summaryrefslogtreecommitdiff
path: root/libitm/retry.cc
blob: b7db80a85e1091fa161500cba64bd7fd1c312629 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/* Copyright (C) 2008-2015 Free Software Foundation, Inc.
   Contributed by Richard Henderson <rth@redhat.com>.

   This file is part of the GNU Transactional Memory Library (libitm).

   Libitm is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.

   Under Section 7 of GPL version 3, you are granted additional
   permissions described in the GCC Runtime Library Exception, version
   3.1, as published by the Free Software Foundation.

   You should have received a copy of the GNU General Public License and
   a copy of the GCC Runtime Library Exception along with this program;
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
   <http://www.gnu.org/licenses/>.  */

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "libitm_i.h"

// The default TM method used when starting a new transaction.  Initialized
// in number_of_threads_changed() below.
// Access to this variable is always synchronized with help of the serial
// lock, except one read access that happens in decide_begin_dispatch() before
// a transaction has become active (by acquiring the serial lock in read or
// write mode).  The default_dispatch is only changed and initialized in
// serial mode.  Transactions stay active when they restart (see beginend.cc),
// thus decide_retry_strategy() can expect default_dispatch to be unmodified.
// See decide_begin_dispatch() for further comments.
static std::atomic<GTM::abi_dispatch*> default_dispatch;
// The default TM method as requested by the user, if any.
static GTM::abi_dispatch* default_dispatch_user = 0;

void
GTM::gtm_thread::decide_retry_strategy (gtm_restart_reason r)
{
  struct abi_dispatch *disp = abi_disp ();

  this->restart_reason[r]++;
  this->restart_total++;

  if (r == RESTART_INIT_METHOD_GROUP)
    {
      // A re-initializations of the method group has been requested. Switch
      // to serial mode, initialize, and resume normal operation.
      if ((state & STATE_SERIAL) == 0)
	{
	  // We have to eventually re-init the method group. Therefore,
	  // we cannot just upgrade to a write lock here because this could
	  // fail forever when other transactions execute in serial mode.
	  // However, giving up the read lock then means that a change of the
	  // method group could happen in-between, so check that we're not
	  // re-initializing without a need.
	  // ??? Note that we can still re-initialize too often, but avoiding
	  // that would increase code complexity, which seems unnecessary
	  // given that re-inits should be very infrequent.
	  serial_lock.read_unlock(this);
	  serial_lock.write_lock();
	  if (disp->get_method_group()
	      == default_dispatch.load(memory_order_relaxed)
	      ->get_method_group())
	    // Still the same method group.
	    disp->get_method_group()->reinit();
	  serial_lock.write_unlock();
	  // Also, we're making the transaction inactive, so when we become
	  // active again, some other thread might have changed the default
	  // dispatch, so we run the same code as for the first execution
	  // attempt.
	  disp = decide_begin_dispatch(prop);
	  set_abi_disp(disp);
	}
      else
	// We are a serial transaction already, which makes things simple.
	disp->get_method_group()->reinit();

      return;
    }

  bool retry_irr = (r == RESTART_SERIAL_IRR);
  bool retry_serial = (retry_irr || this->restart_total > 100);

  // We assume closed nesting to be infrequently required, so just use
  // dispatch_serial (with undo logging) if required.
  if (r == RESTART_CLOSED_NESTING)
    retry_serial = true;

  if (retry_serial)
    {
      // In serialirr_mode we can succeed with the upgrade to
      // write-lock but fail the trycommit.  In any case, if the
      // write lock is not yet held, grab it.  Don't do this with
      // an upgrade, since we've no need to preserve the state we
      // acquired with the read.
      // Note that we will be restarting with either dispatch_serial or
      // dispatch_serialirr, which are compatible with all TM methods; if
      // we would retry with a different method, we would have to first check
      // whether the default dispatch or the method group have changed. Also,
      // the caller must have rolled back the previous transaction, so we
      // don't have to worry about things such as privatization.
      if ((this->state & STATE_SERIAL) == 0)
	{
	  this->state |= STATE_SERIAL;
	  serial_lock.read_unlock (this);
	  serial_lock.write_lock ();
	}

      // We can retry with dispatch_serialirr if the transaction
      // doesn't contain an abort and if we don't need closed nesting.
      if ((this->prop & pr_hasNoAbort) && (r != RESTART_CLOSED_NESTING))
	retry_irr = true;
    }

  // Note that we can just use serial mode here without having to switch
  // TM method sets because serial mode is compatible with all of them.
  if (retry_irr)
    {
      this->state = (STATE_SERIAL | STATE_IRREVOCABLE);
      disp = dispatch_serialirr ();
      set_abi_disp (disp);
    }
  else if (retry_serial)
    {
      disp = dispatch_serial();
      set_abi_disp (disp);
    }
}


// Decides which TM method should be used on the first attempt to run this
// transaction.  Acquires the serial lock and sets transaction state
// according to the chosen TM method.
GTM::abi_dispatch*
GTM::gtm_thread::decide_begin_dispatch (uint32_t prop)
{
  abi_dispatch* dd;
  // TODO Pay more attention to prop flags (eg, *omitted) when selecting
  // dispatch.
  // ??? We go irrevocable eagerly here, which is not always good for
  // performance.  Don't do this?
  if ((prop & pr_doesGoIrrevocable) || !(prop & pr_instrumentedCode))
    dd = dispatch_serialirr();

  else
    {
      // Load the default dispatch.  We're not an active transaction and so it
      // can change concurrently but will still be some valid dispatch.
      // Relaxed memory order is okay because we expect each dispatch to be
      // constructed properly already (at least that its closed_nesting() and
      // closed_nesting_alternatives() will return sensible values).  It is
      // harmless if we incorrectly chose the serial or serialirr methods, and
      // for all other methods we will acquire the serial lock in read mode
      // and load the default dispatch again.
      abi_dispatch* dd_orig = default_dispatch.load(memory_order_relaxed);
      dd = dd_orig;

      // If we might need closed nesting and the default dispatch has an
      // alternative that supports closed nesting, use it.
      // ??? We could choose another TM method that we know supports closed
      // nesting but isn't the default (e.g., dispatch_serial()). However, we
      // assume that aborts that need closed nesting are infrequent, so don't
      // choose a non-default method until we have to actually restart the
      // transaction.
      if (!(prop & pr_hasNoAbort) && !dd->closed_nesting()
	  && dd->closed_nesting_alternative())
	dd = dd->closed_nesting_alternative();

      if (!(dd->requires_serial() & STATE_SERIAL))
	{
	  // The current dispatch is supposedly a non-serial one.  Become an
	  // active transaction and verify this.  Relaxed memory order is fine
	  // because the serial lock itself will have established
	  // happens-before for any change to the selected dispatch.
	  serial_lock.read_lock (this);
	  if (default_dispatch.load(memory_order_relaxed) == dd_orig)
	    return dd;

	  // If we raced with a concurrent modification of default_dispatch,
	  // just fall back to serialirr.  The dispatch choice might not be
	  // up-to-date anymore, but this is harmless.
	  serial_lock.read_unlock (this);
	  dd = dispatch_serialirr();
	}
    }

  // We are some kind of serial transaction.
  serial_lock.write_lock();
  state = dd->requires_serial();
  return dd;
}


void
GTM::gtm_thread::set_default_dispatch(GTM::abi_dispatch* disp)
{
  abi_dispatch* dd = default_dispatch.load(memory_order_relaxed);
  if (dd == disp)
    return;
  if (dd)
    {
      // If we are switching method groups, initialize and shut down properly.
      if (dd->get_method_group() != disp->get_method_group())
	{
	  dd->get_method_group()->fini();
	  disp->get_method_group()->init();
	}
    }
  else
    disp->get_method_group()->init();
  default_dispatch.store(disp, memory_order_relaxed);
}


static GTM::abi_dispatch*
parse_default_method()
{
  const char *env = getenv("ITM_DEFAULT_METHOD");
  GTM::abi_dispatch* disp = 0;
  if (env == NULL)
    return 0;

  while (isspace((unsigned char) *env))
    ++env;
  if (strncmp(env, "serialirr_onwrite", 17) == 0)
    {
      disp = GTM::dispatch_serialirr_onwrite();
      env += 17;
    }
  else if (strncmp(env, "serialirr", 9) == 0)
    {
      disp = GTM::dispatch_serialirr();
      env += 9;
    }
  else if (strncmp(env, "serial", 6) == 0)
    {
      disp = GTM::dispatch_serial();
      env += 6;
    }
  else if (strncmp(env, "gl_wt", 5) == 0)
    {
      disp = GTM::dispatch_gl_wt();
      env += 5;
    }
  else if (strncmp(env, "ml_wt", 5) == 0)
    {
      disp = GTM::dispatch_ml_wt();
      env += 5;
    }
  else if (strncmp(env, "htm", 3) == 0)
    {
      disp = GTM::dispatch_htm();
      env += 3;
    }
  else
    goto unknown;

  while (isspace((unsigned char) *env))
    ++env;
  if (*env == '\0')
    return disp;

 unknown:
  GTM::GTM_error("Unknown TM method in environment variable "
      "ITM_DEFAULT_METHOD\n");
  return 0;
}

// Gets notifications when the number of registered threads changes. This is
// used to initialize the method set choice and trigger straightforward choice
// adaption.
// This must be called only by serial threads.
void
GTM::gtm_thread::number_of_threads_changed(unsigned previous, unsigned now)
{
  if (previous == 0)
    {
      // No registered threads before, so initialize.
      static bool initialized = false;
      if (!initialized)
	{
	  initialized = true;
	  // Check for user preferences here.
	  default_dispatch = 0;
	  default_dispatch_user = parse_default_method();
	}
    }
  else if (now == 0)
    {
      // No registered threads anymore. The dispatch based on serial mode do
      // not have any global state, so this effectively shuts down properly.
      set_default_dispatch(dispatch_serialirr());
    }

  if (now == 1)
    {
      // Only one thread, so use a serializing method.
      // ??? If we don't have a fast serial mode implementation, it might be
      // better to use the global lock method set here.
      if (default_dispatch_user && default_dispatch_user->supports(now))
	set_default_dispatch(default_dispatch_user);
      else
	set_default_dispatch(dispatch_serialirr());
    }
  else if (now > 1 && previous <= 1)
    {
      // More than one thread, use the default method.
      if (default_dispatch_user && default_dispatch_user->supports(now))
	set_default_dispatch(default_dispatch_user);
      else
	{
	  // If HTM is available, use it by default with serial mode as
	  // fallback.  Otherwise, use ml_wt because it probably scales best.
	  abi_dispatch* a;
#ifdef USE_HTM_FASTPATH
	  if (htm_available())
	    a = dispatch_htm();
	  else
#endif
	    a = dispatch_ml_wt();
	  if (a->supports(now))
	    set_default_dispatch(a);
	  else
	    // Serial-irrevocable mode always works.
	    set_default_dispatch(dispatch_serialirr());
	}
    }
}