blob: 7d0acfb1ce1ff78da83b55599c9db8c6bbd2d49d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "config.h"
#include "runtime.h"
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <semaphore.h>
/* If we don't have sem_timedwait, use pthread_cond_timedwait instead.
We don't always use condition variables because on some systems
pthread_mutex_lock and pthread_mutex_unlock must be called by the
same thread. That is never true of semaphores. */
struct go_sem
{
sem_t sem;
#ifndef HAVE_SEM_TIMEDWAIT
int timedwait;
pthread_mutex_t mutex;
pthread_cond_t cond;
#endif
};
/* Create a semaphore. */
uintptr
runtime_semacreate(void)
{
struct go_sem *p;
/* Call malloc rather than runtime_malloc. This will allocate space
on the C heap. We can't call runtime_malloc here because it
could cause a deadlock. */
p = malloc (sizeof (struct go_sem));
if (sem_init (&p->sem, 0, 0) != 0)
runtime_throw ("sem_init");
#ifndef HAVE_SEM_TIMEDWAIT
if (pthread_mutex_init (&p->mutex, NULL) != 0)
runtime_throw ("pthread_mutex_init");
if (pthread_cond_init (&p->cond, NULL) != 0)
runtime_throw ("pthread_cond_init");
#endif
return (uintptr) p;
}
/* Acquire m->waitsema. */
int32
runtime_semasleep (int64 ns)
{
M *m;
struct go_sem *sem;
int r;
m = runtime_m ();
sem = (struct go_sem *) m->waitsema;
if (ns >= 0)
{
int64 abs;
struct timespec ts;
int err;
abs = ns + runtime_nanotime ();
ts.tv_sec = abs / 1000000000LL;
ts.tv_nsec = abs % 1000000000LL;
err = 0;
#ifdef HAVE_SEM_TIMEDWAIT
r = sem_timedwait (&sem->sem, &ts);
if (r != 0)
err = errno;
#else
if (pthread_mutex_lock (&sem->mutex) != 0)
runtime_throw ("pthread_mutex_lock");
while ((r = sem_trywait (&sem->sem)) != 0)
{
r = pthread_cond_timedwait (&sem->cond, &sem->mutex, &ts);
if (r != 0)
{
err = r;
break;
}
}
if (pthread_mutex_unlock (&sem->mutex) != 0)
runtime_throw ("pthread_mutex_unlock");
#endif
if (err != 0)
{
if (err == ETIMEDOUT || err == EAGAIN || err == EINTR)
return -1;
runtime_throw ("sema_timedwait");
}
return 0;
}
while (sem_wait (&sem->sem) != 0)
{
if (errno == EINTR)
continue;
runtime_throw ("sem_wait");
}
return 0;
}
/* Wake up mp->waitsema. */
void
runtime_semawakeup (M *mp)
{
struct go_sem *sem;
sem = (struct go_sem *) mp->waitsema;
if (sem_post (&sem->sem) != 0)
runtime_throw ("sem_post");
#ifndef HAVE_SEM_TIMEDWAIT
if (pthread_mutex_lock (&sem->mutex) != 0)
runtime_throw ("pthread_mutex_lock");
if (pthread_cond_broadcast (&sem->cond) != 0)
runtime_throw ("pthread_cond_broadcast");
if (pthread_mutex_unlock (&sem->mutex) != 0)
runtime_throw ("pthread_mutex_unlock");
#endif
}
void
runtime_osinit (void)
{
}
void
runtime_goenvs (void)
{
runtime_goenvs_unix ();
}
|