summaryrefslogtreecommitdiff
path: root/libjava/gnu/java/math/MPN.java
blob: 34a7081701edd0be1869e34ff525630db0d6a459 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/* gnu.java.math.MPN
   Copyright (C) 1999, 2000, 2001, 2004  Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

// Included from Kawa 1.6.62 with permission of the author,
// Per Bothner <per@bothner.com>.

package gnu.java.math;

/** This contains various low-level routines for unsigned bigints.
 * The interfaces match the mpn interfaces in gmp,
 * so it should be easy to replace them with fast native functions
 * that are trivial wrappers around the mpn_ functions in gmp
 * (at least on platforms that use 32-bit "limbs").
 */

public class MPN
{
  /** Add x[0:size-1] and y, and write the size least
   * significant words of the result to dest.
   * Return carry, either 0 or 1.
   * All values are unsigned.
   * This is basically the same as gmp's mpn_add_1. */
  public static int add_1 (int[] dest, int[] x, int size, int y)
  {
    long carry = (long) y & 0xffffffffL;
    for (int i = 0;  i < size;  i++)
      {
	carry += ((long) x[i] & 0xffffffffL);
	dest[i] = (int) carry;
	carry >>= 32;
      }
    return (int) carry;
  }

  /** Add x[0:len-1] and y[0:len-1] and write the len least
   * significant words of the result to dest[0:len-1].
   * All words are treated as unsigned.
   * @return the carry, either 0 or 1
   * This function is basically the same as gmp's mpn_add_n.
   */
  public static int add_n (int dest[], int[] x, int[] y, int len)
  {
    long carry = 0;
    for (int i = 0; i < len;  i++)
      {
	carry += ((long) x[i] & 0xffffffffL)
	  + ((long) y[i] & 0xffffffffL);
	dest[i] = (int) carry;
	carry >>>= 32;
      }
    return (int) carry;
  }

  /** Subtract Y[0:size-1] from X[0:size-1], and write
   * the size least significant words of the result to dest[0:size-1].
   * Return borrow, either 0 or 1.
   * This is basically the same as gmp's mpn_sub_n function.
   */

  public static int sub_n (int[] dest, int[] X, int[] Y, int size)
  {
    int cy = 0;
    for (int i = 0;  i < size;  i++)
      {
	int y = Y[i];
	int x = X[i];
	y += cy;	/* add previous carry to subtrahend */
	// Invert the high-order bit, because: (unsigned) X > (unsigned) Y
	// iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
	cy = (y^0x80000000) < (cy^0x80000000) ? 1 : 0;
	y = x - y;
	cy += (y^0x80000000) > (x ^ 0x80000000) ? 1 : 0;
	dest[i] = y;
      }
    return cy;
  }

  /** Multiply x[0:len-1] by y, and write the len least
   * significant words of the product to dest[0:len-1].
   * Return the most significant word of the product.
   * All values are treated as if they were unsigned
   * (i.e. masked with 0xffffffffL).
   * OK if dest==x (not sure if this is guaranteed for mpn_mul_1).
   * This function is basically the same as gmp's mpn_mul_1.
   */

  public static int mul_1 (int[] dest, int[] x, int len, int y)
  {
    long yword = (long) y & 0xffffffffL;
    long carry = 0;
    for (int j = 0;  j < len; j++)
      {
        carry += ((long) x[j] & 0xffffffffL) * yword;
        dest[j] = (int) carry;
        carry >>>= 32;
      }
    return (int) carry;
  }

  /**
   * Multiply x[0:xlen-1] and y[0:ylen-1], and
   * write the result to dest[0:xlen+ylen-1].
   * The destination has to have space for xlen+ylen words,
   * even if the result might be one limb smaller.
   * This function requires that xlen >= ylen.
   * The destination must be distinct from either input operands.
   * All operands are unsigned.
   * This function is basically the same gmp's mpn_mul. */

  public static void mul (int[] dest,
			  int[] x, int xlen,
			  int[] y, int ylen)
  {
    dest[xlen] = MPN.mul_1 (dest, x, xlen, y[0]);

    for (int i = 1;  i < ylen; i++)
      {
	long yword = (long) y[i] & 0xffffffffL;
	long carry = 0;
	for (int j = 0;  j < xlen; j++)
	  {
	    carry += ((long) x[j] & 0xffffffffL) * yword
	      + ((long) dest[i+j] & 0xffffffffL);
	    dest[i+j] = (int) carry;
	    carry >>>= 32;
	  }
	dest[i+xlen] = (int) carry;
      }
  }

  /* Divide (unsigned long) N by (unsigned int) D.
   * Returns (remainder << 32)+(unsigned int)(quotient).
   * Assumes (unsigned int)(N>>32) < (unsigned int)D.
   * Code transcribed from gmp-2.0's mpn_udiv_w_sdiv function.
   */
  public static long udiv_qrnnd (long N, int D)
  {
    long q, r;
    long a1 = N >>> 32;
    long a0 = N & 0xffffffffL;
    if (D >= 0)
      {
	if (a1 < ((D - a1 - (a0 >>> 31)) & 0xffffffffL))
	  {
	    /* dividend, divisor, and quotient are nonnegative */
	    q = N / D;
	    r = N % D;
	  }
	else
	  {
	    /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
	    long c = N - ((long) D << 31);
	    /* Divide (c1*2^32 + c0) by d */
	    q = c / D;
	    r = c % D;
	    /* Add 2^31 to quotient */
	    q += 1 << 31;
	  }
      }
    else
      {
	long b1 = D >>> 1;	/* d/2, between 2^30 and 2^31 - 1 */
	//long c1 = (a1 >> 1); /* A/2 */
	//int c0 = (a1 << 31) + (a0 >> 1);
	long c = N >>> 1;
	if (a1 < b1 || (a1 >> 1) < b1)
	  {
	    if (a1 < b1)
	      {
		q = c / b1;
		r = c % b1;
	      }
	    else /* c1 < b1, so 2^31 <= (A/2)/b1 < 2^32 */
	      {
		c = ~(c - (b1 << 32));
		q = c / b1;  /* (A/2) / (d/2) */
		r = c % b1;
		q = (~q) & 0xffffffffL;    /* (A/2)/b1 */
		r = (b1 - 1) - r; /* r < b1 => new r >= 0 */
	      }
	    r = 2 * r + (a0 & 1);
	    if ((D & 1) != 0)
	      {
		if (r >= q) {
		        r = r - q;
		} else if (q - r <= ((long) D & 0xffffffffL)) {
                       r = r - q + D;
        		q -= 1;
		} else {
                       r = r - q + D + D;
        		q -= 2;
		}
	      }
	  }
	else				/* Implies c1 = b1 */
	  {				/* Hence a1 = d - 1 = 2*b1 - 1 */
	    if (a0 >= ((long)(-D) & 0xffffffffL))
	      {
		q = -1;
	        r = a0 + D;
 	      }
	    else
	      {
		q = -2;
	        r = a0 + D + D;
	      }
	  }
      }

    return (r << 32) | (q & 0xFFFFFFFFl);
  }

    /** Divide divident[0:len-1] by (unsigned int)divisor.
     * Write result into quotient[0:len-1.
     * Return the one-word (unsigned) remainder.
     * OK for quotient==dividend.
     */

  public static int divmod_1 (int[] quotient, int[] dividend,
			      int len, int divisor)
  {
    int i = len - 1;
    long r = dividend[i];
    if ((r & 0xffffffffL) >= ((long)divisor & 0xffffffffL))
      r = 0;
    else
      {
	quotient[i--] = 0;
	r <<= 32;
      }

    for (;  i >= 0;  i--)
      {
	int n0 = dividend[i];
	r = (r & ~0xffffffffL) | (n0 & 0xffffffffL);
	r = udiv_qrnnd (r, divisor);
	quotient[i] = (int) r;
      }
    return (int)(r >> 32);
  }

  /* Subtract x[0:len-1]*y from dest[offset:offset+len-1].
   * All values are treated as if unsigned.
   * @return the most significant word of
   * the product, minus borrow-out from the subtraction.
   */
  public static int submul_1 (int[] dest, int offset, int[] x, int len, int y)
  {
    long yl = (long) y & 0xffffffffL;
    int carry = 0;
    int j = 0;
    do
      {
	long prod = ((long) x[j] & 0xffffffffL) * yl;
	int prod_low = (int) prod;
	int prod_high = (int) (prod >> 32);
	prod_low += carry;
	// Invert the high-order bit, because: (unsigned) X > (unsigned) Y
	// iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
	carry = ((prod_low ^ 0x80000000) < (carry ^ 0x80000000) ? 1 : 0)
	  + prod_high;
	int x_j = dest[offset+j];
	prod_low = x_j - prod_low;
	if ((prod_low ^ 0x80000000) > (x_j ^ 0x80000000))
	  carry++;
	dest[offset+j] = prod_low;
      }
    while (++j < len);
    return carry;
  }

  /** Divide zds[0:nx] by y[0:ny-1].
   * The remainder ends up in zds[0:ny-1].
   * The quotient ends up in zds[ny:nx].
   * Assumes:  nx>ny.
   * (int)y[ny-1] < 0  (i.e. most significant bit set)
   */

  public static void divide (int[] zds, int nx, int[] y, int ny)
  {
    // This is basically Knuth's formulation of the classical algorithm,
    // but translated from in scm_divbigbig in Jaffar's SCM implementation.

    // Correspondance with Knuth's notation:
    // Knuth's u[0:m+n] == zds[nx:0].
    // Knuth's v[1:n] == y[ny-1:0]
    // Knuth's n == ny.
    // Knuth's m == nx-ny.
    // Our nx == Knuth's m+n.

    // Could be re-implemented using gmp's mpn_divrem:
    // zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).

    int j = nx;
    do
      {                          // loop over digits of quotient
	// Knuth's j == our nx-j.
	// Knuth's u[j:j+n] == our zds[j:j-ny].
	int qhat;  // treated as unsigned
	if (zds[j]==y[ny-1])
	  qhat = -1;  // 0xffffffff
	else
	  {
	    long w = (((long)(zds[j])) << 32) + ((long)zds[j-1] & 0xffffffffL);
	    qhat = (int) udiv_qrnnd (w, y[ny-1]);
	  }
	if (qhat != 0)
	  {
	    int borrow = submul_1 (zds, j - ny, y, ny, qhat);
	    int save = zds[j];
	    long num = ((long)save&0xffffffffL) - ((long)borrow&0xffffffffL);
            while (num != 0)
	      {
		qhat--;
		long carry = 0;
		for (int i = 0;  i < ny; i++)
		  {
		    carry += ((long) zds[j-ny+i] & 0xffffffffL)
		      + ((long) y[i] & 0xffffffffL);
		    zds[j-ny+i] = (int) carry;
		    carry >>>= 32;
		  }
		zds[j] += carry;
		num = carry - 1;
	      }
	  }
	zds[j] = qhat;
      } while (--j >= ny);
  }

  /** Number of digits in the conversion base that always fits in a word.
   * For example, for base 10 this is 9, since 10**9 is the
   * largest number that fits into a words (assuming 32-bit words).
   * This is the same as gmp's __mp_bases[radix].chars_per_limb.
   * @param radix the base
   * @return number of digits */
  public static int chars_per_word (int radix)
  {
    if (radix < 10)
      {
	if (radix < 8)
	  {
	    if (radix <= 2)
	      return 32;
	    else if (radix == 3)
	      return 20;
	    else if (radix == 4)
	      return 16;
	    else
	      return 18 - radix;
	  }
	else
	  return 10;
      }
    else if (radix < 12)
      return 9;
    else if (radix <= 16)
      return 8;
    else if (radix <= 23)
      return 7;
    else if (radix <= 40)
      return 6;
    // The following are conservative, but we don't care.
    else if (radix <= 256)
      return 4;
    else
      return 1;
  }

  /** Count the number of leading zero bits in an int. */
  public static int count_leading_zeros (int i)
  {
    if (i == 0)
      return 32;
    int count = 0;
    for (int k = 16;  k > 0;  k = k >> 1) {
      int j = i >>> k;
      if (j == 0)
	count += k;
      else
	i = j;
    }
    return count;
  }

  public static int set_str (int dest[], byte[] str, int str_len, int base)
  {
    int size = 0;
    if ((base & (base - 1)) == 0)
      {
	// The base is a power of 2.  Read the input string from
	// least to most significant character/digit.  */

	int next_bitpos = 0;
	int bits_per_indigit = 0;
	for (int i = base; (i >>= 1) != 0; ) bits_per_indigit++;
	int res_digit = 0;

	for (int i = str_len;  --i >= 0; )
	  {
	    int inp_digit = str[i];
	    res_digit |= inp_digit << next_bitpos;
	    next_bitpos += bits_per_indigit;
	    if (next_bitpos >= 32)
	      {
		dest[size++] = res_digit;
		next_bitpos -= 32;
		res_digit = inp_digit >> (bits_per_indigit - next_bitpos);
	      }
	  }

	if (res_digit != 0)
	  dest[size++] = res_digit;
      }
    else
      {
	// General case.  The base is not a power of 2.
	int indigits_per_limb = MPN.chars_per_word (base);
	int str_pos = 0;

	while (str_pos < str_len)
	  {
	    int chunk = str_len - str_pos;
	    if (chunk > indigits_per_limb)
	      chunk = indigits_per_limb;
	    int res_digit = str[str_pos++];
	    int big_base = base;

	    while (--chunk > 0)
	      {
		res_digit = res_digit * base + str[str_pos++];
		big_base *= base;
	      }

	    int cy_limb;
	    if (size == 0)
	      cy_limb = res_digit;
	    else
	      {
		cy_limb = MPN.mul_1 (dest, dest, size, big_base);
		cy_limb += MPN.add_1 (dest, dest, size, res_digit);
	      }
	    if (cy_limb != 0)
	      dest[size++] = cy_limb;
	  }
       }
    return size;
  }

  /** Compare x[0:size-1] with y[0:size-1], treating them as unsigned integers.
   * @result -1, 0, or 1 depending on if x&lt;y, x==y, or x&gt;y.
   * This is basically the same as gmp's mpn_cmp function.
   */
  public static int cmp (int[] x, int[] y, int size)
  {
    while (--size >= 0)
      {
	int x_word = x[size];
	int y_word = y[size];
	if (x_word != y_word)
	  {
	    // Invert the high-order bit, because:
	    // (unsigned) X > (unsigned) Y iff
	    // (int) (X^0x80000000) > (int) (Y^0x80000000).
	    return (x_word ^ 0x80000000) > (y_word ^0x80000000) ? 1 : -1;
	  }
      }
    return 0;
  }

  /**
   * Compare x[0:xlen-1] with y[0:ylen-1], treating them as unsigned integers.
   * 
   * @return -1, 0, or 1 depending on if x&lt;y, x==y, or x&gt;y.
   */
  public static int cmp (int[] x, int xlen, int[] y, int ylen)
  {
    return xlen > ylen ? 1 : xlen < ylen ? -1 : cmp (x, y, xlen);
  }

  /**
   * Shift x[x_start:x_start+len-1] count bits to the "right"
   * (i.e. divide by 2**count).
   * Store the len least significant words of the result at dest.
   * The bits shifted out to the right are returned.
   * OK if dest==x.
   * Assumes: 0 &lt; count &lt; 32
   */
  public static int rshift (int[] dest, int[] x, int x_start,
			    int len, int count)
  {
    int count_2 = 32 - count;
    int low_word = x[x_start];
    int retval = low_word << count_2;
    int i = 1;
    for (; i < len;  i++)
      {
	int high_word = x[x_start+i];
	dest[i-1] = (low_word >>> count) | (high_word << count_2);
	low_word = high_word;
      }
    dest[i-1] = low_word >>> count;
    return retval;
  }

  /**
   * Shift x[x_start:x_start+len-1] count bits to the "right"
   * (i.e. divide by 2**count).
   * Store the len least significant words of the result at dest.
   * OK if dest==x.
   * Assumes: 0 &lt;= count &lt; 32
   * Same as rshift, but handles count==0 (and has no return value).
   */
  public static void rshift0 (int[] dest, int[] x, int x_start,
			      int len, int count)
  {
    if (count > 0)
      rshift(dest, x, x_start, len, count);
    else
      for (int i = 0;  i < len;  i++)
	dest[i] = x[i + x_start];
  }

  /** Return the long-truncated value of right shifting.
  * @param x a two's-complement "bignum"
  * @param len the number of significant words in x
  * @param count the shift count
  * @return (long)(x[0..len-1] &gt;&gt; count).
  */
  public static long rshift_long (int[] x, int len, int count)
  {
    int wordno = count >> 5;
    count &= 31;
    int sign = x[len-1] < 0 ? -1 : 0;
    int w0 = wordno >= len ? sign : x[wordno];
    wordno++;
    int w1 = wordno >= len ? sign : x[wordno];
    if (count != 0)
      {
	wordno++;
	int w2 = wordno >= len ? sign : x[wordno];
	w0 = (w0 >>> count) | (w1 << (32-count));
	w1 = (w1 >>> count) | (w2 << (32-count));
      }
    return ((long)w1 << 32) | ((long)w0 & 0xffffffffL);
  }

  /* Shift x[0:len-1] left by count bits, and store the len least
   * significant words of the result in dest[d_offset:d_offset+len-1].
   * Return the bits shifted out from the most significant digit.
   * Assumes 0 &lt; count &lt; 32.
   * OK if dest==x.
   */

  public static int lshift (int[] dest, int d_offset,
			    int[] x, int len, int count)
  {
    int count_2 = 32 - count;
    int i = len - 1;
    int high_word = x[i];
    int retval = high_word >>> count_2;
    d_offset++;
    while (--i >= 0)
      {
	int low_word = x[i];
	dest[d_offset+i] = (high_word << count) | (low_word >>> count_2);
	high_word = low_word;
      }
    dest[d_offset+i] = high_word << count;
    return retval;
  }

  /** Return least i such that word &amp; (1&lt;&lt;i). Assumes word!=0. */

  public static int findLowestBit (int word)
  {
    int i = 0;
    while ((word & 0xF) == 0)
      {
	word >>= 4;
	i += 4;
      }
    if ((word & 3) == 0)
      {
	word >>= 2;
	i += 2;
      }
    if ((word & 1) == 0)
      i += 1;
    return i;
  }

  /** Return least i such that words &amp; (1&lt;&lt;i). Assumes there is such an i. */

  public static int findLowestBit (int[] words)
  {
    for (int i = 0;  ; i++)
      {
	if (words[i] != 0)
	  return 32 * i + findLowestBit (words[i]);
      }
  }

  /** Calculate Greatest Common Divisior of x[0:len-1] and y[0:len-1].
    * Assumes both arguments are non-zero.
    * Leaves result in x, and returns len of result.
    * Also destroys y (actually sets it to a copy of the result). */

  public static int gcd (int[] x, int[] y, int len)
  {
    int i, word;
    // Find sh such that both x and y are divisible by 2**sh.
    for (i = 0; ; i++)
      {
	word = x[i] | y[i];
	if (word != 0)
	  {
	    // Must terminate, since x and y are non-zero.
	    break;
	  }
      }
    int initShiftWords = i;
    int initShiftBits = findLowestBit (word);
    // Logically: sh = initShiftWords * 32 + initShiftBits

    // Temporarily devide both x and y by 2**sh.
    len -= initShiftWords;
    MPN.rshift0 (x, x, initShiftWords, len, initShiftBits);
    MPN.rshift0 (y, y, initShiftWords, len, initShiftBits);

    int[] odd_arg; /* One of x or y which is odd. */
    int[] other_arg; /* The other one can be even or odd. */
    if ((x[0] & 1) != 0)
      {
	odd_arg = x;
	other_arg = y;
      }
    else
      {
	odd_arg = y;
	other_arg = x;
      }

    for (;;)
      {
	// Shift other_arg until it is odd; this doesn't
	// affect the gcd, since we divide by 2**k, which does not
	// divide odd_arg.
	for (i = 0; other_arg[i] == 0; ) i++;
	if (i > 0)
	  {
	    int j;
	    for (j = 0; j < len-i; j++)
		other_arg[j] = other_arg[j+i];
	    for ( ; j < len; j++)
	      other_arg[j] = 0;
	  }
	i = findLowestBit(other_arg[0]);
	if (i > 0)
	  MPN.rshift (other_arg, other_arg, 0, len, i);

	// Now both odd_arg and other_arg are odd.

	// Subtract the smaller from the larger.
	// This does not change the result, since gcd(a-b,b)==gcd(a,b).
	i = MPN.cmp(odd_arg, other_arg, len);
	if (i == 0)
	    break;
	if (i > 0)
	  { // odd_arg > other_arg
	    MPN.sub_n (odd_arg, odd_arg, other_arg, len);
	    // Now odd_arg is even, so swap with other_arg;
	    int[] tmp = odd_arg; odd_arg = other_arg; other_arg = tmp;
	  }
	else
	  { // other_arg > odd_arg
	    MPN.sub_n (other_arg, other_arg, odd_arg, len);
	}
	while (odd_arg[len-1] == 0 && other_arg[len-1] == 0)
	  len--;
    }
    if (initShiftWords + initShiftBits > 0)
      {
	if (initShiftBits > 0)
	  {
	    int sh_out = MPN.lshift (x, initShiftWords, x, len, initShiftBits);
	    if (sh_out != 0)
	      x[(len++)+initShiftWords] = sh_out;
	  }
	else
	  {
	    for (i = len; --i >= 0;)
	      x[i+initShiftWords] = x[i];
	  }
	for (i = initShiftWords;  --i >= 0; )
	  x[i] = 0;
	len += initShiftWords;
      }
    return len;
  }

  public static int intLength (int i)
  {
    return 32 - count_leading_zeros (i < 0 ? ~i : i);
  }

  /** Calcaulte the Common Lisp "integer-length" function.
   * Assumes input is canonicalized:  len==BigInteger.wordsNeeded(words,len) */
  public static int intLength (int[] words, int len)
  {
    len--;
    return intLength (words[len]) + 32 * len;
  }

  /* DEBUGGING:
  public static void dprint (BigInteger x)
  {
    if (x.words == null)
      System.err.print(Long.toString((long) x.ival & 0xffffffffL, 16));
    else
      dprint (System.err, x.words, x.ival);
  }
  public static void dprint (int[] x) { dprint (System.err, x, x.length); }
  public static void dprint (int[] x, int len) { dprint (System.err, x, len); }
  public static void dprint (java.io.PrintStream ps, int[] x, int len)
  {
    ps.print('(');
    for (int i = 0;  i < len; i++)
      {
	if (i > 0)
	  ps.print (' ');
	ps.print ("#x" + Long.toString ((long) x[i] & 0xffffffffL, 16));
      }
    ps.print(')');
  }
  */
}