstatus(gp, s, s|_Gscan) {
				if gp.scanningself {
					// Don't try to scan the stack
					// if the goroutine is going to do
					// it itself.
					restartg(gp)
					break
				}
				if !gp.gcscandone {
					scanstack(gp, gcw)
					gp.gcscandone = true
				}
				restartg(gp)
				break loop
			}

		case _Gexitingsyscall:
			// This is a transient state during which we should not scan its stack.
			// Try again.

		case _Gscanwaiting:
			// newstack is doing a scan for us right now. Wait.

		case _Gscanrunning:
			// checkPreempt is scanning. Wait.

		case _Grunning:
			// Goroutine running. Try to preempt execution so it can scan itself.
			// The preemption handler (in newstack) does the actual scan.

			// Optimization: if there is already a pending preemption request
			// (from the previous loop iteration), don't bother with the atomics.
			if gp.preemptscan && gp.preempt {
				break
			}

			// Ask for preemption and self scan.
			if castogscanstatus(gp, _Grunning, _Gscanrunning) {
				if !gp.gcscandone {
					gp.preemptscan = true
					gp.preempt = true
				}
				casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
			}
		}

		if i == 0 {
			nextYield = nanotime() + yieldDelay
		}
		if nanotime() < nextYield {
			procyield(10)
		} else {
			osyield()
			nextYield = nanotime() + yieldDelay/2
		}
	}

	gp.preemptscan = false // cancel scan request if no longer needed
}

// The GC requests that this routine be moved from a scanmumble state to a mumble state.
func restartg(gp *g) {
	if gp.scang != 0 || gp.scangcw != 0 {
		print("g ", gp.goid, "is being scanned scang=", gp.scang, " scangcw=", gp.scangcw, "\n")
		throw("restartg: being scanned")
	}

	s := readgstatus(gp)
	switch s {
	default:
		dumpgstatus(gp)
		throw("restartg: unexpected status")

	case _Gdead:
	// ok

	case _Gscanrunnable,
		_Gscanwaiting,
		_Gscansyscall:
		casfrom_Gscanstatus(gp, s, s&^_Gscan)
	}
}

// stopTheWorld stops all P's from executing goroutines, interrupting
// all goroutines at GC safe points and records reason as the reason
// for the stop. On return, only the current goroutine's P is running.
// stopTheWorld must not be called from a system stack and the caller
// must not hold worldsema. The caller must call startTheWorld when
// other P's should resume execution.
//
// stopTheWorld is safe for multiple goroutines to call at the
// same time. Each will execute its own stop, and the stops will
// be serialized.
//
// This is also used by routines that do stack dumps. If the system is
// in panic or being exited, this may not reliably stop all
// goroutines.
func stopTheWorld(reason string) {
	semacquire(&worldsema)
	getg().m.preemptoff = reason
	systemstack(stopTheWorldWithSema)
}

// startTheWorld undoes the effects of stopTheWorld.
func startTheWorld() {
	systemstack(func() { startTheWorldWithSema(false) })
	// worldsema must be held over startTheWorldWithSema to ensure
	// gomaxprocs cannot change while worldsema is held.
	semrelease(&worldsema)
	getg().m.preemptoff = ""
}

// Holding worldsema grants an M the right to try to stop the world
// and prevents gomaxprocs from changing concurrently.
var worldsema uint32 = 1

// stopTheWorldWithSema is the core implementation of stopTheWorld.
// The caller is responsible for acquiring worldsema and disabling
// preemption first and then should stopTheWorldWithSema on the system
// stack:
//
//	semacquire(&worldsema, 0)
//	m.preemptoff = "reason"
//	systemstack(stopTheWorldWithSema)
//
// When finished, the caller must either call startTheWorld or undo
// these three operations separately:
//
//	m.preemptoff = ""
//	systemstack(startTheWorldWithSema)
//	semrelease(&worldsema)
//
// It is allowed to acquire worldsema once and then execute multiple
// startTheWorldWithSema/stopTheWorldWithSema pairs.
// Other P's are able to execute between successive calls to
// startTheWorldWithSema and stopTheWorldWithSema.
// Holding worldsema causes any other goroutines invoking
// stopTheWorld to block.
func stopTheWorldWithSema() {
	_g_ := getg()

	// If we hold a lock, then we won't be able to stop another M
	// that is blocked trying to acquire the lock.
	if _g_.m.locks > 0 {
		throw("stopTheWorld: holding locks")
	}

	lock(&sched.lock)
	sched.stopwait = gomaxprocs
	atomic.Store(&sched.gcwaiting, 1)
	preemptall()
	// stop current P
	_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
	sched.stopwait--
	// try to retake all P's in Psyscall status
	for _, p := range allp {
		s := p.status
		if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
			if trace.enabled {
				traceGoSysBlock(p)
				traceProcStop(p)
			}
			p.syscalltick++
			sched.stopwait--
		}
	}
	// stop idle P's
	for {
		p := pidleget()
		if p == nil {
			break
		}
		p.status = _Pgcstop
		sched.stopwait--
	}
	wait := sched.stopwait > 0
	unlock(&sched.lock)

	// wait for remaining P's to stop voluntarily
	if wait {
		for {
			// wait for 100us, then try to re-preempt in case of any races
			if notetsleep(&sched.stopnote, 100*1000) {
				noteclear(&sched.stopnote)
				break
			}
			preemptall()
		}
	}

	// sanity checks
	bad := ""
	if sched.stopwait != 0 {
		bad = "stopTheWorld: not stopped (stopwait != 0)"
	} else {
		for _, p := range allp {
			if p.status != _Pgcstop {
				bad = "stopTheWorld: not stopped (status != _Pgcstop)"
			}
		}
	}
	if atomic.Load(&freezing) != 0 {
		// Some other thread is panicking. This can cause the
		// sanity checks above to fail if the panic happens in
		// the signal handler on a stopped thread. Either way,
		// we should halt this thread.
		lock(&deadlock)
		lock(&deadlock)
	}
	if bad != "" {
		throw(bad)
	}
}

func startTheWorldWithSema(emitTraceEvent bool) int64 {
	_g_ := getg()

	_g_.m.locks++ // disable preemption because it can be holding p in a local var
	if netpollinited() {
		list := netpoll(false) // non-blocking
		injectglist(&list)
	}
	lock(&sched.lock)

	procs := gomaxprocs
	if newprocs != 0 {
		procs = newprocs
		newprocs = 0
	}
	p1 := procresize(procs)
	sched.gcwaiting = 0
	if sched.sysmonwait != 0 {
		sched.sysmonwait = 0
		notewakeup(&sched.sysmonnote)
	}
	unlock(&sched.lock)

	for p1 != nil {
		p := p1
		p1 = p1.link.ptr()
		if p.m != 0 {
			mp := p.m.ptr()
			p.m = 0
			if mp.nextp != 0 {
				throw("startTheWorld: inconsistent mp->nextp")
			}
			mp.nextp.set(p)
			notewakeup(&mp.park)
		} else {
			// Start M to run P.  Do not start another M below.
			newm(nil, p)
		}
	}

	// Capture start-the-world time before doing clean-up tasks.
	startTime := nanotime()
	if emitTraceEvent {
		traceGCSTWDone()
	}

	// Wakeup an additional proc in case we have excessive runnable goroutines
	// in local queues or in the global queue. If we don't, the proc will park itself.
	// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
		wakep()
	}

	_g_.m.locks--

	return startTime
}

// First function run by a new goroutine.
// This is passed to makecontext.
func kickoff() {
	gp := getg()

	if gp.traceback != 0 {
		gtraceback(gp)
	}

	fv := gp.entry
	param := gp.param

	// When running on the g0 stack we can wind up here without a p,
	// for example from mcall(exitsyscall0) in exitsyscall, in
	// which case we can not run a write barrier.
	// It is also possible for us to get here from the systemstack
	// call in wbBufFlush, at which point the write barrier buffer
	// is full and we can not run a write barrier.
	// Setting gp.entry = nil or gp.param = nil will try to run a
	// write barrier, so if we are on the g0 stack due to mcall
	// (systemstack calls mcall) then clear the field using uintptr.
	// This is OK when gp.param is gp.m.curg, as curg will be kept
	// alive elsewhere, and gp.entry always points into g, or
	// to a statically allocated value, or (in the case of mcall)
	// to the stack.
	if gp == gp.m.g0 && gp.param == unsafe.Pointer(gp.m.curg) {
		*(*uintptr)(unsafe.Pointer(&gp.entry)) = 0
		*(*uintptr)(unsafe.Pointer(&gp.param)) = 0
	} else if gp.m.p == 0 {
		throw("no p in kickoff")
	} else {
		gp.entry = nil
		gp.param = nil
	}

	fv(param)
	goexit1()
}

func mstart1() {
	_g_ := getg()

	if _g_ != _g_.m.g0 {
		throw("bad runtime·mstart")
	}

	asminit()

	// Install signal handlers; after minit so that minit can
	// prepare the thread to be able to handle the signals.
	// For gccgo minit was called by C code.
	if _g_.m == &m0 {
		mstartm0()
	}

	if fn := _g_.m.mstartfn; fn != nil {
		fn()
	}

	if _g_.m != &m0 {
		acquirep(_g_.m.nextp.ptr())
		_g_.m.nextp = 0
	}
	schedule()
}

// mstartm0 implements part of mstart1 that only runs on the m0.
//
// Write barriers are allowed here because we know the GC can't be
// running yet, so they'll be no-ops.
//
//go:yeswritebarrierrec
func mstartm0() {
	// Create an extra M for callbacks on threads not created by Go.
	// An extra M is also needed on Windows for callbacks created by
	// syscall.NewCallback. See issue #6751 for details.
	if (iscgo || GOOS == "windows") && !cgoHasExtraM {
		cgoHasExtraM = true
		newextram()
	}
	initsig(false)
}

// mexit tears down and exits the current thread.
//
// Don't call this directly to exit the thread, since it must run at
// the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to
// unwind the stack to the point that exits the thread.
//
// It is entered with m.p != nil, so write barriers are allowed. It
// will release the P before exiting.
//
//go:yeswritebarrierrec
func mexit(osStack bool) {
	g := getg()
	m := g.m

	if m == &m0 {
		// This is the main thread. Just wedge it.
		//
		// On Linux, exiting the main thread puts the process
		// into a non-waitable zombie state. On Plan 9,
		// exiting the main thread unblocks wait even though
		// other threads are still running. On Solaris we can
		// neither exitThread nor return from mstart. Other
		// bad things probably happen on other platforms.
		//
		// We could try to clean up this M more before wedging
		// it, but that complicates signal handling.
		handoffp(releasep())
		lock(&sched.lock)
		sched.nmfreed++
		checkdead()
		unlock(&sched.lock)
		notesleep(&m.park)
		throw("locked m0 woke up")
	}

	sigblock()
	unminit()

	// Free the gsignal stack.
	if m.gsignal != nil {
		stackfree(m.gsignal)
	}

	// Remove m from allm.
	lock(&sched.lock)
	for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink {
		if *pprev == m {
			*pprev = m.alllink
			goto found
		}
	}
	throw("m not found in allm")
found:
	if !osStack {
		// Delay reaping m until it's done with the stack.
		//
		// If this is using an OS stack, the OS will free it
		// so there's no need for reaping.
		atomic.Store(&m.freeWait, 1)
		// Put m on the free list, though it will not be reaped until
		// freeWait is 0. Note that the free list must not be linked
		// through alllink because some functions walk allm without
		// locking, so may be using alllink.
		m.freelink = sched.freem
		sched.freem = m
	}
	unlock(&sched.lock)

	// Release the P.
	handoffp(releasep())
	// After this point we must not have write barriers.

	// Invoke the deadlock detector. This must happen after
	// handoffp because it may have started a new M to take our
	// P's work.
	lock(&sched.lock)
	sched.nmfreed++
	checkdead()
	unlock(&sched.lock)

	if osStack {
		// Return from mstart and let the system thread
		// library free the g0 stack and terminate the thread.
		return
	}

	// mstart is the thread's entry point, so there's nothing to
	// return to. Exit the thread directly. exitThread will clear
	// m.freeWait when it's done with the stack and the m can be
	// reaped.
	exitThread(&m.freeWait)
}

// forEachP calls fn(p) for every P p when p reaches a GC safe point.
// If a P is currently executing code, this will bring the P to a GC
// safe point and execute fn on that P. If the P is not executing code
// (it is idle or in a syscall), this will call fn(p) directly while
// preventing the P from exiting its state. This does not ensure that
// fn will run on every CPU executing Go code, but it acts as a global
// memory barrier. GC uses this as a "ragged barrier."
//
// The caller must hold worldsema.
//
//go:systemstack
func forEachP(fn func(*p)) {
	mp := acquirem()
	_p_ := getg().m.p.ptr()

	lock(&sched.lock)
	if sched.safePointWait != 0 {
		throw("forEachP: sched.safePointWait != 0")
	}
	sched.safePointWait = gomaxprocs - 1
	sched.safePointFn = fn

	// Ask all Ps to run the safe point function.
	for _, p := range allp {
		if p != _p_ {
			atomic.Store(&p.runSafePointFn, 1)
		}
	}
	preemptall()

	// Any P entering _Pidle or _Psyscall from now on will observe
	// p.runSafePointFn == 1 and will call runSafePointFn when
	// changing its status to _Pidle/_Psyscall.

	// Run safe point function for all idle Ps. sched.pidle will
	// not change because we hold sched.lock.
	for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
		if atomic.Cas(&p.runSafePointFn, 1, 0) {
			fn(p)
			sched.safePointWait--
		}
	}

	wait := sched.safePointWait > 0
	unlock(&sched.lock)

	// Run fn for the current P.
	fn(_p_)

	// Force Ps currently in _Psyscall into _Pidle and hand them
	// off to induce safe point function execution.
	for _, p := range allp {
		s := p.status
		if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
			if trace.enabled {
				traceGoSysBlock(p)
				traceProcStop(p)
			}
			p.syscalltick++
			handoffp(p)
		}
	}

	// Wait for remaining Ps to run fn.
	if wait {
		for {
			// Wait for 100us, then try to re-preempt in
			// case of any races.
			//
			// Requires system stack.
			if notetsleep(&sched.safePointNote, 100*1000) {
				noteclear(&sched.safePointNote)
				break
			}
			preemptall()
		}
	}
	if sched.safePointWait != 0 {
		throw("forEachP: not done")
	}
	for _, p := range allp {
		if p.runSafePointFn != 0 {
			throw("forEachP: P did not run fn")
		}
	}

	lock(&sched.lock)
	sched.safePointFn = nil
	unlock(&sched.lock)
	releasem(mp)
}

// runSafePointFn runs the safe point function, if any, for this P.
// This should be called like
//
//     if getg().m.p.runSafePointFn != 0 {
//         runSafePointFn()
//     }
//
// runSafePointFn must be checked on any transition in to _Pidle or
// _Psyscall to avoid a race where forEachP sees that the P is running
// just before the P goes into _Pidle/_Psyscall and neither forEachP
// nor the P run the safe-point function.
func runSafePointFn() {
	p := getg().m.p.ptr()
	// Resolve the race between forEachP running the safe-point
	// function on this P's behalf and this P running the
	// safe-point function directly.
	if !atomic.Cas(&p.runSafePointFn, 1, 0) {
		return
	}
	sched.safePointFn(p)
	lock(&sched.lock)
	sched.safePointWait--
	if sched.safePointWait == 0 {
		notewakeup(&sched.safePointNote)
	}
	unlock(&sched.lock)
}

// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
// fn is recorded as the new m's m.mstartfn.
//
// This function is allowed to have write barriers even if the caller
// isn't because it borrows _p_.
//
//go:yeswritebarrierrec
func allocm(_p_ *p, fn func(), allocatestack bool) (mp *m, g0Stack unsafe.Pointer, g0StackSize uintptr) {
	_g_ := getg()
	_g_.m.locks++ // disable GC because it can be called from sysmon
	if _g_.m.p == 0 {
		acquirep(_p_) // temporarily borrow p for mallocs in this function
	}

	// Release the free M list. We need to do this somewhere and
	// this may free up a stack we can use.
	if sched.freem != nil {
		lock(&sched.lock)
		var newList *m
		for freem := sched.freem; freem != nil; {
			if freem.freeWait != 0 {
				next := freem.freelink
				freem.freelink = newList
				newList = freem
				freem = next
				continue
			}
			stackfree(freem.g0)
			freem = freem.freelink
		}
		sched.freem = newList
		unlock(&sched.lock)
	}

	mp = new(m)
	mp.mstartfn = fn
	mcommoninit(mp)

	mp.g0 = malg(allocatestack, false, &g0Stack, &g0StackSize)
	mp.g0.m = mp

	if _p_ == _g_.m.p.ptr() {
		releasep()
	}
	_g_.m.locks--

	return mp, g0Stack, g0StackSize
}

// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via Casuintptr) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
//go:nosplit
func needm(x byte) {
	if (iscgo || GOOS == "windows") && !cgoHasExtraM {
		// Can happen if C/C++ code calls Go from a global ctor.
		// Can also happen on Windows if a global ctor uses a
		// callback created by syscall.NewCallback. See issue #6751
		// for details.
		//
		// Can not throw, because scheduler is not initialized yet.
		write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
		exit(1)
	}

	// Lock extra list, take head, unlock popped list.
	// nilokay=false is safe here because of the invariant above,
	// that the extra list always contains or will soon contain
	// at least one m.
	mp := lockextra(false)

	// Set needextram when we've just emptied the list,
	// so that the eventual call into cgocallbackg will
	// allocate a new m for the extra list. We delay the
	// allocation until then so that it can be done
	// after exitsyscall makes sure it is okay to be
	// running at all (that is, there's no garbage collection
	// running right now).
	mp.needextram = mp.schedlink == 0
	extraMCount--
	unlockextra(mp.schedlink.ptr())

	// Save and block signals before installing g.
	// Once g is installed, any incoming signals will try to execute,
	// but we won't have the sigaltstack settings and other data
	// set up appropriately until the end of minit, which will
	// unblock the signals. This is the same dance as when
	// starting a new m to run Go code via newosproc.
	msigsave(mp)
	sigblock()

	// Install g (= m->curg).
	setg(mp.curg)

	// Initialize this thread to use the m.
	asminit()
	minit()

	setGContext()

	// mp.curg is now a real goroutine.
	casgstatus(mp.curg, _Gdead, _Gsyscall)
	atomic.Xadd(&sched.ngsys, -1)
}

var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")

// newextram allocates m's and puts them on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
func newextram() {
	c := atomic.Xchg(&extraMWaiters, 0)
	if c > 0 {
		for i := uint32(0); i < c; i++ {
			oneNewExtraM()
		}
	} else {
		// Make sure there is at least one extra M.
		mp := lockextra(true)
		unlockextra(mp)
		if mp == nil {
			oneNewExtraM()
		}
	}
}

// oneNewExtraM allocates an m and puts it on the extra list.
func oneNewExtraM() {
	// Create extra goroutine locked to extra m.
	// The goroutine is the context in which the cgo callback will run.
	// The sched.pc will never be returned to, but setting it to
	// goexit makes clear to the traceback routines where
	// the goroutine stack ends.
	mp, g0SP, g0SPSize := allocm(nil, nil, true)
	gp := malg(true, false, nil, nil)
	gp.gcscanvalid = true
	gp.gcscandone = true
	// malg returns status as _Gidle. Change to _Gdead before
	// adding to allg where GC can see it. We use _Gdead to hide
	// this from tracebacks and stack scans since it isn't a
	// "real" goroutine until needm grabs it.
	casgstatus(gp, _Gidle, _Gdead)
	gp.m = mp
	mp.curg = gp
	mp.lockedInt++
	mp.lockedg.set(gp)
	gp.lockedm.set(mp)
	gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
	// put on allg for garbage collector
	allgadd(gp)

	// The context for gp will be set up in needm.
	// Here we need to set the context for g0.
	makeGContext(mp.g0, g0SP, g0SPSize)

	// gp is now on the allg list, but we don't want it to be
	// counted by gcount. It would be more "proper" to increment
	// sched.ngfree, but that requires locking. Incrementing ngsys
	// has the same effect.
	atomic.Xadd(&sched.ngsys, +1)

	// Add m to the extra list.
	mnext := lockextra(true)
	mp.schedlink.set(mnext)
	extraMCount++
	unlockextra(mp)
}

// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
//
// CgocallBackDone calls this after releasing p, so no write barriers.
//go:nowritebarrierrec
func dropm() {
	// Clear m and g, and return m to the extra list.
	// After the call to setg we can only call nosplit functions
	// with no pointer manipulation.
	mp := getg().m

	// Return mp.curg to dead state.
	casgstatus(mp.curg, _Gsyscall, _Gdead)
	atomic.Xadd(&sched.ngsys, +1)

	// Block signals before unminit.
	// Unminit unregisters the signal handling stack (but needs g on some systems).
	// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
	// It's important not to try to handle a signal between those two steps.
	sigmask := mp.sigmask
	sigblock()
	unminit()

	// gccgo sets the stack to Gdead here, because the splitstack
	// context is not initialized.
	atomic.Store(&mp.curg.atomicstatus, _Gdead)
	mp.curg.gcstack = 0
	mp.curg.gcnextsp = 0

	mnext := lockextra(true)
	extraMCount++
	mp.schedlink.set(mnext)

	setg(nil)

	// Commit the release of mp.
	unlockextra(mp)

	msigrestore(sigmask)
}

// A helper function for EnsureDropM.
func getm() uintptr {
	return uintptr(unsafe.Pointer(getg().m))
}

var extram uintptr
var extraMCount uint32 // Protected by lockextra
var extraMWaiters uint32

// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
//go:nosplit
//go:nowritebarrierrec
func lockextra(nilokay bool) *m {
	const locked = 1

	incr := false
	for {
		old := atomic.Loaduintptr(&extram)
		if old == locked {
			yield := osyield
			yield()
			continue
		}
		if old == 0 && !nilokay {
			if !incr {
				// Add 1 to the number of threads
				// waiting for an M.
				// This is cleared by newextram.
				atomic.Xadd(&extraMWaiters, 1)
				incr = true
			}
			usleep(1)
			continue
		}
		if atomic.Casuintptr(&extram, old, locked) {
			return (*m)(unsafe.Pointer(old))
		}
		yield := osyield
		yield()
		continue
	}
}

//go:nosplit
//go:nowritebarrierrec
func unlockextra(mp *m) {
	atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
}

// execLock serializes exec and clone to avoid bugs or unspecified behaviour
// around exec'ing while creating/destroying threads.  See issue #19546.
var execLock rwmutex

// newmHandoff contains a list of m structures that need new OS threads.
// This is used by newm in situations where newm itself can't safely
// start an OS thread.
var newmHandoff struct {
	lock mutex

	// newm points to a list of M structures that need new OS
	// threads. The list is linked through m.schedlink.
	newm muintptr

	// waiting indicates that wake needs to be notified when an m
	// is put on the list.
	waiting bool
	wake    note

	// haveTemplateThread indicates that the templateThread has
	// been started. This is not protected by lock. Use cas to set
	// to 1.
	haveTemplateThread uint32
}

// Create a new m. It will start off with a call to fn, or else the scheduler.
// fn needs to be static and not a heap allocated closure.
// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrierrec
func newm(fn func(), _p_ *p) {
	mp, _, _ := allocm(_p_, fn, false)
	mp.nextp.set(_p_)
	mp.sigmask = initSigmask
	if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" {
		// We're on a locked M or a thread that may have been
		// started by C. The kernel state of this thread may
		// be strange (the user may have locked it for that
		// purpose). We don't want to clone that into another
		// thread. Instead, ask a known-good thread to create
		// the thread for us.
		//
		// This is disabled on Plan 9. See golang.org/issue/22227.
		//
		// TODO: This may be unnecessary on Windows, which
		// doesn't model thread creation off fork.
		lock(&newmHandoff.lock)
		if newmHandoff.haveTemplateThread == 0 {
			throw("on a locked thread with no template thread")
		}
		mp.schedlink = newmHandoff.newm
		newmHandoff.newm.set(mp)
		if newmHandoff.waiting {
			newmHandoff.waiting = false
			notewakeup(&newmHandoff.wake)
		}
		unlock(&newmHandoff.lock)
		return
	}
	newm1(mp)
}

func newm1(mp *m) {
	execLock.rlock() // Prevent process clone.
	newosproc(mp)
	execLock.runlock()
}

// startTemplateThread starts the template thread if it is not already
// running.
//
// The calling thread must itself be in a known-good state.
func startTemplateThread() {
	if GOARCH == "wasm" { // no threads on wasm yet
		return
	}
	if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) {
		return
	}
	newm(templateThread, nil)
}

// templateThread is a thread in a known-good state that exists solely
// to start new threads in known-good states when the calling thread
// may not be in a good state.
//
// Many programs never need this, so templateThread is started lazily
// when we first enter a state that might lead to running on a thread
// in an unknown state.
//
// templateThread runs on an M without a P, so it must not have write
// barriers.
//
//go:nowritebarrierrec
func templateThread() {
	lock(&sched.lock)
	sched.nmsys++
	checkdead()
	unlock(&sched.lock)

	for {
		lock(&newmHandoff.lock)
		for newmHandoff.newm != 0 {
			newm := newmHandoff.newm.ptr()
			newmHandoff.newm = 0
			unlock(&newmHandoff.lock)
			for newm != nil {
				next := newm.schedlink.ptr()
				newm.schedlink = 0
				newm1(newm)
				newm = next
			}
			lock(&newmHandoff.lock)
		}
		newmHandoff.waiting = true
		noteclear(&newmHandoff.wake)
		unlock(&newmHandoff.lock)
		notesleep(&newmHandoff.wake)
	}
}

// Stops execution of the current m until new work is available.
// Returns with acquired P.
func stopm() {
	_g_ := getg()

	if _g_.m.locks != 0 {
		throw("stopm holding locks")
	}
	if _g_.m.p != 0 {
		throw("stopm holding p")
	}
	if _g_.m.spinning {
		throw("stopm spinning")
	}

	lock(&sched.lock)
	mput(_g_.m)
	unlock(&sched.lock)
	notesleep(&_g_.m.park)
	noteclear(&_g_.m.park)
	acquirep(_g_.m.nextp.ptr())
	_g_.m.nextp = 0
}

func mspinning() {
	// startm's caller incremented nmspinning. Set the new M's spinning.
	getg().m.spinning = true
}

// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
// May run with m.p==nil, so write barriers are not allowed.
// If spinning is set, the caller has incremented nmspinning and startm will
// either decrement nmspinning or set m.spinning in the newly started M.
//go:nowritebarrierrec
func startm(_p_ *p, spinning bool) {
	lock(&sched.lock)
	if _p_ == nil {
		_p_ = pidleget()
		if _p_ == nil {
			unlock(&sched.lock)
			if spinning {
				// The caller incremented nmspinning, but there are no idle Ps,
				// so it's okay to just undo the increment and give up.
				if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
					throw("startm: negative nmspinning")
				}
			}
			return
		}
	}
	mp := mget()
	unlock(&sched.lock)
	if mp == nil {
		var fn func()
		if spinning {
			// The caller incremented nmspinning, so set m.spinning in the new M.
			fn = mspinning
		}
		newm(fn, _p_)
		return
	}
	if mp.spinning {
		throw("startm: m is spinning")
	}
	if mp.nextp != 0 {
		throw("startm: m has p")
	}
	if spinning && !runqempty(_p_) {
		throw("startm: p has runnable gs")
	}
	// The caller incremented nmspinning, so set m.spinning in the new M.
	mp.spinning = spinning
	mp.nextp.set(_p_)
	notewakeup(&mp.park)
}

// Hands off P from syscall or locked M.
// Always runs without a P, so write barriers are not allowed.
//go:nowritebarrierrec
func handoffp(_p_ *p) {
	// handoffp must start an M in any situation where
	// findrunnable would return a G to run on _p_.

	// if it has local work, start it straight away
	if !runqempty(_p_) || sched.runqsize != 0 {
		startm(_p_, false)
		return
	}
	// if it has GC work, start it straight away
	if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
		startm(_p_, false)
		return
	}
	// no local work, check that there are no spinning/idle M's,
	// otherwise our help is not required
	if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
		startm(_p_, true)
		return
	}
	lock(&sched.lock)
	if sched.gcwaiting != 0 {
		_p_.status = _Pgcstop
		sched.stopwait--
		if sched.stopwait == 0 {
			notewakeup(&sched.stopnote)
		}
		unlock(&sched.lock)
		return
	}
	if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
		sched.safePointFn(_p_)
		sched.safePointWait--
		if sched.safePointWait == 0 {
			notewakeup(&sched.safePointNote)
		}
	}
	if sched.runqsize != 0 {
		unlock(&sched.lock)
		startm(_p_, false)
		return
	}
	// If this is the last running P and nobody is polling network,
	// need to wakeup another M to poll network.
	if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
		unlock(&sched.lock)
		startm(_p_, false)
		return
	}
	pidleput(_p_)
	unlock(&sched.lock)
}

// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
func wakep() {
	// be conservative about spinning threads
	if !atomic.Cas(&sched.nmspinning, 0, 1) {
		return
	}
	startm(nil, true)
}

// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
func stoplockedm() {
	_g_ := getg()

	if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m {
		throw("stoplockedm: inconsistent locking")
	}
	if _g_.m.p != 0 {
		// Schedule another M to run this p.
		_p_ := releasep()
		handoffp(_p_)
	}
	incidlelocked(1)
	// Wait until another thread schedules lockedg again.
	notesleep(&_g_.m.park)
	noteclear(&_g_.m.park)
	status := readgstatus(_g_.m.lockedg.ptr())
	if status&^_Gscan != _Grunnable {
		print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
		dumpgstatus(_g_)
		throw("stoplockedm: not runnable")
	}
	acquirep(_g_.m.nextp.ptr())
	_g_.m.nextp = 0
}

// Schedules the locked m to run the locked gp.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func startlockedm(gp *g) {
	_g_ := getg()

	mp := gp.lockedm.ptr()
	if mp == _g_.m {
		throw("startlockedm: locked to me")
	}
	if mp.nextp != 0 {
		throw("startlockedm: m has p")
	}
	// directly handoff current P to the locked m
	incidlelocked(-1)
	_p_ := releasep()
	mp.nextp.set(_p_)
	notewakeup(&mp.park)
	stopm()
}

// Stops the current m for stopTheWorld.
// Returns when the world is restarted.
func gcstopm() {
	_g_ := getg()

	if sched.gcwaiting == 0 {
		throw("gcstopm: not waiting for gc")
	}
	if _g_.m.spinning {
		_g_.m.spinning = false
		// OK to just drop nmspinning here,
		// startTheWorld will unpark threads as necessary.
		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
			throw("gcstopm: negative nmspinning")
		}
	}
	_p_ := releasep()
	lock(&sched.lock)
	_p_.status = _Pgcstop
	sched.stopwait--
	if sched.stopwait == 0 {
		notewakeup(&sched.stopnote)
	}
	unlock(&sched.lock)
	stopm()
}

// Schedules gp to run on the current M.
// If inheritTime is true, gp inherits the remaining time in the
// current time slice. Otherwise, it starts a new time slice.
// Never returns.
//
// Write barriers are allowed because this is called immediately after
// acquiring a P in several places.
//
//go:yeswritebarrierrec
func execute(gp *g, inheritTime bool) {
	_g_ := getg()

	casgstatus(gp, _Grunnable, _Grunning)
	gp.waitsince = 0
	gp.preempt = false
	if !inheritTime {
		_g_.m.p.ptr().schedtick++
	}
	_g_.m.curg = gp
	gp.m = _g_.m

	// Check whether the profiler needs to be turned on or off.
	hz := sched.profilehz
	if _g_.m.profilehz != hz {
		setThreadCPUProfiler(hz)
	}

	if trace.enabled {
		// GoSysExit has to happen when we have a P, but before GoStart.
		// So we emit it here.
		if gp.syscallsp != 0 && gp.sysblocktraced {
			traceGoSysExit(gp.sysexitticks)
		}
		traceGoStart()
	}

	gogo(gp)
}

// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
func findrunnable() (gp *g, inheritTime bool) {
	_g_ := getg()

	// The conditions here and in handoffp must agree: if
	// findrunnable would return a G to run, handoffp must start
	// an M.

top:
	_p_ := _g_.m.p.ptr()
	if sched.gcwaiting != 0 {
		gcstopm()
		goto top
	}
	if _p_.runSafePointFn != 0 {
		runSafePointFn()
	}
	if fingwait && fingwake {
		if gp := wakefing(); gp != nil {
			ready(gp, 0, true)
		}
	}
	if *cgo_yield != nil {
		asmcgocall(*cgo_yield, nil)
	}

	// local runq
	if gp, inheritTime := runqget(_p_); gp != nil {
		return gp, inheritTime
	}

	// global runq
	if sched.runqsize != 0 {
		lock(&sched.lock)
		gp := globrunqget(_p_, 0)
		unlock(&sched.lock)
		if gp != nil {
			return gp, false
		}
	}

	// Poll network.
	// This netpoll is only an optimization before we resort to stealing.
	// We can safely skip it if there are no waiters or a thread is blocked
	// in netpoll already. If there is any kind of logical race with that
	// blocked thread (e.g. it has already returned from netpoll, but does
	// not set lastpoll yet), this thread will do blocking netpoll below
	// anyway.
	if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
		if list := netpoll(false); !list.empty() { // non-blocking
			gp := list.pop()
			injectglist(&list)
			casgstatus(gp, _Gwaiting, _Grunnable)
			if trace.enabled {
				traceGoUnpark(gp, 0)
			}
			return gp, false
		}
	}

	// Steal work from other P's.
	procs := uint32(gomaxprocs)
	if atomic.Load(&sched.npidle) == procs-1 {
		// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
		// New work can appear from returning syscall/cgocall, network or timers.
		// Neither of that submits to local run queues, so no point in stealing.
		goto stop
	}
	// If number of spinning M's >= number of busy P's, block.
	// This is necessary to prevent excessive CPU consumption
	// when GOMAXPROCS>>1 but the program parallelism is low.
	if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
		goto stop
	}
	if !_g_.m.spinning {
		_g_.m.spinning = true
		atomic.Xadd(&sched.nmspinning, 1)
	}
	for i := 0; i < 4; i++ {
		for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
			if sched.gcwaiting != 0 {
				goto top
			}
			stealRunNextG := i > 2 // first look for ready queues with more than 1 g
			if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
				return gp, false
			}
		}
	}

stop:

	// We have nothing to do. If we're in the GC mark phase, can
	// safely scan and blacken objects, and have work to do, run
	// idle-time marking rather than give up the P.
	if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
		_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
		gp := _p_.gcBgMarkWorker.ptr()
		casgstatus(gp, _Gwaiting, _Grunnable)
		if trace.enabled {
			traceGoUnpark(gp, 0)
		}
		return gp, false
	}

	// wasm only:
	// If a callback returned and no other goroutine is awake,
	// then pause execution until a callback was triggered.
	if beforeIdle() {
		// At least one goroutine got woken.
		goto top
	}

	// Before we drop our P, make a snapshot of the allp slice,
	// which can change underfoot once we no longer block
	// safe-points. We don't need to snapshot the contents because
	// everything up to cap(allp) is immutable.
	allpSnapshot := allp

	// return P and block
	lock(&sched.lock)
	if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
		unlock(&sched.lock)
		goto top
	}
	if sched.runqsize != 0 {
		gp := globrunqget(_p_, 0)
		unlock(&sched.lock)
		return gp, false
	}
	if releasep() != _p_ {
		throw("findrunnable: wrong p")
	}
	pidleput(_p_)
	unlock(&sched.lock)

	// Delicate dance: thread transitions from spinning to non-spinning state,
	// potentially concurrently with submission of new goroutines. We must
	// drop nmspinning first and then check all per-P queues again (with
	// #StoreLoad memory barrier in between). If we do it the other way around,
	// another thread can submit a goroutine after we've checked all run queues
	// but before we drop nmspinning; as the result nobody will unpark a thread
	// to run the goroutine.
	// If we discover new work below, we need to restore m.spinning as a signal
	// for resetspinning to unpark a new worker thread (because there can be more
	// than one starving goroutine). However, if after discovering new work
	// we also observe no idle Ps, it is OK to just park the current thread:
	// the system is fully loaded so no spinning threads are required.
	// Also see "Worker thread parking/unparking" comment at the top of the file.
	wasSpinning := _g_.m.spinning
	if _g_.m.spinning {
		_g_.m.spinning = false
		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
			throw("findrunnable: negative nmspinning")
		}
	}

	// check all runqueues once again
	for _, _p_ := range allpSnapshot {
		if !runqempty(_p_) {
			lock(&sched.lock)
			_p_ = pidleget()
			unlock(&sched.lock)
			if _p_ != nil {
				acquirep(_p_)
				if wasSpinning {
					_g_.m.spinning = true
					atomic.Xadd(&sched.nmspinning, 1)
				}
				goto top
			}
			break
		}
	}

	// Check for idle-priority GC work again.
	if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) {
		lock(&sched.lock)
		_p_ = pidleget()
		if _p_ != nil && _p_.gcBgMarkWorker == 0 {
			pidleput(_p_)
			_p_ = nil
		}
		unlock(&sched.lock)
		if _p_ != nil {
			acquirep(_p_)
			if wasSpinning {
				_g_.m.spinning = true
				atomic.Xadd(&sched.nmspinning, 1)
			}
			// Go back to idle GC check.
			goto stop
		}
	}

	// poll network
	if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
		if _g_.m.p != 0 {
			throw("findrunnable: netpoll with p")
		}
		if _g_.m.spinning {
			throw("findrunnable: netpoll with spinning")
		}
		list := netpoll(true) // block until new work is available
		atomic.Store64(&sched.lastpoll, uint64(nanotime()))
		if !list.empty() {
			lock(&sched.lock)
			_p_ = pidleget()
			unlock(&sched.lock)
			if _p_ != nil {
				acquirep(_p_)
				gp := list.pop()
				injectglist(&list)
				casgstatus(gp, _Gwaiting, _Grunnable)
				if trace.enabled {
					traceGoUnpark(gp, 0)
				}
				return gp, false
			}
			injectglist(&list)
		}
	}
	stopm()
	goto top
}

// pollWork reports whether there is non-background work this P could
// be doing. This is a fairly lightweight check to be used for
// background work loops, like idle GC. It checks a subset of the
// conditions checked by the actual scheduler.
func pollWork() bool {
	if sched.runqsize != 0 {
		return true
	}
	p := getg().m.p.ptr()
	if !runqempty(p) {
		return true
	}
	if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 {
		if list := netpoll(false); !list.empty() {
			injectglist(&list)
			return true
		}
	}
	return false
}

func resetspinning() {
	_g_ := getg()
	if !_g_.m.spinning {
		throw("resetspinning: not a spinning m")
	}
	_g_.m.spinning = false
	nmspinning := atomic.Xadd(&sched.nmspinning, -1)
	if int32(nmspinning) < 0 {
		throw("findrunnable: negative nmspinning")
	}
	// M wakeup policy is deliberately somewhat conservative, so check if we
	// need to wakeup another P here. See "Worker thread parking/unparking"
	// comment at the top of the file for details.
	if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
		wakep()
	}
}

// Injects the list of runnable G's into the scheduler and clears glist.
// Can run concurrently with GC.
func injectglist(glist *gList) {
	if glist.empty() {
		return
	}
	if trace.enabled {
		for gp := glist.head.ptr(); gp != nil; gp = gp.schedlink.ptr() {
			traceGoUnpark(gp, 0)
		}
	}
	lock(&sched.lock)
	var n int
	for n = 0; !glist.empty(); n++ {
		gp := glist.pop()
		casgstatus(gp, _Gwaiting, _Grunnable)
		globrunqput(gp)
	}
	unlock(&sched.lock)
	for ; n != 0 && sched.npidle != 0; n-- {
		startm(nil, false)
	}
	*glist = gList{}
}

// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
func schedule() {
	_g_ := getg()

	if _g_.m.locks != 0 {
		throw("schedule: holding locks")
	}

	if _g_.m.lockedg != 0 {
		stoplockedm()
		execute(_g_.m.lockedg.ptr(), false) // Never returns.
	}

	// We should not schedule away from a g that is executing a cgo call,
	// since the cgo call is using the m's g0 stack.
	if _g_.m.incgo {
		throw("schedule: in cgo")
	}

top:
	if sched.gcwaiting != 0 {
		gcstopm()
		goto top
	}
	if _g_.m.p.ptr().runSafePointFn != 0 {
		runSafePointFn()
	}

	var gp *g
	var inheritTime bool
	if trace.enabled || trace.shutdown {
		gp = traceReader()
		if gp != nil {
			casgstatus(gp, _Gwaiting, _Grunnable)
			traceGoUnpark(gp, 0)
		}
	}
	if gp == nil && gcBlackenEnabled != 0 {
		gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
	}
	if gp == nil {
		// Check the global runnable queue once in a while to ensure fairness.
		// Otherwise two goroutines can completely occupy the local runqueue
		// by constantly respawning each other.
		if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
			lock(&sched.lock)
			gp = globrunqget(_g_.m.p.ptr(), 1)
			unlock(&sched.lock)
		}
	}
	if gp == nil {
		gp, inheritTime = runqget(_g_.m.p.ptr())
		if gp != nil && _g_.m.spinning {
			throw("schedule: spinning with local work")
		}

		// Because gccgo does not implement preemption as a stack check,
		// we need to check for preemption here for fairness.
		// Otherwise goroutines on the local queue may starve
		// goroutines on the global queue.
		// Since we preempt by storing the goroutine on the global
		// queue, this is the only place we need to check preempt.
		// This does not call checkPreempt because gp is not running.
		if gp != nil && gp.preempt {
			gp.preempt = false
			lock(&sched.lock)
			globrunqput(gp)
			unlock(&sched.lock)
			goto top
		}
	}
	if gp == nil {
		gp, inheritTime = findrunnable() // blocks until work is available
	}

	// This thread is going to run a goroutine and is not spinning anymore,
	// so if it was marked as spinning we need to reset it now and potentially
	// start a new spinning M.
	if _g_.m.spinning {
		resetspinning()
	}

	if sched.disable.user && !schedEnabled(gp) {
		// Scheduling of this goroutine is disabled. Put it on
		// the list of pending runnable goroutines for when we
		// re-enable user scheduling and look again.
		lock(&sched.lock)
		if schedEnabled(gp) {
			// Something re-enabled scheduling while we
			// were acquiring the lock.
			unlock(&sched.lock)
		} else {
			sched.disable.runnable.pushBack(gp)
			sched.disable.n++
			unlock(&sched.lock)
			goto top
		}
	}

	if gp.lockedm != 0 {
		// Hands off own p to the locked m,
		// then blocks waiting for a new p.
		startlockedm(gp)
		goto top
	}

	execute(gp, inheritTime)
}

// dropg removes the association between m and the current goroutine m->curg (gp for short).
// Typically a caller sets gp's status away from Grunning and then
// immediately calls dropg to finish the job. The caller is also responsible
// for arranging that gp will be restarted using ready at an
// appropriate time. After calling dropg and arranging for gp to be
// readied later, the caller can do other work but eventually should
// call schedule to restart the scheduling of goroutines on this m.
func dropg() {
	_g_ := getg()

	setMNoWB(&_g_.m.curg.m, nil)
	setGNoWB(&_g_.m.curg, nil)
}

func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
	unlock((*mutex)(lock))
	return true
}

// park continuation on g0.
func park_m(gp *g) {
	_g_ := getg()

	if trace.enabled {
		traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip)
	}

	dropg()
	casgstatus(gp, _Grunning, _Gwaiting)

	if _g_.m.waitunlockf != nil {
		fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
		ok := fn(gp, _g_.m.waitlock)
		_g_.m.waitunlockf = nil
		_g_.m.waitlock = nil
		if !ok {
			if trace.enabled {
				traceGoUnpark(gp, 2)
			}
			casgstatus(gp, _Gwaiting, _Grunnable)
			execute(gp, true) // Schedule it back, never returns.
		}
	}
	schedule()
}

func goschedImpl(gp *g) {
	status := readgstatus(gp)
	if status&^_Gscan != _Grunning {
		dumpgstatus(gp)
		throw("bad g status")
	}
	dropg()
	casgstatus(gp, _Grunning, _Grunnable)
	lock(&sched.lock)
	globrunqput(gp)
	unlock(&sched.lock)

	schedule()
}

// Gosched continuation on g0.
func gosched_m(gp *g) {
	if trace.enabled {
		traceGoSched()
	}
	goschedImpl(gp)
}

// goschedguarded is a forbidden-states-avoided version of gosched_m
func goschedguarded_m(gp *g) {

	if gp.m.locks != 0 || gp.m.mallocing != 0 || gp.m.preemptoff != "" || gp.m.p.ptr().status != _Prunning {
		gogo(gp) // never return
	}

	if trace.enabled {
		traceGoSched()
	}
	goschedImpl(gp)
}

func gopreempt_m(gp *g) {
	if trace.enabled {
		traceGoPreempt()
	}
	goschedImpl(gp)
}

// Finishes execution of the current goroutine.
func goexit1() {
	if trace.enabled {
		traceGoEnd()
	}
	mcall(goexit0)
}

// goexit continuation on g0.
func goexit0(gp *g) {
	_g_ := getg()

	casgstatus(gp, _Grunning, _Gdead)
	if isSystemGoroutine(gp, false) {
		atomic.Xadd(&sched.ngsys, -1)
		gp.isSystemGoroutine = false
	}
	gp.m = nil
	locked := gp.lockedm != 0
	gp.lockedm = 0
	_g_.m.lockedg = 0
	gp.entry = nil
	gp.paniconfault = false
	gp._defer = nil // should be true already but just in case.
	gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
	gp.writebuf = nil
	gp.waitreason = 0
	gp.param = nil
	gp.labels = nil
	gp.timer = nil

	if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 {
		// Flush assist credit to the global pool. This gives
		// better information to pacing if the application is
		// rapidly creating an exiting goroutines.
		scanCredit := int64(gcController.assistWorkPerByte * float64(gp.gcAssistBytes))
		atomic.Xaddint64(&gcController.bgScanCredit, scanCredit)
		gp.gcAssistBytes = 0
	}

	// Note that gp's stack scan is now "valid" because it has no
	// stack.
	gp.gcscanvalid = true
	dropg()

	if GOARCH == "wasm" { // no threads yet on wasm
		gfput(_g_.m.p.ptr(), gp)
		schedule() // never returns
	}

	if _g_.m.lockedInt != 0 {
		print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n")
		throw("internal lockOSThread error")
	}
	gfput(_g_.m.p.ptr(), gp)
	if locked {
		// The goroutine may have locked this thread because
		// it put it in an unusual kernel state. Kill it
		// rather than returning it to the thread pool.

		// Return to mstart, which will release the P and exit
		// the thread.
		if GOOS != "plan9" { // See golang.org/issue/22227.
			_g_.m.exiting = true
			gogo(_g_.m.g0)
		} else {
			// Clear lockedExt on plan9 since we may end up re-using
			// this thread.
			_g_.m.lockedExt = 0
		}
	}
	schedule()
}

// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// The entersyscall function is written in C, so that it can save the
// current register context so that the GC will see them.
// It calls reentersyscall.
//
// Syscall tracing:
// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
// If the syscall does not block, that is it, we do not emit any other events.
// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
// when syscall returns we emit traceGoSysExit and when the goroutine starts running
// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
// and we wait for the increment before emitting traceGoSysExit.
// Note that the increment is done even if tracing is not enabled,
// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
//
//go:nosplit
//go:noinline
func reentersyscall(pc, sp uintptr) {
	_g_ := getg()

	// Disable preemption because during this function g is in Gsyscall status,
	// but can have inconsistent g->sched, do not let GC observe it.
	_g_.m.locks++

	_g_.syscallsp = sp
	_g_.syscallpc = pc
	casgstatus(_g_, _Grunning, _Gsyscall)

	if trace.enabled {
		systemstack(traceGoSysCall)
	}

	if atomic.Load(&sched.sysmonwait) != 0 {
		systemstack(entersyscall_sysmon)
	}

	if _g_.m.p.ptr().runSafePointFn != 0 {
		// runSafePointFn may stack split if run on this stack
		systemstack(runSafePointFn)
	}

	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
	_g_.sysblocktraced = true
	_g_.m.mcache = nil
	pp := _g_.m.p.ptr()
	pp.m = 0
	_g_.m.oldp.set(pp)
	_g_.m.p = 0
	atomic.Store(&pp.status, _Psyscall)
	if sched.gcwaiting != 0 {
		systemstack(entersyscall_gcwait)
	}

	_g_.m.locks--
}

func entersyscall_sysmon() {
	lock(&sched.lock)
	if atomic.Load(&sched.sysmonwait) != 0 {
		atomic.Store(&sched.sysmonwait, 0)
		notewakeup(&sched.sysmonnote)
	}
	unlock(&sched.lock)
}

func entersyscall_gcwait() {
	_g_ := getg()
	_p_ := _g_.m.oldp.ptr()

	lock(&sched.lock)
	if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) {
		if trace.enabled {
			traceGoSysBlock(_p_)
			traceProcStop(_p_)
		}
		_p_.syscalltick++
		if sched.stopwait--; sched.stopwait == 0 {
			notewakeup(&sched.stopnote)
		}
	}
	unlock(&sched.lock)
}

func reentersyscallblock(pc, sp uintptr) {
	_g_ := getg()

	_g_.m.locks++ // see comment in entersyscall
	_g_.throwsplit = true
	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
	_g_.sysblocktraced = true
	_g_.m.p.ptr().syscalltick++

	// Leave SP around for GC and traceback.
	_g_.syscallsp = sp
	_g_.syscallpc = pc
	casgstatus(_g_, _Grunning, _Gsyscall)
	systemstack(entersyscallblock_handoff)

	_g_.m.locks--
}

func entersyscallblock_handoff() {
	if trace.enabled {
		traceGoSysCall()
		traceGoSysBlock(getg().m.p.ptr())
	}
	handoffp(releasep())
}

// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
//
// Write barriers are not allowed because our P may have been stolen.
//
//go:nosplit
//go:nowritebarrierrec
func exitsyscall() {
	_g_ := getg()

	_g_.m.locks++ // see comment in entersyscall

	_g_.waitsince = 0
	oldp := _g_.m.oldp.ptr()
	_g_.m.oldp = 0
	if exitsyscallfast(oldp) {
		if _g_.m.mcache == nil {
			throw("lost mcache")
		}
		if trace.enabled {
			if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
				systemstack(traceGoStart)
			}
		}
		// There's a cpu for us, so we can run.
		_g_.m.p.ptr().syscalltick++
		// We need to cas the status and scan before resuming...
		casgstatus(_g_, _Gsyscall, _Grunning)

		exitsyscallclear(_g_)
		_g_.m.locks--
		_g_.throwsplit = false

		// Check preemption, since unlike gc we don't check on
		// every call.
		if getg().preempt {
			checkPreempt()
		}
		_g_.throwsplit = false

		if sched.disable.user && !schedEnabled(_g_) {
			// Scheduling of this goroutine is disabled.
			Gosched()
		}

		return
	}

	_g_.sysexitticks = 0
	if trace.enabled {
		// Wait till traceGoSysBlock event is emitted.
		// This ensures consistency of the trace (the goroutine is started after it is blocked).
		for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
			osyield()
		}
		// We can't trace syscall exit right now because we don't have a P.
		// Tracing code can invoke write barriers that cannot run without a P.
		// So instead we remember the syscall exit time and emit the event
		// in execute when we have a P.
		_g_.sysexitticks = cputicks()
	}

	_g_.m.locks--

	// Call the scheduler.
	mcall(exitsyscall0)

	if _g_.m.mcache == nil {
		throw("lost mcache")
	}

	// Scheduler returned, so we're allowed to run now.
	// Delete the syscallsp information that we left for
	// the garbage collector during the system call.
	// Must wait until now because until gosched returns
	// we don't know for sure that the garbage collector
	// is not running.
	exitsyscallclear(_g_)

	_g_.m.p.ptr().syscalltick++
	_g_.throwsplit = false
}

//go:nosplit
func exitsyscallfast(oldp *p) bool {
	_g_ := getg()

	// Freezetheworld sets stopwait but does not retake P's.
	if sched.stopwait == freezeStopWait {
		return false
	}

	// Try to re-acquire the last P.
	if oldp != nil && oldp.status == _Psyscall && atomic.Cas(&oldp.status, _Psyscall, _Pidle) {
		// There's a cpu for us, so we can run.
		wirep(oldp)
		exitsyscallfast_reacquired()
		return true
	}

	// Try to get any other idle P.
	if sched.pidle != 0 {
		var ok bool
		systemstack(func() {
			ok = exitsyscallfast_pidle()
			if ok && trace.enabled {
				if oldp != nil {
					// Wait till traceGoSysBlock event is emitted.
					// This ensures consistency of the trace (the goroutine is started after it is blocked).
					for oldp.syscalltick == _g_.m.syscalltick {
						osyield()
					}
				}
				traceGoSysExit(0)
			}
		})
		if ok {
			return true
		}
	}
	return false
}

// exitsyscallfast_reacquired is the exitsyscall path on which this G
// has successfully reacquired the P it was running on before the
// syscall.
//
//go:nosplit
func exitsyscallfast_reacquired() {
	_g_ := getg()
	if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
		if trace.enabled {
			// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
			// traceGoSysBlock for this syscall was already emitted,
			// but here we effectively retake the p from the new syscall running on the same p.
			systemstack(func() {
				// Denote blocking of the new syscall.
				traceGoSysBlock(_g_.m.p.ptr())
				// Denote completion of the current syscall.
				traceGoSysExit(0)
			})
		}
		_g_.m.p.ptr().syscalltick++
	}
}

func exitsyscallfast_pidle() bool {
	lock(&sched.lock)
	_p_ := pidleget()
	if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 {
		atomic.Store(&sched.sysmonwait, 0)
		notewakeup(&sched.sysmonnote)
	}
	unlock(&sched.lock)
	if _p_ != nil {
		acquirep(_p_)
		return true
	}
	return false
}

// exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
//
//go:nowritebarrierrec
func exitsyscall0(gp *g) {
	_g_ := getg()

	casgstatus(gp, _Gsyscall, _Gexitingsyscall)
	dropg()
	casgstatus(gp, _Gexitingsyscall, _Grunnable)
	lock(&sched.lock)
	var _p_ *p
	if schedEnabled(_g_) {
		_p_ = pidleget()
	}
	if _p_ == nil {
		globrunqput(gp)
	} else if atomic.Load(&sched.sysmonwait) != 0 {
		atomic.Store(&sched.sysmonwait, 0)
		notewakeup(&sched.sysmonnote)
	}
	unlock(&sched.lock)
	if _p_ != nil {
		acquirep(_p_)
		execute(gp, false) // Never returns.
	}
	if _g_.m.lockedg != 0 {
		// Wait until another thread schedules gp and so m again.
		stoplockedm()
		execute(gp, false) // Never returns.
	}
	stopm()
	schedule() // Never returns.
}

// exitsyscallclear clears GC-related information that we only track
// during a syscall.
func exitsyscallclear(gp *g) {
	// Garbage collector isn't running (since we are), so okay to
	// clear syscallsp.
	gp.syscallsp = 0

	gp.gcstack = 0
	gp.gcnextsp = 0
	memclrNoHeapPointers(unsafe.Pointer(&gp.gcregs), unsafe.Sizeof(gp.gcregs))
}

// Code generated by cgo, and some library code, calls syscall.Entersyscall
// and syscall.Exitsyscall.

//go:linkname syscall_entersyscall syscall.Entersyscall
//go:nosplit
func syscall_entersyscall() {
	entersyscall()
}

//go:linkname syscall_exitsyscall syscall.Exitsyscall
//go:nosplit
func syscall_exitsyscall() {
	exitsyscall()
}

func beforefork() {
	gp := getg().m.curg

	// Block signals during a fork, so that the child does not run
	// a signal handler before exec if a signal is sent to the process
	// group. See issue #18600.
	gp.m.locks++
	msigsave(gp.m)
	sigblock()
}

// Called from syscall package before fork.
//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
//go:nosplit
func syscall_runtime_BeforeFork() {
	systemstack(beforefork)
}

func afterfork() {
	gp := getg().m.curg

	msigrestore(gp.m.sigmask)

	gp.m.locks--
}

// Called from syscall package after fork in parent.
//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
//go:nosplit
func syscall_runtime_AfterFork() {
	systemstack(afterfork)
}

// inForkedChild is true while manipulating signals in the child process.
// This is used to avoid calling libc functions in case we are using vfork.
var inForkedChild bool

// Called from syscall package after fork in child.
// It resets non-sigignored signals to the default handler, and
// restores the signal mask in preparation for the exec.
//
// Because this might be called during a vfork, and therefore may be
// temporarily sharing address space with the parent process, this must
// not change any global variables or calling into C code that may do so.
//
//go:linkname syscall_runtime_AfterForkInChild syscall.runtime_AfterForkInChild
//go:nosplit
//go:nowritebarrierrec
func syscall_runtime_AfterForkInChild() {
	// It's OK to change the global variable inForkedChild here
	// because we are going to change it back. There is no race here,
	// because if we are sharing address space with the parent process,
	// then the parent process can not be running concurrently.
	inForkedChild = true

	clearSignalHandlers()

	// When we are the child we are the only thread running,
	// so we know that nothing else has changed gp.m.sigmask.
	msigrestore(getg().m.sigmask)

	inForkedChild = false
}

// Called from syscall package before Exec.
//go:linkname syscall_runtime_BeforeExec syscall.runtime_BeforeExec
func syscall_runtime_BeforeExec() {
	// Prevent thread creation during exec.
	execLock.lock()
}

// Called from syscall package after Exec.
//go:linkname syscall_runtime_AfterExec syscall.runtime_AfterExec
func syscall_runtime_AfterExec() {
	execLock.unlock()
}

// Create a new g running fn passing arg as the single argument.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
//go:linkname newproc __go_go
func newproc(fn uintptr, arg unsafe.Pointer) *g {
	_g_ := getg()

	if fn == 0 {
		_g_.m.throwing = -1 // do not dump full stacks
		throw("go of nil func value")
	}
	_g_.m.locks++ // disable preemption because it can be holding p in a local var

	_p_ := _g_.m.p.ptr()
	newg := gfget(_p_)
	var (
		sp     unsafe.Pointer
		spsize uintptr
	)
	if newg == nil {
		newg = malg(true, false, &sp, &spsize)
		casgstatus(newg, _Gidle, _Gdead)
		allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
	} else {
		resetNewG(newg, &sp, &spsize)
	}
	newg.traceback = 0

	if readgstatus(newg) != _Gdead {
		throw("newproc1: new g is not Gdead")
	}

	// Store the C function pointer into entryfn, take the address
	// of entryfn, convert it to a Go function value, and store
	// that in entry.
	newg.entryfn = fn
	var entry func(unsafe.Pointer)
	*(*unsafe.Pointer)(unsafe.Pointer(&entry)) = unsafe.Pointer(&newg.entryfn)
	newg.entry = entry

	newg.param = arg
	newg.gopc = getcallerpc()
	newg.ancestors = saveAncestors(_g_)
	newg.startpc = fn
	if _g_.m.curg != nil {
		newg.labels = _g_.m.curg.labels
	}
	if isSystemGoroutine(newg, false) {
		atomic.Xadd(&sched.ngsys, +1)
	}
	newg.gcscanvalid = false
	casgstatus(newg, _Gdead, _Grunnable)

	if _p_.goidcache == _p_.goidcacheend {
		// Sched.goidgen is the last allocated id,
		// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
		// At startup sched.goidgen=0, so main goroutine receives goid=1.
		_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
		_p_.goidcache -= _GoidCacheBatch - 1
		_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
	}
	newg.goid = int64(_p_.goidcache)
	_p_.goidcache++
	if trace.enabled {
		traceGoCreate(newg, newg.startpc)
	}

	makeGContext(newg, sp, spsize)

	runqput(_p_, newg, true)

	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
		wakep()
	}
	_g_.m.locks--
	return newg
}

// expectedSystemGoroutines counts the number of goroutines expected
// to mark themselves as system goroutines. After they mark themselves
// by calling setSystemGoroutine, this is decremented. NumGoroutines
// uses this to wait for all system goroutines to mark themselves
// before it counts them.
var expectedSystemGoroutines uint32

// expectSystemGoroutine is called when starting a goroutine that will
// call setSystemGoroutine. It increments expectedSystemGoroutines.
func expectSystemGoroutine() {
	atomic.Xadd(&expectedSystemGoroutines, +1)
}

// waitForSystemGoroutines waits for all currently expected system
// goroutines to register themselves.
func waitForSystemGoroutines() {
	for atomic.Load(&expectedSystemGoroutines) > 0 {
		Gosched()
		osyield()
	}
}

// setSystemGoroutine marks this goroutine as a "system goroutine".
// In the gc toolchain this is done by comparing startpc to a list of
// saved special PCs. In gccgo that approach does not work as startpc
// is often a thunk that invokes the real function with arguments,
// so the thunk address never matches the saved special PCs. Instead,
// since there are only a limited number of "system goroutines",
// we force each one to mark itself as special.
func setSystemGoroutine() {
	getg().isSystemGoroutine = true
	atomic.Xadd(&sched.ngsys, +1)
	atomic.Xadd(&expectedSystemGoroutines, -1)
}

// saveAncestors copies previous ancestors of the given caller g and
// includes infor for the current caller into a new set of tracebacks for
// a g being created.
func saveAncestors(callergp *g) *[]ancestorInfo {
	// Copy all prior info, except for the root goroutine (goid 0).
	if debug.tracebackancestors <= 0 || callergp.goid == 0 {
		return nil
	}
	var callerAncestors []ancestorInfo
	if callergp.ancestors != nil {
		callerAncestors = *callergp.ancestors
	}
	n := int32(len(callerAncestors)) + 1
	if n > debug.tracebackancestors {
		n = debug.tracebackancestors
	}
	ancestors := make([]ancestorInfo, n)
	copy(ancestors[1:], callerAncestors)

	var pcs [_TracebackMaxFrames]uintptr
	// FIXME: This should get a traceback of callergp.
	// npcs := gcallers(callergp, 0, pcs[:])
	npcs := 0
	ipcs := make([]uintptr, npcs)
	copy(ipcs, pcs[:])
	ancestors[0] = ancestorInfo{
		pcs:  ipcs,
		goid: callergp.goid,
		gopc: callergp.gopc,
	}

	ancestorsp := new([]ancestorInfo)
	*ancestorsp = ancestors
	return ancestorsp
}

// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
func gfput(_p_ *p, gp *g) {
	if readgstatus(gp) != _Gdead {
		throw("gfput: bad status (not Gdead)")
	}

	_p_.gFree.push(gp)
	_p_.gFree.n++
	if _p_.gFree.n >= 64 {
		lock(&sched.gFree.lock)
		for _p_.gFree.n >= 32 {
			_p_.gFree.n--
			gp = _p_.gFree.pop()
			sched.gFree.list.push(gp)
			sched.gFree.n++
		}
		unlock(&sched.gFree.lock)
	}
}

// Get from gfree list.
// If local list is empty, grab a batch from global list.
func gfget(_p_ *p) *g {
retry:
	if _p_.gFree.empty() && !sched.gFree.list.empty() {
		lock(&sched.gFree.lock)
		// Move a batch of free Gs to the P.
		for _p_.gFree.n < 32 {
			gp := sched.gFree.list.pop()
			if gp == nil {
				break
			}
			sched.gFree.n--
			_p_.gFree.push(gp)
			_p_.gFree.n++
		}
		unlock(&sched.gFree.lock)
		goto retry
	}
	gp := _p_.gFree.pop()
	if gp == nil {
		return nil
	}
	_p_.gFree.n--
	return gp
}

// Purge all cached G's from gfree list to the global list.
func gfpurge(_p_ *p) {
	lock(&sched.gFree.lock)
	for !_p_.gFree.empty() {
		gp := _p_.gFree.pop()
		_p_.gFree.n--
		sched.gFree.list.push(gp)
		sched.gFree.n++
	}
	unlock(&sched.gFree.lock)
}

// Breakpoint executes a breakpoint trap.
func Breakpoint() {
	breakpoint()
}

// dolockOSThread is called by LockOSThread and lockOSThread below
// after they modify m.locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
//go:nosplit
func dolockOSThread() {
	if GOARCH == "wasm" {
		return // no threads on wasm yet
	}
	_g_ := getg()
	_g_.m.lockedg.set(_g_)
	_g_.lockedm.set(_g_.m)
}

//go:nosplit

// LockOSThread wires the calling goroutine to its current operating system thread.
// The calling goroutine will always execute in that thread,
// and no other goroutine will execute in it,
// until the calling goroutine has made as many calls to
// UnlockOSThread as to LockOSThread.
// If the calling goroutine exits without unlocking the thread,
// the thread will be terminated.
//
// All init functions are run on the startup thread. Calling LockOSThread
// from an init function will cause the main function to be invoked on
// that thread.
//
// A goroutine should call LockOSThread before calling OS services or
// non-Go library functions that depend on per-thread state.
func LockOSThread() {
	if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" {
		// If we need to start a new thread from the locked
		// thread, we need the template thread. Start it now
		// while we're in a known-good state.
		startTemplateThread()
	}
	_g_ := getg()
	_g_.m.lockedExt++
	if _g_.m.lockedExt == 0 {
		_g_.m.lockedExt--
		panic("LockOSThread nesting overflow")
	}
	dolockOSThread()
}

//go:nosplit
func lockOSThread() {
	getg().m.lockedInt++
	dolockOSThread()
}

// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
//go:nosplit
func dounlockOSThread() {
	if GOARCH == "wasm" {
		return // no threads on wasm yet
	}
	_g_ := getg()
	if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 {
		return
	}
	_g_.m.lockedg = 0
	_g_.lockedm = 0
}

//go:nosplit

// UnlockOSThread undoes an earlier call to LockOSThread.
// If this drops the number of active LockOSThread calls on the
// calling goroutine to zero, it unwires the calling goroutine from
// its fixed operating system thread.
// If there are no active LockOSThread calls, this is a no-op.
//
// Before calling UnlockOSThread, the caller must ensure that the OS
// thread is suitable for running other goroutines. If the caller made
// any permanent changes to the state of the thread that would affect
// other goroutines, it should not call this function and thus leave
// the goroutine locked to the OS thread until the goroutine (and
// hence the thread) exits.
func UnlockOSThread() {
	_g_ := getg()
	if _g_.m.lockedExt == 0 {
		return
	}
	_g_.m.lockedExt--
	dounlockOSThread()
}

//go:nosplit
func unlockOSThread() {
	_g_ := getg()
	if _g_.m.lockedInt == 0 {
		systemstack(badunlockosthread)
	}
	_g_.m.lockedInt--
	dounlockOSThread()
}

func badunlockosthread() {
	throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
}

func gcount() int32 {
	n := int32(allglen) - sched.gFree.n - int32(atomic.Load(&sched.ngsys))
	for _, _p_ := range allp {
		n -= _p_.gFree.n
	}

	// All these variables can be changed concurrently, so the result can be inconsistent.
	// But at least the current goroutine is running.
	if n < 1 {
		n = 1
	}
	return n
}

func mcount() int32 {
	return int32(sched.mnext - sched.nmfreed)
}

var prof struct {
	signalLock uint32
	hz         int32
}

func _System()                    { _System() }
func _ExternalCode()              { _ExternalCode() }
func _LostExternalCode()          { _LostExternalCode() }
func _GC()                        { _GC() }
func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() }
func _VDSO()                      { _VDSO() }

// Counts SIGPROFs received while in atomic64 critical section, on mips{,le}
var lostAtomic64Count uint64

var _SystemPC = funcPC(_System)
var _ExternalCodePC = funcPC(_ExternalCode)
var _LostExternalCodePC = funcPC(_LostExternalCode)
var _GCPC = funcPC(_GC)
var _LostSIGPROFDuringAtomic64PC = funcPC(_LostSIGPROFDuringAtomic64)

// Called if we receive a SIGPROF signal.
// Called by the signal handler, may run during STW.
//go:nowritebarrierrec
func sigprof(pc uintptr, gp *g, mp *m) {
	if prof.hz == 0 {
		return
	}

	// Profiling runs concurrently with GC, so it must not allocate.
	// Set a trap in case the code does allocate.
	// Note that on windows, one thread takes profiles of all the
	// other threads, so mp is usually not getg().m.
	// In fact mp may not even be stopped.
	// See golang.org/issue/17165.
	getg().m.mallocing++

	traceback := true

	// If SIGPROF arrived while already fetching runtime callers
	// we can have trouble on older systems because the unwind
	// library calls dl_iterate_phdr which was not reentrant in
	// the past. alreadyInCallers checks for that.
	if gp == nil || alreadyInCallers() {
		traceback = false
	}

	var stk [maxCPUProfStack]uintptr
	n := 0
	if traceback {
		var stklocs [maxCPUProfStack]location
		n = callers(0, stklocs[:])

		// Issue 26595: the stack trace we've just collected is going
		// to include frames that we don't want to report in the CPU
		// profile, including signal handler frames. Here is what we
		// might typically see at the point of "callers" above for a
		// signal delivered to the application routine "interesting"
		// called by "main".
		//
		//  0: runtime.sigprof
		//  1: runtime.sighandler
		//  2: runtime.sigtrampgo
		//  3: runtime.sigtramp
		//  4: <signal handler called>
		//  5: main.interesting_routine
		//  6: main.main
		//
		// To ensure a sane profile, walk through the frames in
		// "stklocs" until we find the "runtime.sigtramp" frame, then
		// report only those frames below the frame one down from
		// that. On systems that don't split stack, "sigtramp" can
		// do a sibling call to "sigtrampgo", so use "sigtrampgo"
		// if we don't find "sigtramp". If for some reason
		// neither "runtime.sigtramp" nor "runtime.sigtrampgo" is
		// present, don't make any changes.
		framesToDiscard := 0
		for i := 0; i < n; i++ {
			if stklocs[i].function == "runtime.sigtrampgo" && i+2 < n {
				framesToDiscard = i + 2
				n -= framesToDiscard
			}
			if stklocs[i].function == "runtime.sigtramp" && i+2 < n {
				framesToDiscard = i + 2
				n -= framesToDiscard
				break
			}
		}
		for i := 0; i < n; i++ {
			stk[i] = stklocs[i+framesToDiscard].pc
		}
	}

	if n <= 0 {
		// Normal traceback is impossible or has failed.
		// Account it against abstract "System" or "GC".
		n = 2
		stk[0] = pc
		if mp.preemptoff != "" {
			stk[1] = _GCPC + sys.PCQuantum
		} else {
			stk[1] = _SystemPC + sys.PCQuantum
		}
	}

	if prof.hz != 0 {
		if (GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "arm") && lostAtomic64Count > 0 {
			cpuprof.addLostAtomic64(lostAtomic64Count)
			lostAtomic64Count = 0
		}
		cpuprof.add(gp, stk[:n])
	}
	getg().m.mallocing--
}

// Use global arrays rather than using up lots of stack space in the
// signal handler. This is safe since while we are executing a SIGPROF
// signal other SIGPROF signals are blocked.
var nonprofGoStklocs [maxCPUProfStack]location
var nonprofGoStk [maxCPUProfStack]uintptr

// sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
// and the signal handler collected a stack trace in sigprofCallers.
// When this is called, sigprofCallersUse will be non-zero.
// g is nil, and what we can do is very limited.
//go:nosplit
//go:nowritebarrierrec
func sigprofNonGo(pc uintptr) {
	if prof.hz != 0 {
		n := callers(0, nonprofGoStklocs[:])

		for i := 0; i < n; i++ {
			nonprofGoStk[i] = nonprofGoStklocs[i].pc
		}

		if n <= 0 {
			n = 2
			nonprofGoStk[0] = pc
			nonprofGoStk[1] = _ExternalCodePC + sys.PCQuantum
		}

		cpuprof.addNonGo(nonprofGoStk[:n])
	}
}

// sigprofNonGoPC is called when a profiling signal arrived on a
// non-Go thread and we have a single PC value, not a stack trace.
// g is nil, and what we can do is very limited.
//go:nosplit
//go:nowritebarrierrec
func sigprofNonGoPC(pc uintptr) {
	if prof.hz != 0 {
		stk := []uintptr{
			pc,
			_ExternalCodePC + sys.PCQuantum,
		}
		cpuprof.addNonGo(stk)
	}
}

// setcpuprofilerate sets the CPU profiling rate to hz times per second.
// If hz <= 0, setcpuprofilerate turns off CPU profiling.
func setcpuprofilerate(hz int32) {
	// Force sane arguments.
	if hz < 0 {
		hz = 0
	}

	// Disable preemption, otherwise we can be rescheduled to another thread
	// that has profiling enabled.
	_g_ := getg()
	_g_.m.locks++

	// Stop profiler on this thread so that it is safe to lock prof.
	// if a profiling signal came in while we had prof locked,
	// it would deadlock.
	setThreadCPUProfiler(0)

	for !atomic.Cas(&prof.signalLock, 0, 1) {
		osyield()
	}
	if prof.hz != hz {
		setProcessCPUProfiler(hz)
		prof.hz = hz
	}
	atomic.Store(&prof.signalLock, 0)

	lock(&sched.lock)
	sched.profilehz = hz
	unlock(&sched.lock)

	if hz != 0 {
		setThreadCPUProfiler(hz)
	}

	_g_.m.locks--
}

// Change number of processors. The world is stopped, sched is locked.
// gcworkbufs are not being modified by either the GC or
// the write barrier code.
// Returns list of Ps with local work, they need to be scheduled by the caller.
func procresize(nprocs int32) *p {
	old := gomaxprocs
	if old < 0 || nprocs <= 0 {
		throw("procresize: invalid arg")
	}
	if trace.enabled {
		traceGomaxprocs(nprocs)
	}

	// update statistics
	now := nanotime()
	if sched.procresizetime != 0 {
		sched.totaltime += int64(old) * (now - sched.procresizetime)
	}
	sched.procresizetime = now

	// Grow allp if necessary.
	if nprocs > int32(len(allp)) {
		// Synchronize with retake, which could be running
		// concurrently since it doesn't run on a P.
		lock(&allpLock)
		if nprocs <= int32(cap(allp)) {
			allp = allp[:nprocs]
		} else {
			nallp := make([]*p, nprocs)
			// Copy everything up to allp's cap so we
			// never lose old allocated Ps.
			copy(nallp, allp[:cap(allp)])
			allp = nallp
		}
		unlock(&allpLock)
	}

	// initialize new P's
	for i := int32(0); i < nprocs; i++ {
		pp := allp[i]
		if pp == nil {
			pp = new(p)
			pp.id = i
			pp.status = _Pgcstop
			pp.sudogcache = pp.sudogbuf[:0]
			pp.deferpool = pp.deferpoolbuf[:0]
			pp.wbBuf.reset()
			atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
		}
		if pp.mcache == nil {
			if old == 0 && i == 0 {
				if getg().m.mcache == nil {
					throw("missing mcache?")
				}
				pp.mcache = getg().m.mcache // bootstrap
			} else {
				pp.mcache = allocmcache()
			}
		}
	}

	// free unused P's
	for i := nprocs; i < old; i++ {
		p := allp[i]
		if trace.enabled && p == getg().m.p.ptr() {
			// moving to p[0], pretend that we were descheduled
			// and then scheduled again to keep the trace sane.
			traceGoSched()
			traceProcStop(p)
		}
		// move all runnable goroutines to the global queue
		for p.runqhead != p.runqtail {
			// pop from tail of local queue
			p.runqtail--
			gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
			// push onto head of global queue
			globrunqputhead(gp)
		}
		if p.runnext != 0 {
			globrunqputhead(p.runnext.ptr())
			p.runnext = 0
		}
		// if there's a background worker, make it runnable and put
		// it on the global queue so it can clean itself up
		if gp := p.gcBgMarkWorker.ptr(); gp != nil {
			casgstatus(gp, _Gwaiting, _Grunnable)
			if trace.enabled {
				traceGoUnpark(gp, 0)
			}
			globrunqput(gp)
			// This assignment doesn't race because the
			// world is stopped.
			p.gcBgMarkWorker.set(nil)
		}
		// Flush p's write barrier buffer.
		if gcphase != _GCoff {
			wbBufFlush1(p)
			p.gcw.dispose()
		}
		for i := range p.sudogbuf {
			p.sudogbuf[i] = nil
		}
		p.sudogcache = p.sudogbuf[:0]
		for i := range p.deferpoolbuf {
			p.deferpoolbuf[i] = nil
		}
		p.deferpool = p.deferpoolbuf[:0]
		freemcache(p.mcache)
		p.mcache = nil
		gfpurge(p)
		traceProcFree(p)
		p.gcAssistTime = 0
		p.status = _Pdead
		// can't free P itself because it can be referenced by an M in syscall
	}

	// Trim allp.
	if int32(len(allp)) != nprocs {
		lock(&allpLock)
		allp = allp[:nprocs]
		unlock(&allpLock)
	}

	_g_ := getg()
	if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
		// continue to use the current P
		_g_.m.p.ptr().status = _Prunning
		_g_.m.p.ptr().mcache.prepareForSweep()
	} else {
		// release the current P and acquire allp[0]
		if _g_.m.p != 0 {
			_g_.m.p.ptr().m = 0
		}
		_g_.m.p = 0
		_g_.m.mcache = nil
		p := allp[0]
		p.m = 0
		p.status = _Pidle
		acquirep(p)
		if trace.enabled {
			traceGoStart()
		}
	}
	var runnablePs *p
	for i := nprocs - 1; i >= 0; i-- {
		p := allp[i]
		if _g_.m.p.ptr() == p {
			continue
		}
		p.status = _Pidle
		if runqempty(p) {
			pidleput(p)
		} else {
			p.m.set(mget())
			p.link.set(runnablePs)
			runnablePs = p
		}
	}
	stealOrder.reset(uint32(nprocs))
	var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
	atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
	return runnablePs
}

// Associate p and the current m.
//
// This function is allowed to have write barriers even if the caller
// isn't because it immediately acquires _p_.
//
//go:yeswritebarrierrec
func acquirep(_p_ *p) {
	// Do the part that isn't allowed to have write barriers.
	wirep(_p_)

	// Have p; write barriers now allowed.

	// Perform deferred mcache flush before this P can allocate
	// from a potentially stale mcache.
	_p_.mcache.prepareForSweep()

	if trace.enabled {
		traceProcStart()
	}
}

// wirep is the first step of acquirep, which actually associates the
// current M to _p_. This is broken out so we can disallow write
// barriers for this part, since we don't yet have a P.
//
//go:nowritebarrierrec
//go:nosplit
func wirep(_p_ *p) {
	_g_ := getg()

	if _g_.m.p != 0 || _g_.m.mcache != nil {
		throw("wirep: already in go")
	}
	if _p_.m != 0 || _p_.status != _Pidle {
		id := int64(0)
		if _p_.m != 0 {
			id = _p_.m.ptr().id
		}
		print("wirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
		throw("wirep: invalid p state")
	}
	_g_.m.mcache = _p_.mcache
	_g_.m.p.set(_p_)
	_p_.m.set(_g_.m)
	_p_.status = _Prunning
}

// Disassociate p and the current m.
func releasep() *p {
	_g_ := getg()

	if _g_.m.p == 0 || _g_.m.mcache == nil {
		throw("releasep: invalid arg")
	}
	_p_ := _g_.m.p.ptr()
	if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
		print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
		throw("releasep: invalid p state")
	}
	if trace.enabled {
		traceProcStop(_g_.m.p.ptr())
	}
	_g_.m.p = 0
	_g_.m.mcache = nil
	_p_.m = 0
	_p_.status = _Pidle
	return _p_
}

func incidlelocked(v int32) {
	lock(&sched.lock)
	sched.nmidlelocked += v
	if v > 0 {
		checkdead()
	}
	unlock(&sched.lock)
}

// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
// sched.lock must be held.
func checkdead() {
	// For -buildmode=c-shared or -buildmode=c-archive it's OK if
	// there are no running goroutines. The calling program is
	// assumed to be running.
	if islibrary || isarchive {
		return
	}

	// If we are dying because of a signal caught on an already idle thread,
	// freezetheworld will cause all running threads to block.
	// And runtime will essentially enter into deadlock state,
	// except that there is a thread that will call exit soon.
	if panicking > 0 {
		return
	}

	// If we are not running under cgo, but we have an extra M then account
	// for it. (It is possible to have an extra M on Windows without cgo to
	// accommodate callbacks created by syscall.NewCallback. See issue #6751
	// for details.)
	var run0 int32
	if !iscgo && cgoHasExtraM {
		run0 = 1
	}

	run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys
	if run > run0 {
		return
	}
	if run < 0 {
		print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n")
		throw("checkdead: inconsistent counts")
	}

	grunning := 0
	lock(&allglock)
	for i := 0; i < len(allgs); i++ {
		gp := allgs[i]
		if isSystemGoroutine(gp, false) {
			continue
		}
		s := readgstatus(gp)
		switch s &^ _Gscan {
		case _Gwaiting:
			grunning++
		case _Grunnable,
			_Grunning,
			_Gsyscall:
			unlock(&allglock)
			print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
			throw("checkdead: runnable g")
		}
	}
	unlock(&allglock)
	if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
		throw("no goroutines (main called runtime.Goexit) - deadlock!")
	}

	// Maybe jump time forward for playground.
	gp := timejump()
	if gp != nil {
		casgstatus(gp, _Gwaiting, _Grunnable)
		globrunqput(gp)
		_p_ := pidleget()
		if _p_ == nil {
			throw("checkdead: no p for timer")
		}
		mp := mget()
		if mp == nil {
			// There should always be a free M since
			// nothing is running.
			throw("checkdead: no m for timer")
		}
		mp.nextp.set(_p_)
		notewakeup(&mp.park)
		return
	}

	getg().m.throwing = -1 // do not dump full stacks
	throw("all goroutines are asleep - deadlock!")
}

// forcegcperiod is the maximum time in nanoseconds between garbage
// collections. If we go this long without a garbage collection, one
// is forced to run.
//
// This is a variable for testing purposes. It normally doesn't change.
var forcegcperiod int64 = 2 * 60 * 1e9

// Always runs without a P, so write barriers are not allowed.
//
//go:nowritebarrierrec
func sysmon() {
	lock(&sched.lock)
	sched.nmsys++
	checkdead()
	unlock(&sched.lock)

	// If a heap span goes unused for 5 minutes after a garbage collection,
	// we hand it back to the operating system.
	scavengelimit := int64(5 * 60 * 1e9)

	if debug.scavenge > 0 {
		// Scavenge-a-lot for testing.
		forcegcperiod = 10 * 1e6
		scavengelimit = 20 * 1e6
	}

	lastscavenge := nanotime()
	nscavenge := 0

	lasttrace := int64(0)
	idle := 0 // how many cycles in succession we had not wokeup somebody
	delay := uint32(0)
	for {
		if idle == 0 { // start with 20us sleep...
			delay = 20
		} else if idle > 50 { // start doubling the sleep after 1ms...
			delay *= 2
		}
		if delay > 10*1000 { // up to 10ms
			delay = 10 * 1000
		}
		usleep(delay)
		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
			lock(&sched.lock)
			if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
				atomic.Store(&sched.sysmonwait, 1)
				unlock(&sched.lock)
				// Make wake-up period small enough
				// for the sampling to be correct.
				maxsleep := forcegcperiod / 2
				if scavengelimit < forcegcperiod {
					maxsleep = scavengelimit / 2
				}
				shouldRelax := true
				if osRelaxMinNS > 0 {
					next := timeSleepUntil()
					now := nanotime()
					if next-now < osRelaxMinNS {
						shouldRelax = false
					}
				}
				if shouldRelax {
					osRelax(true)
				}
				notetsleep(&sched.sysmonnote, maxsleep)
				if shouldRelax {
					osRelax(false)
				}
				lock(&sched.lock)
				atomic.Store(&sched.sysmonwait, 0)
				noteclear(&sched.sysmonnote)
				idle = 0
				delay = 20
			}
			unlock(&sched.lock)
		}
		// trigger libc interceptors if needed
		if *cgo_yield != nil {
			asmcgocall(*cgo_yield, nil)
		}
		// poll network if not polled for more than 10ms
		lastpoll := int64(atomic.Load64(&sched.lastpoll))
		now := nanotime()
		if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
			atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
			list := netpoll(false) // non-blocking - returns list of goroutines
			if !list.empty() {
				// Need to decrement number of idle locked M's
				// (pretending that one more is running) before injectglist.
				// Otherwise it can lead to the following situation:
				// injectglist grabs all P's but before it starts M's to run the P's,
				// another M returns from syscall, finishes running its G,
				// observes that there is no work to do and no other running M's
				// and reports deadlock.
				incidlelocked(-1)
				injectglist(&list)
				incidlelocked(1)
			}
		}
		// retake P's blocked in syscalls
		// and preempt long running G's
		if retake(now) != 0 {
			idle = 0
		} else {
			idle++
		}
		// check if we need to force a GC
		if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
			lock(&forcegc.lock)
			forcegc.idle = 0
			var list gList
			list.push(forcegc.g)
			injectglist(&list)
			unlock(&forcegc.lock)
		}
		// scavenge heap once in a while
		if lastscavenge+scavengelimit/2 < now {
			mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
			lastscavenge = now
			nscavenge++
		}
		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
			lasttrace = now
			schedtrace(debug.scheddetail > 0)
		}
	}
}

type sysmontick struct {
	schedtick   uint32
	schedwhen   int64
	syscalltick uint32
	syscallwhen int64
}

// forcePreemptNS is the time slice given to a G before it is
// preempted.
const forcePreemptNS = 10 * 1000 * 1000 // 10ms

func retake(now int64) uint32 {
	n := 0
	// Prevent allp slice changes. This lock will be completely
	// uncontended unless we're already stopping the world.
	lock(&allpLock)
	// We can't use a range loop over allp because we may
	// temporarily drop the allpLock. Hence, we need to re-fetch
	// allp each time around the loop.
	for i := 0; i < len(allp); i++ {
		_p_ := allp[i]
		if _p_ == nil {
			// This can happen if procresize has grown
			// allp but not yet created new Ps.
			continue
		}
		pd := &_p_.sysmontick
		s := _p_.status
		if s == _Psyscall {
			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
			t := int64(_p_.syscalltick)
			if int64(pd.syscalltick) != t {
				pd.syscalltick = uint32(t)
				pd.syscallwhen = now
				continue
			}
			// On the one hand we don't want to retake Ps if there is no other work to do,
			// but on the other hand we want to retake them eventually
			// because they can prevent the sysmon thread from deep sleep.
			if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
				continue
			}
			// Drop allpLock so we can take sched.lock.
			unlock(&allpLock)
			// Need to decrement number of idle locked M's
			// (pretending that one more is running) before the CAS.
			// Otherwise the M from which we retake can exit the syscall,
			// increment nmidle and report deadlock.
			incidlelocked(-1)
			if atomic.Cas(&_p_.status, s, _Pidle) {
				if trace.enabled {
					traceGoSysBlock(_p_)
					traceProcStop(_p_)
				}
				n++
				_p_.syscalltick++
				handoffp(_p_)
			}
			incidlelocked(1)
			lock(&allpLock)
		} else if s == _Prunning {
			// Preempt G if it's running for too long.
			t := int64(_p_.schedtick)
			if int64(pd.schedtick) != t {
				pd.schedtick = uint32(t)
				pd.schedwhen = now
				continue
			}
			if pd.schedwhen+forcePreemptNS > now {
				continue
			}
			preemptone(_p_)
		}
	}
	unlock(&allpLock)
	return uint32(n)
}

// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort. It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
func preemptall() bool {
	res := false
	for _, _p_ := range allp {
		if _p_.status != _Prunning {
			continue
		}
		if preemptone(_p_) {
			res = true
		}
	}
	return res
}

// Tell the goroutine running on processor P to stop.
// This function is purely best-effort. It can incorrectly fail to inform the
// goroutine. It can send inform the wrong goroutine. Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing newstack.
// No lock needs to be held.
// Returns true if preemption request was issued.
// The actual preemption will happen at some point in the future
// and will be indicated by the gp->status no longer being
// Grunning
func preemptone(_p_ *p) bool {
	mp := _p_.m.ptr()
	if mp == nil || mp == getg().m {
		return false
	}
	gp := mp.curg
	if gp == nil || gp == mp.g0 {
		return false
	}

	gp.preempt = true

	// At this point the gc implementation sets gp.stackguard0 to
	// a value that causes the goroutine to suspend itself.
	// gccgo has no support for this, and it's hard to support.
	// The split stack code reads a value from its TCB.
	// We have no way to set a value in the TCB of a different thread.
	// And, of course, not all systems support split stack anyhow.
	// Checking the field in the g is expensive, since it requires
	// loading the g from TLS.  The best mechanism is likely to be
	// setting a global variable and figuring out a way to efficiently
	// check that global variable.
	//
	// For now we check gp.preempt in schedule, mallocgc, selectgo,
	// and a few other places, which is at least better than doing
	// nothing at all.

	return true
}

var starttime int64

func schedtrace(detailed bool) {
	now := nanotime()
	if starttime == 0 {
		starttime = now
	}

	lock(&sched.lock)
	print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
	if detailed {
		print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
	}
	// We must be careful while reading data from P's, M's and G's.
	// Even if we hold schedlock, most data can be changed concurrently.
	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
	for i, _p_ := range allp {
		mp := _p_.m.ptr()
		h := atomic.Load(&_p_.runqhead)
		t := atomic.Load(&_p_.runqtail)
		if detailed {
			id := int64(-1)
			if mp != nil {
				id = mp.id
			}
			print("  P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gFree.n, "\n")
		} else {
			// In non-detailed mode format lengths of per-P run queues as:
			// [len1 len2 len3 len4]
			print(" ")
			if i == 0 {
				print("[")
			}
			print(t - h)
			if i == len(allp)-1 {
				print("]\n")
			}
		}
	}

	if !detailed {
		unlock(&sched.lock)
		return
	}

	for mp := allm; mp != nil; mp = mp.alllink {
		_p_ := mp.p.ptr()
		gp := mp.curg
		lockedg := mp.lockedg.ptr()
		id1 := int32(-1)
		if _p_ != nil {
			id1 = _p_.id
		}
		id2 := int64(-1)
		if gp != nil {
			id2 = gp.goid
		}
		id3 := int64(-1)
		if lockedg != nil {
			id3 = lockedg.goid
		}
		print("  M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
	}

	lock(&allglock)
	for gi := 0; gi < len(allgs); gi++ {
		gp := allgs[gi]
		mp := gp.m
		lockedm := gp.lockedm.ptr()
		id1 := int64(-1)
		if mp != nil {
			id1 = mp.id
		}
		id2 := int64(-1)
		if lockedm != nil {
			id2 = lockedm.id
		}
		print("  G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason.String(), ") m=", id1, " lockedm=", id2, "\n")
	}
	unlock(&allglock)
	unlock(&sched.lock)
}

// schedEnableUser enables or disables the scheduling of user
// goroutines.
//
// This does not stop already running user goroutines, so the caller
// should first stop the world when disabling user goroutines.
func schedEnableUser(enable bool) {
	lock(&sched.lock)
	if sched.disable.user == !enable {
		unlock(&sched.lock)
		return
	}
	sched.disable.user = !enable
	if enable {
		n := sched.disable.n
		sched.disable.n = 0
		globrunqputbatch(&sched.disable.runnable, n)
		unlock(&sched.lock)
		for ; n != 0 && sched.npidle != 0; n-- {
			startm(nil, false)
		}
	} else {
		unlock(&sched.lock)
	}
}

// schedEnabled reports whether gp should be scheduled. It returns
// false is scheduling of gp is disabled.
func schedEnabled(gp *g) bool {
	if sched.disable.user {
		return isSystemGoroutine(gp, true)
	}
	return true
}

// Put mp on midle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func mput(mp *m) {
	mp.schedlink = sched.midle
	sched.midle.set(mp)
	sched.nmidle++
	checkdead()
}

// Try to get an m from midle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func mget() *m {
	mp := sched.midle.ptr()
	if mp != nil {
		sched.midle = mp.schedlink
		sched.nmidle--
	}
	return mp
}

// Put gp on the global runnable queue.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func globrunqput(gp *g) {
	sched.runq.pushBack(gp)
	sched.runqsize++
}

// Put gp at the head of the global runnable queue.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func globrunqputhead(gp *g) {
	sched.runq.push(gp)
	sched.runqsize++
}

// Put a batch of runnable goroutines on the global runnable queue.
// This clears *batch.
// Sched must be locked.
func globrunqputbatch(batch *gQueue, n int32) {
	sched.runq.pushBackAll(*batch)
	sched.runqsize += n
	*batch = gQueue{}
}

// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
func globrunqget(_p_ *p, max int32) *g {
	if sched.runqsize == 0 {
		return nil
	}

	n := sched.runqsize/gomaxprocs + 1
	if n > sched.runqsize {
		n = sched.runqsize
	}
	if max > 0 && n > max {
		n = max
	}
	if n > int32(len(_p_.runq))/2 {
		n = int32(len(_p_.runq)) / 2
	}

	sched.runqsize -= n

	gp := sched.runq.pop()
	n--
	for ; n > 0; n-- {
		gp1 := sched.runq.pop()
		runqput(_p_, gp1, false)
	}
	return gp
}

// Put p to on _Pidle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func pidleput(_p_ *p) {
	if !runqempty(_p_) {
		throw("pidleput: P has non-empty run queue")
	}
	_p_.link = sched.pidle
	sched.pidle.set(_p_)
	atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
}

// Try get a p from _Pidle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func pidleget() *p {
	_p_ := sched.pidle.ptr()
	if _p_ != nil {
		sched.pidle = _p_.link
		atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
	}
	return _p_
}

// runqempty reports whether _p_ has no Gs on its local run queue.
// It never returns true spuriously.
func runqempty(_p_ *p) bool {
	// Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
	// 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
	// Simply observing that runqhead == runqtail and then observing that runqnext == nil
	// does not mean the queue is empty.
	for {
		head := atomic.Load(&_p_.runqhead)
		tail := atomic.Load(&_p_.runqtail)
		runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
		if tail == atomic.Load(&_p_.runqtail) {
			return head == tail && runnext == 0
		}
	}
}

// To shake out latent assumptions about scheduling order,
// we introduce some randomness into scheduling decisions
// when running with the race detector.
// The need for this was made obvious by changing the
// (deterministic) scheduling order in Go 1.5 and breaking
// many poorly-written tests.
// With the randomness here, as long as the tests pass
// consistently with -race, they shouldn't have latent scheduling
// assumptions.
const randomizeScheduler = raceenabled

// runqput tries to put g on the local runnable queue.
// If next is false, runqput adds g to the tail of the runnable queue.
// If next is true, runqput puts g in the _p_.runnext slot.
// If the run queue is full, runnext puts g on the global queue.
// Executed only by the owner P.
func runqput(_p_ *p, gp *g, next bool) {
	if randomizeScheduler && next && fastrand()%2 == 0 {
		next = false
	}

	if next {
	retryNext:
		oldnext := _p_.runnext
		if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
			goto retryNext
		}
		if oldnext == 0 {
			return
		}
		// Kick the old runnext out to the regular run queue.
		gp = oldnext.ptr()
	}

retry:
	h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
	t := _p_.runqtail
	if t-h < uint32(len(_p_.runq)) {
		_p_.runq[t%uint32(len(_p_.runq))].set(gp)
		atomic.StoreRel(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
		return
	}
	if runqputslow(_p_, gp, h, t) {
		return
	}
	// the queue is not full, now the put above must succeed
	goto retry
}

// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
	var batch [len(_p_.runq)/2 + 1]*g

	// First, grab a batch from local queue.
	n := t - h
	n = n / 2
	if n != uint32(len(_p_.runq)/2) {
		throw("runqputslow: queue is not full")
	}
	for i := uint32(0); i < n; i++ {
		batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
	}
	if !atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume
		return false
	}
	batch[n] = gp

	if randomizeScheduler {
		for i := uint32(1); i <= n; i++ {
			j := fastrandn(i + 1)
			batch[i], batch[j] = batch[j], batch[i]
		}
	}

	// Link the goroutines.
	for i := uint32(0); i < n; i++ {
		batch[i].schedlink.set(batch[i+1])
	}
	var q gQueue
	q.head.set(batch[0])
	q.tail.set(batch[n])

	// Now put the batch on global queue.
	lock(&sched.lock)
	globrunqputbatch(&q, int32(n+1))
	unlock(&sched.lock)
	return true
}

// Get g from local runnable queue.
// If inheritTime is true, gp should inherit the remaining time in the
// current time slice. Otherwise, it should start a new time slice.
// Executed only by the owner P.
func runqget(_p_ *p) (gp *g, inheritTime bool) {
	// If there's a runnext, it's the next G to run.
	for {
		next := _p_.runnext
		if next == 0 {
			break
		}
		if _p_.runnext.cas(next, 0) {
			return next.ptr(), true
		}
	}

	for {
		h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
		t := _p_.runqtail
		if t == h {
			return nil, false
		}
		gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
		if atomic.CasRel(&_p_.runqhead, h, h+1) { // cas-release, commits consume
			return gp, false
		}
	}
}

// Grabs a batch of goroutines from _p_'s runnable queue into batch.
// Batch is a ring buffer starting at batchHead.
// Returns number of grabbed goroutines.
// Can be executed by any P.
func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
	for {
		h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
		t := atomic.LoadAcq(&_p_.runqtail) // load-acquire, synchronize with the producer
		n := t - h
		n = n - n/2
		if n == 0 {
			if stealRunNextG {
				// Try to steal from _p_.runnext.
				if next := _p_.runnext; next != 0 {
					if _p_.status == _Prunning {
						// Sleep to ensure that _p_ isn't about to run the g
						// we are about to steal.
						// The important use case here is when the g running
						// on _p_ ready()s another g and then almost
						// immediately blocks. Instead of stealing runnext
						// in this window, back off to give _p_ a chance to
						// schedule runnext. This will avoid thrashing gs
						// between different Ps.
						// A sync chan send/recv takes ~50ns as of time of
						// writing, so 3us gives ~50x overshoot.
						if GOOS != "windows" {
							usleep(3)
						} else {
							// On windows system timer granularity is
							// 1-15ms, which is way too much for this
							// optimization. So just yield.
							osyield()
						}
					}
					if !_p_.runnext.cas(next, 0) {
						continue
					}
					batch[batchHead%uint32(len(batch))] = next
					return 1
				}
			}
			return 0
		}
		if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
			continue
		}
		for i := uint32(0); i < n; i++ {
			g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
			batch[(batchHead+i)%uint32(len(batch))] = g
		}
		if atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume
			return n
		}
	}
}

// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
	t := _p_.runqtail
	n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
	if n == 0 {
		return nil
	}
	n--
	gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
	if n == 0 {
		return gp
	}
	h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
	if t-h+n >= uint32(len(_p_.runq)) {
		throw("runqsteal: runq overflow")
	}
	atomic.StoreRel(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
	return gp
}

// A gQueue is a dequeue of Gs linked through g.schedlink. A G can only
// be on one gQueue or gList at a time.
type gQueue struct {
	head guintptr
	tail guintptr
}

// empty reports whether q is empty.
func (q *gQueue) empty() bool {
	return q.head == 0
}

// push adds gp to the head of q.
func (q *gQueue) push(gp *g) {
	gp.schedlink = q.head
	q.head.set(gp)
	if q.tail == 0 {
		q.tail.set(gp)
	}
}

// pushBack adds gp to the tail of q.
func (q *gQueue) pushBack(gp *g) {
	gp.schedlink = 0
	if q.tail != 0 {
		q.tail.ptr().schedlink.set(gp)
	} else {
		q.head.set(gp)
	}
	q.tail.set(gp)
}

// pushBackAll adds all Gs in l2 to the tail of q. After this q2 must
// not be used.
func (q *gQueue) pushBackAll(q2 gQueue) {
	if q2.tail == 0 {
		return
	}
	q2.tail.ptr().schedlink = 0
	if q.tail != 0 {
		q.tail.ptr().schedlink = q2.head
	} else {
		q.head = q2.head
	}
	q.tail = q2.tail
}

// pop removes and returns the head of queue q. It returns nil if
// q is empty.
func (q *gQueue) pop() *g {
	gp := q.head.ptr()
	if gp != nil {
		q.head = gp.schedlink
		if q.head == 0 {
			q.tail = 0
		}
	}
	return gp
}

// popList takes all Gs in q and returns them as a gList.
func (q *gQueue) popList() gList {
	stack := gList{q.head}
	*q = gQueue{}
	return stack
}

// A gList is a list of Gs linked through g.schedlink. A G can only be
// on one gQueue or gList at a time.
type gList struct {
	head guintptr
}

// empty reports whether l is empty.
func (l *gList) empty() bool {
	return l.head == 0
}

// push adds gp to the head of l.
func (l *gList) push(gp *g) {
	gp.schedlink = l.head
	l.head.set(gp)
}

// pushAll prepends all Gs in q to l.
func (l *gList) pushAll(q gQueue) {
	if !q.empty() {
		q.tail.ptr().schedlink = l.head
		l.head = q.head
	}
}

// pop removes and returns the head of l. If l is empty, it returns nil.
func (l *gList) pop() *g {
	gp := l.head.ptr()
	if gp != nil {
		l.head = gp.schedlink
	}
	return gp
}

//go:linkname setMaxThreads runtime..z2fdebug.setMaxThreads
func setMaxThreads(in int) (out int) {
	lock(&sched.lock)
	out = int(sched.maxmcount)
	if in > 0x7fffffff { // MaxInt32
		sched.maxmcount = 0x7fffffff
	} else {
		sched.maxmcount = int32(in)
	}
	checkmcount()
	unlock(&sched.lock)
	return
}

func haveexperiment(name string) bool {
	// The gofrontend does not support experiments.
	return false
}

//go:nosplit
func procPin() int {
	_g_ := getg()
	mp := _g_.m

	mp.locks++
	return int(mp.p.ptr().id)
}

//go:nosplit
func procUnpin() {
	_g_ := getg()
	_g_.m.locks--
}

//go:linkname sync_runtime_procPin sync.runtime_procPin
//go:nosplit
func sync_runtime_procPin() int {
	return procPin()
}

//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
//go:nosplit
func sync_runtime_procUnpin() {
	procUnpin()
}

//go:linkname sync_atomic_runtime_procPin sync..z2fatomic.runtime_procPin
//go:nosplit
func sync_atomic_runtime_procPin() int {
	return procPin()
}

//go:linkname sync_atomic_runtime_procUnpin sync..z2fatomic.runtime_procUnpin
//go:nosplit
func sync_atomic_runtime_procUnpin() {
	procUnpin()
}

// Active spinning for sync.Mutex.
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
//go:nosplit
func sync_runtime_canSpin(i int) bool {
	// sync.Mutex is cooperative, so we are conservative with spinning.
	// Spin only few times and only if running on a multicore machine and
	// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
	// As opposed to runtime mutex we don't do passive spinning here,
	// because there can be work on global runq or on other Ps.
	if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
		return false
	}
	if p := getg().m.p.ptr(); !runqempty(p) {
		return false
	}
	return true
}

//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
	procyield(active_spin_cnt)
}

var stealOrder randomOrder

// randomOrder/randomEnum are helper types for randomized work stealing.
// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
type randomOrder struct {
	count    uint32
	coprimes []uint32
}

type randomEnum struct {
	i     uint32
	count uint32
	pos   uint32
	inc   uint32
}

func (ord *randomOrder) reset(count uint32) {
	ord.count = count
	ord.coprimes = ord.coprimes[:0]
	for i := uint32(1); i <= count; i++ {
		if gcd(i, count) == 1 {
			ord.coprimes = append(ord.coprimes, i)
		}
	}
}

func (ord *randomOrder) start(i uint32) randomEnum {
	return randomEnum{
		count: ord.count,
		pos:   i % ord.count,
		inc:   ord.coprimes[i%uint32(len(ord.coprimes))],
	}
}

func (enum *randomEnum) done() bool {
	return enum.i == enum.count
}

func (enum *randomEnum) next() {
	enum.i++
	enum.pos = (enum.pos + enum.inc) % enum.count
}

func (enum *randomEnum) position() uint32 {
	return enum.pos
}

func gcd(a, b uint32) uint32 {
	for b != 0 {
		a, b = b, a%b
	}
	return a
}