1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements runtime support for signal handling.
//
// Most synchronization primitives are not available from
// the signal handler (it cannot block, allocate memory, or use locks)
// so the handler communicates with a processing goroutine
// via struct sig, below.
//
// sigsend() is called by the signal handler to queue a new signal.
// signal_recv() is called by the Go program to receive a newly queued signal.
// Synchronization between sigsend() and signal_recv() is based on the sig.state
// variable. It can be in 3 states: 0, HASWAITER and HASSIGNAL.
// HASWAITER means that signal_recv() is blocked on sig.Note and there are no
// new pending signals.
// HASSIGNAL means that sig.mask *may* contain new pending signals,
// signal_recv() can't be blocked in this state.
// 0 means that there are no new pending signals and signal_recv() is not blocked.
// Transitions between states are done atomically with CAS.
// When signal_recv() is unblocked, it resets sig.Note and rechecks sig.mask.
// If several sigsend()'s and signal_recv() execute concurrently, it can lead to
// unnecessary rechecks of sig.mask, but must not lead to missed signals
// nor deadlocks.
package signal
#include "config.h"
#include "runtime.h"
#include "arch.h"
#include "malloc.h"
#include "defs.h"
static struct {
Note;
uint32 mask[(NSIG+31)/32];
uint32 wanted[(NSIG+31)/32];
uint32 state;
bool inuse;
} sig;
enum {
HASWAITER = 1,
HASSIGNAL = 2,
};
// Called from sighandler to send a signal back out of the signal handling thread.
bool
__go_sigsend(int32 s)
{
uint32 bit, mask, old, new;
if(!sig.inuse || s < 0 || (size_t)s >= 32*nelem(sig.wanted) || !(sig.wanted[s/32]&(1U<<(s&31))))
return false;
bit = 1 << (s&31);
for(;;) {
mask = sig.mask[s/32];
if(mask & bit)
break; // signal already in queue
if(runtime_cas(&sig.mask[s/32], mask, mask|bit)) {
// Added to queue.
// Only send a wakeup if the receiver needs a kick.
for(;;) {
old = runtime_atomicload(&sig.state);
if(old == HASSIGNAL)
break;
if(old == HASWAITER)
new = 0;
else // if(old == 0)
new = HASSIGNAL;
if(runtime_cas(&sig.state, old, new)) {
if (old == HASWAITER)
runtime_notewakeup(&sig);
break;
}
}
break;
}
}
return true;
}
// Called to receive the next queued signal.
// Must only be called from a single goroutine at a time.
func signal_recv() (m uint32) {
static uint32 recv[nelem(sig.mask)];
uint32 i, old, new;
for(;;) {
// Serve from local copy if there are bits left.
for(i=0; i<NSIG; i++) {
if(recv[i/32]&(1U<<(i&31))) {
recv[i/32] ^= 1U<<(i&31);
m = i;
goto done;
}
}
// Check and update sig.state.
for(;;) {
old = runtime_atomicload(&sig.state);
if(old == HASWAITER)
runtime_throw("inconsistent state in signal_recv");
if(old == HASSIGNAL)
new = 0;
else // if(old == 0)
new = HASWAITER;
if(runtime_cas(&sig.state, old, new)) {
if (new == HASWAITER) {
runtime_entersyscall();
runtime_notesleep(&sig);
runtime_exitsyscall();
runtime_noteclear(&sig);
}
break;
}
}
// Get a new local copy.
for(i=0; (size_t)i<nelem(sig.mask); i++) {
for(;;) {
m = sig.mask[i];
if(runtime_cas(&sig.mask[i], m, 0))
break;
}
recv[i] = m;
}
}
done:;
// goc requires that we fall off the end of functions
// that return values instead of using our own return
// statements.
}
// Must only be called from a single goroutine at a time.
func signal_enable(s uint32) {
int32 i;
if(!sig.inuse) {
// The first call to signal_enable is for us
// to use for initialization. It does not pass
// signal information in m.
sig.inuse = true; // enable reception of signals; cannot disable
runtime_noteclear(&sig);
return;
}
if(~s == 0) {
// Special case: want everything.
for(i=0; (size_t)i<nelem(sig.wanted); i++)
sig.wanted[i] = ~(uint32)0;
runtime_sigenable(s);
return;
}
if(s >= nelem(sig.wanted)*32)
return;
sig.wanted[s/32] |= 1U<<(s&31);
runtime_sigenable(s);
}
|