1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
|
//Written in the D programming language
/++
Module containing core time functionality, such as $(LREF Duration) (which
represents a duration of time) or $(LREF MonoTime) (which represents a
timestamp of the system's monotonic clock).
Various functions take a string (or strings) to represent a unit of time
(e.g. $(D convert!("days", "hours")(numDays))). The valid strings to use
with such functions are "years", "months", "weeks", "days", "hours",
"minutes", "seconds", "msecs" (milliseconds), "usecs" (microseconds),
"hnsecs" (hecto-nanoseconds - i.e. 100 ns) or some subset thereof. There
are a few functions that also allow "nsecs", but very little actually
has precision greater than hnsecs.
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Symbol) $(TH Description))
$(LEADINGROW Types)
$(TR $(TDNW $(LREF Duration)) $(TD Represents a duration of time of weeks
or less (kept internally as hnsecs). (e.g. 22 days or 700 seconds).))
$(TR $(TDNW $(LREF TickDuration)) $(TD Represents a duration of time in
system clock ticks, using the highest precision that the system provides.))
$(TR $(TDNW $(LREF MonoTime)) $(TD Represents a monotonic timestamp in
system clock ticks, using the highest precision that the system provides.))
$(LEADINGROW Functions)
$(TR $(TDNW $(LREF convert)) $(TD Generic way of converting between two time
units.))
$(TR $(TDNW $(LREF dur)) $(TD Allows constructing a $(LREF Duration) from
the given time units with the given length.))
$(TR $(TDNW $(LREF weeks)$(NBSP)$(LREF days)$(NBSP)$(LREF hours)$(BR)
$(LREF minutes)$(NBSP)$(LREF seconds)$(NBSP)$(LREF msecs)$(BR)
$(LREF usecs)$(NBSP)$(LREF hnsecs)$(NBSP)$(LREF nsecs))
$(TD Convenience aliases for $(LREF dur).))
$(TR $(TDNW $(LREF abs)) $(TD Returns the absolute value of a duration.))
)
$(BOOKTABLE Conversions,
$(TR $(TH )
$(TH From $(LREF Duration))
$(TH From $(LREF TickDuration))
$(TH From units)
)
$(TR $(TD $(B To $(LREF Duration)))
$(TD -)
$(TD $(D tickDuration.)$(REF_SHORT to, std,conv)$(D !Duration()))
$(TD $(D dur!"msecs"(5)) or $(D 5.msecs()))
)
$(TR $(TD $(B To $(LREF TickDuration)))
$(TD $(D duration.)$(REF_SHORT to, std,conv)$(D !TickDuration()))
$(TD -)
$(TD $(D TickDuration.from!"msecs"(msecs)))
)
$(TR $(TD $(B To units))
$(TD $(D duration.total!"days"))
$(TD $(D tickDuration.msecs))
$(TD $(D convert!("days", "msecs")(msecs)))
))
Copyright: Copyright 2010 - 2012
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP jmdavisprog.com, Jonathan M Davis) and Kato Shoichi
Source: $(DRUNTIMESRC core/_time.d)
Macros:
NBSP=
+/
module core.time;
import core.exception;
import core.stdc.time;
import core.stdc.stdio;
import core.internal.string;
version (Windows)
{
import core.sys.windows.winbase /+: QueryPerformanceCounter, QueryPerformanceFrequency+/;
}
else version (Posix)
{
import core.sys.posix.time;
import core.sys.posix.sys.time;
}
version (OSX)
version = Darwin;
else version (iOS)
version = Darwin;
else version (TVOS)
version = Darwin;
else version (WatchOS)
version = Darwin;
//This probably should be moved somewhere else in druntime which
//is Darwin-specific.
version (Darwin)
{
public import core.sys.darwin.mach.kern_return;
extern(C) nothrow @nogc
{
struct mach_timebase_info_data_t
{
uint numer;
uint denom;
}
alias mach_timebase_info_data_t* mach_timebase_info_t;
kern_return_t mach_timebase_info(mach_timebase_info_t);
ulong mach_absolute_time();
}
}
/++
What type of clock to use with $(LREF MonoTime) / $(LREF MonoTimeImpl) or
$(D std.datetime.Clock.currTime). They default to $(D ClockType.normal),
and most programs do not need to ever deal with the others.
The other $(D ClockType)s are provided so that other clocks provided by the
underlying C, system calls can be used with $(LREF MonoTimeImpl) or
$(D std.datetime.Clock.currTime) without having to use the C API directly.
In the case of the monotonic time, $(LREF MonoTimeImpl) is templatized on
$(D ClockType), whereas with $(D std.datetime.Clock.currTime), its a runtime
argument, since in the case of the monotonic time, the type of the clock
affects the resolution of a $(LREF MonoTimeImpl) object, whereas with
$(REF SysTime, std,datetime), its resolution is always hecto-nanoseconds
regardless of the source of the time.
$(D ClockType.normal), $(D ClockType.coarse), and $(D ClockType.precise)
work with both $(D Clock.currTime) and $(LREF MonoTimeImpl).
$(D ClockType.second) only works with $(D Clock.currTime). The others only
work with $(LREF MonoTimeImpl).
+/
version (CoreDdoc) enum ClockType
{
/++
Use the normal clock.
+/
normal = 0,
/++
$(BLUE Linux,OpenBSD-Only)
Uses $(D CLOCK_BOOTTIME).
+/
bootTime = 1,
/++
Use the coarse clock, not the normal one (e.g. on Linux, that would be
$(D CLOCK_REALTIME_COARSE) instead of $(D CLOCK_REALTIME) for
$(D clock_gettime) if a function is using the realtime clock). It's
generally faster to get the time with the coarse clock than the normal
clock, but it's less precise (e.g. 1 msec instead of 1 usec or 1 nsec).
Howeover, it $(I is) guaranteed to still have sub-second precision
(just not as high as with $(D ClockType.normal)).
On systems which do not support a coarser clock,
$(D MonoTimeImpl!(ClockType.coarse)) will internally use the same clock
as $(D MonoTime) does, and $(D Clock.currTime!(ClockType.coarse)) will
use the same clock as $(D Clock.currTime). This is because the coarse
clock is doing the same thing as the normal clock (just at lower
precision), whereas some of the other clock types
(e.g. $(D ClockType.processCPUTime)) mean something fundamentally
different. So, treating those as $(D ClockType.normal) on systems where
they weren't natively supported would give misleading results.
Most programs should not use the coarse clock, exactly because it's
less precise, and most programs don't need to get the time often
enough to care, but for those rare programs that need to get the time
extremely frequently (e.g. hundreds of thousands of times a second) but
don't care about high precision, the coarse clock might be appropriate.
Currently, only Linux and FreeBSD/DragonFlyBSD support a coarser clock, and on other
platforms, it's treated as $(D ClockType.normal).
+/
coarse = 2,
/++
Uses a more precise clock than the normal one (which is already very
precise), but it takes longer to get the time. Similarly to
$(D ClockType.coarse), if it's used on a system that does not support a
more precise clock than the normal one, it's treated as equivalent to
$(D ClockType.normal).
Currently, only FreeBSD/DragonFlyBSD supports a more precise clock, where it uses
$(D CLOCK_MONOTONIC_PRECISE) for the monotonic time and
$(D CLOCK_REALTIME_PRECISE) for the wall clock time.
+/
precise = 3,
/++
$(BLUE Linux,OpenBSD,Solaris-Only)
Uses $(D CLOCK_PROCESS_CPUTIME_ID).
+/
processCPUTime = 4,
/++
$(BLUE Linux-Only)
Uses $(D CLOCK_MONOTONIC_RAW).
+/
raw = 5,
/++
Uses a clock that has a precision of one second (contrast to the coarse
clock, which has sub-second precision like the normal clock does).
FreeBSD/DragonFlyBSD are the only systems which specifically have a clock set up for
this (it has $(D CLOCK_SECOND) to use with $(D clock_gettime) which
takes advantage of an in-kernel cached value), but on other systems, the
fastest function available will be used, and the resulting $(D SysTime)
will be rounded down to the second if the clock that was used gave the
time at a more precise resolution. So, it's guaranteed that the time
will be given at a precision of one second and it's likely the case that
will be faster than $(D ClockType.normal), since there tend to be
several options on a system to get the time at low resolutions, and they
tend to be faster than getting the time at high resolutions.
So, the primary difference between $(D ClockType.coarse) and
$(D ClockType.second) is that $(D ClockType.coarse) sacrifices some
precision in order to get speed but is still fairly precise, whereas
$(D ClockType.second) tries to be as fast as possible at the expense of
all sub-second precision.
+/
second = 6,
/++
$(BLUE Linux,OpenBSD,Solaris-Only)
Uses $(D CLOCK_THREAD_CPUTIME_ID).
+/
threadCPUTime = 7,
/++
$(BLUE DragonFlyBSD,FreeBSD,OpenBSD-Only)
Uses $(D CLOCK_UPTIME).
+/
uptime = 8,
/++
$(BLUE FreeBSD-Only)
Uses $(D CLOCK_UPTIME_FAST).
+/
uptimeCoarse = 9,
/++
$(BLUE FreeBSD-Only)
Uses $(D CLOCK_UPTIME_PRECISE).
+/
uptimePrecise = 10,
}
else version (Windows) enum ClockType
{
normal = 0,
coarse = 2,
precise = 3,
second = 6,
}
else version (Darwin) enum ClockType
{
normal = 0,
coarse = 2,
precise = 3,
second = 6,
}
else version (linux) enum ClockType
{
normal = 0,
bootTime = 1,
coarse = 2,
precise = 3,
processCPUTime = 4,
raw = 5,
second = 6,
threadCPUTime = 7,
}
else version (FreeBSD) enum ClockType
{
normal = 0,
coarse = 2,
precise = 3,
second = 6,
uptime = 8,
uptimeCoarse = 9,
uptimePrecise = 10,
}
else version (NetBSD) enum ClockType
{
normal = 0,
coarse = 2,
precise = 3,
second = 6,
}
else version (OpenBSD) enum ClockType
{
normal = 0,
bootTime = 1,
coarse = 2,
precise = 3,
processCPUTime = 4,
second = 6,
threadCPUTime = 7,
uptime = 8,
}
else version (DragonFlyBSD) enum ClockType
{
normal = 0,
coarse = 2,
precise = 3,
second = 6,
uptime = 8,
uptimeCoarse = 9,
uptimePrecise = 10,
}
else version (Solaris) enum ClockType
{
normal = 0,
coarse = 2,
precise = 3,
processCPUTime = 4,
second = 6,
threadCPUTime = 7,
}
else
{
// It needs to be decided (and implemented in an appropriate version branch
// here) which clock types new platforms are going to support. At minimum,
// the ones _not_ marked with $(D Blue Foo-Only) should be supported.
static assert(0, "What are the clock types supported by this system?");
}
// private, used to translate clock type to proper argument to clock_xxx
// functions on posix systems
version (CoreDdoc)
private int _posixClock(ClockType clockType) { return 0; }
else
version (Posix)
{
private auto _posixClock(ClockType clockType)
{
version (linux)
{
import core.sys.linux.time;
with(ClockType) final switch (clockType)
{
case bootTime: return CLOCK_BOOTTIME;
case coarse: return CLOCK_MONOTONIC_COARSE;
case normal: return CLOCK_MONOTONIC;
case precise: return CLOCK_MONOTONIC;
case processCPUTime: return CLOCK_PROCESS_CPUTIME_ID;
case raw: return CLOCK_MONOTONIC_RAW;
case threadCPUTime: return CLOCK_THREAD_CPUTIME_ID;
case second: assert(0);
}
}
else version (FreeBSD)
{
import core.sys.freebsd.time;
with(ClockType) final switch (clockType)
{
case coarse: return CLOCK_MONOTONIC_FAST;
case normal: return CLOCK_MONOTONIC;
case precise: return CLOCK_MONOTONIC_PRECISE;
case uptime: return CLOCK_UPTIME;
case uptimeCoarse: return CLOCK_UPTIME_FAST;
case uptimePrecise: return CLOCK_UPTIME_PRECISE;
case second: assert(0);
}
}
else version (NetBSD)
{
import core.sys.netbsd.time;
with(ClockType) final switch (clockType)
{
case coarse: return CLOCK_MONOTONIC;
case normal: return CLOCK_MONOTONIC;
case precise: return CLOCK_MONOTONIC;
case second: assert(0);
}
}
else version (OpenBSD)
{
import core.sys.openbsd.time;
with(ClockType) final switch (clockType)
{
case bootTime: return CLOCK_BOOTTIME;
case coarse: return CLOCK_MONOTONIC;
case normal: return CLOCK_MONOTONIC;
case precise: return CLOCK_MONOTONIC;
case processCPUTime: return CLOCK_PROCESS_CPUTIME_ID;
case threadCPUTime: return CLOCK_THREAD_CPUTIME_ID;
case uptime: return CLOCK_UPTIME;
case second: assert(0);
}
}
else version (DragonFlyBSD)
{
import core.sys.dragonflybsd.time;
with(ClockType) final switch (clockType)
{
case coarse: return CLOCK_MONOTONIC_FAST;
case normal: return CLOCK_MONOTONIC;
case precise: return CLOCK_MONOTONIC_PRECISE;
case uptime: return CLOCK_UPTIME;
case uptimeCoarse: return CLOCK_UPTIME_FAST;
case uptimePrecise: return CLOCK_UPTIME_PRECISE;
case second: assert(0);
}
}
else version (Solaris)
{
import core.sys.solaris.time;
with(ClockType) final switch (clockType)
{
case coarse: return CLOCK_MONOTONIC;
case normal: return CLOCK_MONOTONIC;
case precise: return CLOCK_MONOTONIC;
case processCPUTime: return CLOCK_PROCESS_CPUTIME_ID;
case threadCPUTime: return CLOCK_THREAD_CPUTIME_ID;
case second: assert(0);
}
}
else
// It needs to be decided (and implemented in an appropriate
// version branch here) which clock types new platforms are going
// to support. Also, ClockType's documentation should be updated to
// mention it if a new platform uses anything that's not supported
// on all platforms..
assert(0, "What are the monotonic clock types supported by this system?");
}
}
unittest
{
// Make sure that the values are the same across platforms.
static if (is(typeof(ClockType.normal))) static assert(ClockType.normal == 0);
static if (is(typeof(ClockType.bootTime))) static assert(ClockType.bootTime == 1);
static if (is(typeof(ClockType.coarse))) static assert(ClockType.coarse == 2);
static if (is(typeof(ClockType.precise))) static assert(ClockType.precise == 3);
static if (is(typeof(ClockType.processCPUTime))) static assert(ClockType.processCPUTime == 4);
static if (is(typeof(ClockType.raw))) static assert(ClockType.raw == 5);
static if (is(typeof(ClockType.second))) static assert(ClockType.second == 6);
static if (is(typeof(ClockType.threadCPUTime))) static assert(ClockType.threadCPUTime == 7);
static if (is(typeof(ClockType.uptime))) static assert(ClockType.uptime == 8);
static if (is(typeof(ClockType.uptimeCoarse))) static assert(ClockType.uptimeCoarse == 9);
static if (is(typeof(ClockType.uptimePrecise))) static assert(ClockType.uptimePrecise == 10);
}
/++
Represents a duration of time of weeks or less (kept internally as hnsecs).
(e.g. 22 days or 700 seconds).
It is used when representing a duration of time - such as how long to
sleep with $(REF Thread.sleep, core,thread).
In std.datetime, it is also used as the result of various arithmetic
operations on time points.
Use the $(LREF dur) function or one of its non-generic aliases to create
$(D Duration)s.
It's not possible to create a Duration of months or years, because the
variable number of days in a month or year makes it impossible to convert
between months or years and smaller units without a specific date. So,
nothing uses $(D Duration)s when dealing with months or years. Rather,
functions specific to months and years are defined. For instance,
$(REF Date, std,datetime) has $(D add!"years") and $(D add!"months") for adding
years and months rather than creating a Duration of years or months and
adding that to a $(REF Date, std,datetime). But Duration is used when dealing
with weeks or smaller.
Examples:
--------------------
import std.datetime;
assert(dur!"days"(12) == dur!"hnsecs"(10_368_000_000_000L));
assert(dur!"hnsecs"(27) == dur!"hnsecs"(27));
assert(std.datetime.Date(2010, 9, 7) + dur!"days"(5) ==
std.datetime.Date(2010, 9, 12));
assert(days(-12) == dur!"hnsecs"(-10_368_000_000_000L));
assert(hnsecs(-27) == dur!"hnsecs"(-27));
assert(std.datetime.Date(2010, 9, 7) - std.datetime.Date(2010, 10, 3) ==
days(-26));
--------------------
+/
struct Duration
{
/++
Converts this `Duration` to a `string`.
The string is meant to be human readable, not machine parseable (e.g.
whether there is an `'s'` on the end of the unit name usually depends on
whether it's plural or not, and empty units are not included unless the
Duration is `zero`). Any code needing a specific string format should
use `total` or `split` to get the units needed to create the desired
string format and create the string itself.
The format returned by toString may or may not change in the future.
Params:
sink = A sink object, expected to be a delegate or aggregate
implementing `opCall` that accepts a `scope const(char)[]`
as argument.
+/
void toString (SinkT) (scope SinkT sink) const scope
{
static immutable units = [
"weeks", "days", "hours", "minutes", "seconds", "msecs", "usecs"
];
static void appListSep(SinkT sink, uint pos, bool last)
{
if (pos == 0)
return;
if (!last)
sink(", ");
else
sink(pos == 1 ? " and " : ", and ");
}
static void appUnitVal(string units)(SinkT sink, long val)
{
immutable plural = val != 1;
string unit;
static if (units == "seconds")
unit = plural ? "secs" : "sec";
else static if (units == "msecs")
unit = "ms";
else static if (units == "usecs")
unit = "μs";
else
unit = plural ? units : units[0 .. $-1];
sink(signedToTempString(val));
sink(" ");
sink(unit);
}
if (_hnsecs == 0)
{
sink("0 hnsecs");
return;
}
long hnsecs = _hnsecs;
uint pos;
static foreach (unit; units)
{
if (auto val = splitUnitsFromHNSecs!unit(hnsecs))
{
appListSep(sink, pos++, hnsecs == 0);
appUnitVal!unit(sink, val);
}
if (hnsecs == 0)
return;
}
if (hnsecs != 0)
{
appListSep(sink, pos++, true);
appUnitVal!"hnsecs"(sink, hnsecs);
}
}
@safe pure:
public:
/++
A $(D Duration) of $(D 0). It's shorter than doing something like
$(D dur!"seconds"(0)) and more explicit than $(D Duration.init).
+/
static @property nothrow @nogc Duration zero() { return Duration(0); }
/++
Largest $(D Duration) possible.
+/
static @property nothrow @nogc Duration max() { return Duration(long.max); }
/++
Most negative $(D Duration) possible.
+/
static @property nothrow @nogc Duration min() { return Duration(long.min); }
version (CoreUnittest) unittest
{
assert(zero == dur!"seconds"(0));
assert(Duration.max == Duration(long.max));
assert(Duration.min == Duration(long.min));
assert(Duration.min < Duration.zero);
assert(Duration.zero < Duration.max);
assert(Duration.min < Duration.max);
assert(Duration.min - dur!"hnsecs"(1) == Duration.max);
assert(Duration.max + dur!"hnsecs"(1) == Duration.min);
}
/++
Compares this $(D Duration) with the given $(D Duration).
Returns:
$(TABLE
$(TR $(TD this < rhs) $(TD < 0))
$(TR $(TD this == rhs) $(TD 0))
$(TR $(TD this > rhs) $(TD > 0))
)
+/
int opCmp(Duration rhs) const nothrow @nogc
{
return (_hnsecs > rhs._hnsecs) - (_hnsecs < rhs._hnsecs);
}
version (CoreUnittest) unittest
{
import core.internal.traits : rvalueOf;
foreach (T; AliasSeq!(Duration, const Duration, immutable Duration))
{
foreach (U; AliasSeq!(Duration, const Duration, immutable Duration))
{
T t = 42;
// workaround https://issues.dlang.org/show_bug.cgi?id=18296
version (D_Coverage)
U u = T(t._hnsecs);
else
U u = t;
assert(t == u);
assert(rvalueOf(t) == u);
assert(t == rvalueOf(u));
}
}
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
foreach (E; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert((cast(D)Duration(12)).opCmp(cast(E)Duration(12)) == 0);
assert((cast(D)Duration(-12)).opCmp(cast(E)Duration(-12)) == 0);
assert((cast(D)Duration(10)).opCmp(cast(E)Duration(12)) < 0);
assert((cast(D)Duration(-12)).opCmp(cast(E)Duration(12)) < 0);
assert((cast(D)Duration(12)).opCmp(cast(E)Duration(10)) > 0);
assert((cast(D)Duration(12)).opCmp(cast(E)Duration(-12)) > 0);
assert(rvalueOf(cast(D)Duration(12)).opCmp(cast(E)Duration(12)) == 0);
assert(rvalueOf(cast(D)Duration(-12)).opCmp(cast(E)Duration(-12)) == 0);
assert(rvalueOf(cast(D)Duration(10)).opCmp(cast(E)Duration(12)) < 0);
assert(rvalueOf(cast(D)Duration(-12)).opCmp(cast(E)Duration(12)) < 0);
assert(rvalueOf(cast(D)Duration(12)).opCmp(cast(E)Duration(10)) > 0);
assert(rvalueOf(cast(D)Duration(12)).opCmp(cast(E)Duration(-12)) > 0);
assert((cast(D)Duration(12)).opCmp(rvalueOf(cast(E)Duration(12))) == 0);
assert((cast(D)Duration(-12)).opCmp(rvalueOf(cast(E)Duration(-12))) == 0);
assert((cast(D)Duration(10)).opCmp(rvalueOf(cast(E)Duration(12))) < 0);
assert((cast(D)Duration(-12)).opCmp(rvalueOf(cast(E)Duration(12))) < 0);
assert((cast(D)Duration(12)).opCmp(rvalueOf(cast(E)Duration(10))) > 0);
assert((cast(D)Duration(12)).opCmp(rvalueOf(cast(E)Duration(-12))) > 0);
}
}
}
/++
Adds, subtracts or calculates the modulo of two durations.
The legal types of arithmetic for $(D Duration) using this operator are
$(TABLE
$(TR $(TD Duration) $(TD +) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD -) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD %) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD +) $(TD TickDuration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD -) $(TD TickDuration) $(TD -->) $(TD Duration))
)
Params:
rhs = The duration to add to or subtract from this $(D Duration).
+/
Duration opBinary(string op, D)(D rhs) const nothrow @nogc
if (((op == "+" || op == "-" || op == "%") && is(immutable D == immutable Duration)) ||
((op == "+" || op == "-") && is(immutable D == immutable TickDuration)))
{
static if (is(immutable D == immutable Duration))
return Duration(mixin("_hnsecs " ~ op ~ " rhs._hnsecs"));
else
return Duration(mixin("_hnsecs " ~ op ~ " rhs.hnsecs"));
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
foreach (E; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert((cast(D)Duration(5)) + (cast(E)Duration(7)) == Duration(12));
assert((cast(D)Duration(5)) - (cast(E)Duration(7)) == Duration(-2));
assert((cast(D)Duration(5)) % (cast(E)Duration(7)) == Duration(5));
assert((cast(D)Duration(7)) + (cast(E)Duration(5)) == Duration(12));
assert((cast(D)Duration(7)) - (cast(E)Duration(5)) == Duration(2));
assert((cast(D)Duration(7)) % (cast(E)Duration(5)) == Duration(2));
assert((cast(D)Duration(5)) + (cast(E)Duration(-7)) == Duration(-2));
assert((cast(D)Duration(5)) - (cast(E)Duration(-7)) == Duration(12));
assert((cast(D)Duration(5)) % (cast(E)Duration(-7)) == Duration(5));
assert((cast(D)Duration(7)) + (cast(E)Duration(-5)) == Duration(2));
assert((cast(D)Duration(7)) - (cast(E)Duration(-5)) == Duration(12));
assert((cast(D)Duration(7)) % (cast(E)Duration(-5)) == Duration(2));
assert((cast(D)Duration(-5)) + (cast(E)Duration(7)) == Duration(2));
assert((cast(D)Duration(-5)) - (cast(E)Duration(7)) == Duration(-12));
assert((cast(D)Duration(-5)) % (cast(E)Duration(7)) == Duration(-5));
assert((cast(D)Duration(-7)) + (cast(E)Duration(5)) == Duration(-2));
assert((cast(D)Duration(-7)) - (cast(E)Duration(5)) == Duration(-12));
assert((cast(D)Duration(-7)) % (cast(E)Duration(5)) == Duration(-2));
assert((cast(D)Duration(-5)) + (cast(E)Duration(-7)) == Duration(-12));
assert((cast(D)Duration(-5)) - (cast(E)Duration(-7)) == Duration(2));
assert((cast(D)Duration(-5)) % (cast(E)Duration(7)) == Duration(-5));
assert((cast(D)Duration(-7)) + (cast(E)Duration(-5)) == Duration(-12));
assert((cast(D)Duration(-7)) - (cast(E)Duration(-5)) == Duration(-2));
assert((cast(D)Duration(-7)) % (cast(E)Duration(5)) == Duration(-2));
}
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
assertApprox((cast(D)Duration(5)) + cast(T)TickDuration.from!"usecs"(7), Duration(70), Duration(80));
assertApprox((cast(D)Duration(5)) - cast(T)TickDuration.from!"usecs"(7), Duration(-70), Duration(-60));
assertApprox((cast(D)Duration(7)) + cast(T)TickDuration.from!"usecs"(5), Duration(52), Duration(62));
assertApprox((cast(D)Duration(7)) - cast(T)TickDuration.from!"usecs"(5), Duration(-48), Duration(-38));
assertApprox((cast(D)Duration(5)) + cast(T)TickDuration.from!"usecs"(-7), Duration(-70), Duration(-60));
assertApprox((cast(D)Duration(5)) - cast(T)TickDuration.from!"usecs"(-7), Duration(70), Duration(80));
assertApprox((cast(D)Duration(7)) + cast(T)TickDuration.from!"usecs"(-5), Duration(-48), Duration(-38));
assertApprox((cast(D)Duration(7)) - cast(T)TickDuration.from!"usecs"(-5), Duration(52), Duration(62));
assertApprox((cast(D)Duration(-5)) + cast(T)TickDuration.from!"usecs"(7), Duration(60), Duration(70));
assertApprox((cast(D)Duration(-5)) - cast(T)TickDuration.from!"usecs"(7), Duration(-80), Duration(-70));
assertApprox((cast(D)Duration(-7)) + cast(T)TickDuration.from!"usecs"(5), Duration(38), Duration(48));
assertApprox((cast(D)Duration(-7)) - cast(T)TickDuration.from!"usecs"(5), Duration(-62), Duration(-52));
assertApprox((cast(D)Duration(-5)) + cast(T)TickDuration.from!"usecs"(-7), Duration(-80), Duration(-70));
assertApprox((cast(D)Duration(-5)) - cast(T)TickDuration.from!"usecs"(-7), Duration(60), Duration(70));
assertApprox((cast(D)Duration(-7)) + cast(T)TickDuration.from!"usecs"(-5), Duration(-62), Duration(-52));
assertApprox((cast(D)Duration(-7)) - cast(T)TickDuration.from!"usecs"(-5), Duration(38), Duration(48));
}
}
}
/++
Adds or subtracts two durations.
The legal types of arithmetic for $(D Duration) using this operator are
$(TABLE
$(TR $(TD TickDuration) $(TD +) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD TickDuration) $(TD -) $(TD Duration) $(TD -->) $(TD Duration))
)
Params:
lhs = The $(D TickDuration) to add to this $(D Duration) or to
subtract this $(D Duration) from.
+/
Duration opBinaryRight(string op, D)(D lhs) const nothrow @nogc
if ((op == "+" || op == "-") &&
is(immutable D == immutable TickDuration))
{
return Duration(mixin("lhs.hnsecs " ~ op ~ " _hnsecs"));
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
assertApprox((cast(T)TickDuration.from!"usecs"(7)) + cast(D)Duration(5), Duration(70), Duration(80));
assertApprox((cast(T)TickDuration.from!"usecs"(7)) - cast(D)Duration(5), Duration(60), Duration(70));
assertApprox((cast(T)TickDuration.from!"usecs"(5)) + cast(D)Duration(7), Duration(52), Duration(62));
assertApprox((cast(T)TickDuration.from!"usecs"(5)) - cast(D)Duration(7), Duration(38), Duration(48));
assertApprox((cast(T)TickDuration.from!"usecs"(-7)) + cast(D)Duration(5), Duration(-70), Duration(-60));
assertApprox((cast(T)TickDuration.from!"usecs"(-7)) - cast(D)Duration(5), Duration(-80), Duration(-70));
assertApprox((cast(T)TickDuration.from!"usecs"(-5)) + cast(D)Duration(7), Duration(-48), Duration(-38));
assertApprox((cast(T)TickDuration.from!"usecs"(-5)) - cast(D)Duration(7), Duration(-62), Duration(-52));
assertApprox((cast(T)TickDuration.from!"usecs"(7)) + (cast(D)Duration(-5)), Duration(60), Duration(70));
assertApprox((cast(T)TickDuration.from!"usecs"(7)) - (cast(D)Duration(-5)), Duration(70), Duration(80));
assertApprox((cast(T)TickDuration.from!"usecs"(5)) + (cast(D)Duration(-7)), Duration(38), Duration(48));
assertApprox((cast(T)TickDuration.from!"usecs"(5)) - (cast(D)Duration(-7)), Duration(52), Duration(62));
assertApprox((cast(T)TickDuration.from!"usecs"(-7)) + cast(D)Duration(-5), Duration(-80), Duration(-70));
assertApprox((cast(T)TickDuration.from!"usecs"(-7)) - cast(D)Duration(-5), Duration(-70), Duration(-60));
assertApprox((cast(T)TickDuration.from!"usecs"(-5)) + cast(D)Duration(-7), Duration(-62), Duration(-52));
assertApprox((cast(T)TickDuration.from!"usecs"(-5)) - cast(D)Duration(-7), Duration(-48), Duration(-38));
}
}
}
/++
Adds, subtracts or calculates the modulo of two durations as well as
assigning the result to this $(D Duration).
The legal types of arithmetic for $(D Duration) using this operator are
$(TABLE
$(TR $(TD Duration) $(TD +) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD -) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD %) $(TD Duration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD +) $(TD TickDuration) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD -) $(TD TickDuration) $(TD -->) $(TD Duration))
)
Params:
rhs = The duration to add to or subtract from this $(D Duration).
+/
ref Duration opOpAssign(string op, D)(const scope D rhs) nothrow @nogc
if (((op == "+" || op == "-" || op == "%") && is(immutable D == immutable Duration)) ||
((op == "+" || op == "-") && is(immutable D == immutable TickDuration)))
{
static if (is(immutable D == immutable Duration))
mixin("_hnsecs " ~ op ~ "= rhs._hnsecs;");
else
mixin("_hnsecs " ~ op ~ "= rhs.hnsecs;");
return this;
}
version (CoreUnittest) unittest
{
static void test1(string op, E)(Duration actual, in E rhs, Duration expected, size_t line = __LINE__)
{
if (mixin("actual " ~ op ~ " rhs") != expected)
throw new AssertError("op failed", __FILE__, line);
if (actual != expected)
throw new AssertError("op assign failed", __FILE__, line);
}
static void test2(string op, E)
(Duration actual, in E rhs, Duration lower, Duration upper, size_t line = __LINE__)
{
assertApprox(mixin("actual " ~ op ~ " rhs"), lower, upper, "op failed", line);
assertApprox(actual, lower, upper, "op assign failed", line);
}
foreach (E; AliasSeq!(Duration, const Duration, immutable Duration))
{
test1!"+="(Duration(5), (cast(E)Duration(7)), Duration(12));
test1!"-="(Duration(5), (cast(E)Duration(7)), Duration(-2));
test1!"%="(Duration(5), (cast(E)Duration(7)), Duration(5));
test1!"+="(Duration(7), (cast(E)Duration(5)), Duration(12));
test1!"-="(Duration(7), (cast(E)Duration(5)), Duration(2));
test1!"%="(Duration(7), (cast(E)Duration(5)), Duration(2));
test1!"+="(Duration(5), (cast(E)Duration(-7)), Duration(-2));
test1!"-="(Duration(5), (cast(E)Duration(-7)), Duration(12));
test1!"%="(Duration(5), (cast(E)Duration(-7)), Duration(5));
test1!"+="(Duration(7), (cast(E)Duration(-5)), Duration(2));
test1!"-="(Duration(7), (cast(E)Duration(-5)), Duration(12));
test1!"%="(Duration(7), (cast(E)Duration(-5)), Duration(2));
test1!"+="(Duration(-5), (cast(E)Duration(7)), Duration(2));
test1!"-="(Duration(-5), (cast(E)Duration(7)), Duration(-12));
test1!"%="(Duration(-5), (cast(E)Duration(7)), Duration(-5));
test1!"+="(Duration(-7), (cast(E)Duration(5)), Duration(-2));
test1!"-="(Duration(-7), (cast(E)Duration(5)), Duration(-12));
test1!"%="(Duration(-7), (cast(E)Duration(5)), Duration(-2));
test1!"+="(Duration(-5), (cast(E)Duration(-7)), Duration(-12));
test1!"-="(Duration(-5), (cast(E)Duration(-7)), Duration(2));
test1!"%="(Duration(-5), (cast(E)Duration(-7)), Duration(-5));
test1!"+="(Duration(-7), (cast(E)Duration(-5)), Duration(-12));
test1!"-="(Duration(-7), (cast(E)Duration(-5)), Duration(-2));
test1!"%="(Duration(-7), (cast(E)Duration(-5)), Duration(-2));
}
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
test2!"+="(Duration(5), cast(T)TickDuration.from!"usecs"(7), Duration(70), Duration(80));
test2!"-="(Duration(5), cast(T)TickDuration.from!"usecs"(7), Duration(-70), Duration(-60));
test2!"+="(Duration(7), cast(T)TickDuration.from!"usecs"(5), Duration(52), Duration(62));
test2!"-="(Duration(7), cast(T)TickDuration.from!"usecs"(5), Duration(-48), Duration(-38));
test2!"+="(Duration(5), cast(T)TickDuration.from!"usecs"(-7), Duration(-70), Duration(-60));
test2!"-="(Duration(5), cast(T)TickDuration.from!"usecs"(-7), Duration(70), Duration(80));
test2!"+="(Duration(7), cast(T)TickDuration.from!"usecs"(-5), Duration(-48), Duration(-38));
test2!"-="(Duration(7), cast(T)TickDuration.from!"usecs"(-5), Duration(52), Duration(62));
test2!"+="(Duration(-5), cast(T)TickDuration.from!"usecs"(7), Duration(60), Duration(70));
test2!"-="(Duration(-5), cast(T)TickDuration.from!"usecs"(7), Duration(-80), Duration(-70));
test2!"+="(Duration(-7), cast(T)TickDuration.from!"usecs"(5), Duration(38), Duration(48));
test2!"-="(Duration(-7), cast(T)TickDuration.from!"usecs"(5), Duration(-62), Duration(-52));
test2!"+="(Duration(-5), cast(T)TickDuration.from!"usecs"(-7), Duration(-80), Duration(-70));
test2!"-="(Duration(-5), cast(T)TickDuration.from!"usecs"(-7), Duration(60), Duration(70));
test2!"+="(Duration(-7), cast(T)TickDuration.from!"usecs"(-5), Duration(-62), Duration(-52));
test2!"-="(Duration(-7), cast(T)TickDuration.from!"usecs"(-5), Duration(38), Duration(48));
}
foreach (D; AliasSeq!(const Duration, immutable Duration))
{
foreach (E; AliasSeq!(Duration, const Duration, immutable Duration,
TickDuration, const TickDuration, immutable TickDuration))
{
D lhs = D(120);
E rhs = E(120);
static assert(!__traits(compiles, lhs += rhs), D.stringof ~ " " ~ E.stringof);
}
}
}
/++
Multiplies or divides the duration by an integer value.
The legal types of arithmetic for $(D Duration) using this operator
overload are
$(TABLE
$(TR $(TD Duration) $(TD *) $(TD long) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD /) $(TD long) $(TD -->) $(TD Duration))
)
Params:
value = The value to multiply this $(D Duration) by.
+/
Duration opBinary(string op)(long value) const nothrow @nogc
if (op == "*" || op == "/")
{
mixin("return Duration(_hnsecs " ~ op ~ " value);");
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert((cast(D)Duration(5)) * 7 == Duration(35));
assert((cast(D)Duration(7)) * 5 == Duration(35));
assert((cast(D)Duration(5)) * -7 == Duration(-35));
assert((cast(D)Duration(7)) * -5 == Duration(-35));
assert((cast(D)Duration(-5)) * 7 == Duration(-35));
assert((cast(D)Duration(-7)) * 5 == Duration(-35));
assert((cast(D)Duration(-5)) * -7 == Duration(35));
assert((cast(D)Duration(-7)) * -5 == Duration(35));
assert((cast(D)Duration(5)) * 0 == Duration(0));
assert((cast(D)Duration(-5)) * 0 == Duration(0));
}
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert((cast(D)Duration(5)) / 7 == Duration(0));
assert((cast(D)Duration(7)) / 5 == Duration(1));
assert((cast(D)Duration(5)) / -7 == Duration(0));
assert((cast(D)Duration(7)) / -5 == Duration(-1));
assert((cast(D)Duration(-5)) / 7 == Duration(0));
assert((cast(D)Duration(-7)) / 5 == Duration(-1));
assert((cast(D)Duration(-5)) / -7 == Duration(0));
assert((cast(D)Duration(-7)) / -5 == Duration(1));
}
}
/++
Multiplies/Divides the duration by an integer value as well as
assigning the result to this $(D Duration).
The legal types of arithmetic for $(D Duration) using this operator
overload are
$(TABLE
$(TR $(TD Duration) $(TD *) $(TD long) $(TD -->) $(TD Duration))
$(TR $(TD Duration) $(TD /) $(TD long) $(TD -->) $(TD Duration))
)
Params:
value = The value to multiply/divide this $(D Duration) by.
+/
ref Duration opOpAssign(string op)(long value) nothrow @nogc
if (op == "*" || op == "/")
{
mixin("_hnsecs " ~ op ~ "= value;");
return this;
}
version (CoreUnittest) unittest
{
static void test(D)(D actual, long value, Duration expected, size_t line = __LINE__)
{
if ((actual *= value) != expected)
throw new AssertError("op failed", __FILE__, line);
if (actual != expected)
throw new AssertError("op assign failed", __FILE__, line);
}
test(Duration(5), 7, Duration(35));
test(Duration(7), 5, Duration(35));
test(Duration(5), -7, Duration(-35));
test(Duration(7), -5, Duration(-35));
test(Duration(-5), 7, Duration(-35));
test(Duration(-7), 5, Duration(-35));
test(Duration(-5), -7, Duration(35));
test(Duration(-7), -5, Duration(35));
test(Duration(5), 0, Duration(0));
test(Duration(-5), 0, Duration(0));
const cdur = Duration(12);
immutable idur = Duration(12);
static assert(!__traits(compiles, cdur *= 12));
static assert(!__traits(compiles, idur *= 12));
}
version (CoreUnittest) unittest
{
static void test(Duration actual, long value, Duration expected, size_t line = __LINE__)
{
if ((actual /= value) != expected)
throw new AssertError("op failed", __FILE__, line);
if (actual != expected)
throw new AssertError("op assign failed", __FILE__, line);
}
test(Duration(5), 7, Duration(0));
test(Duration(7), 5, Duration(1));
test(Duration(5), -7, Duration(0));
test(Duration(7), -5, Duration(-1));
test(Duration(-5), 7, Duration(0));
test(Duration(-7), 5, Duration(-1));
test(Duration(-5), -7, Duration(0));
test(Duration(-7), -5, Duration(1));
const cdur = Duration(12);
immutable idur = Duration(12);
static assert(!__traits(compiles, cdur /= 12));
static assert(!__traits(compiles, idur /= 12));
}
/++
Divides two durations.
The legal types of arithmetic for $(D Duration) using this operator are
$(TABLE
$(TR $(TD Duration) $(TD /) $(TD Duration) $(TD -->) $(TD long))
)
Params:
rhs = The duration to divide this $(D Duration) by.
+/
long opBinary(string op)(Duration rhs) const nothrow @nogc
if (op == "/")
{
return _hnsecs / rhs._hnsecs;
}
version (CoreUnittest) unittest
{
assert(Duration(5) / Duration(7) == 0);
assert(Duration(7) / Duration(5) == 1);
assert(Duration(8) / Duration(4) == 2);
assert(Duration(5) / Duration(-7) == 0);
assert(Duration(7) / Duration(-5) == -1);
assert(Duration(8) / Duration(-4) == -2);
assert(Duration(-5) / Duration(7) == 0);
assert(Duration(-7) / Duration(5) == -1);
assert(Duration(-8) / Duration(4) == -2);
assert(Duration(-5) / Duration(-7) == 0);
assert(Duration(-7) / Duration(-5) == 1);
assert(Duration(-8) / Duration(-4) == 2);
}
/++
Multiplies an integral value and a $(D Duration).
The legal types of arithmetic for $(D Duration) using this operator
overload are
$(TABLE
$(TR $(TD long) $(TD *) $(TD Duration) $(TD -->) $(TD Duration))
)
Params:
value = The number of units to multiply this $(D Duration) by.
+/
Duration opBinaryRight(string op)(long value) const nothrow @nogc
if (op == "*")
{
return opBinary!op(value);
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert(5 * cast(D)Duration(7) == Duration(35));
assert(7 * cast(D)Duration(5) == Duration(35));
assert(5 * cast(D)Duration(-7) == Duration(-35));
assert(7 * cast(D)Duration(-5) == Duration(-35));
assert(-5 * cast(D)Duration(7) == Duration(-35));
assert(-7 * cast(D)Duration(5) == Duration(-35));
assert(-5 * cast(D)Duration(-7) == Duration(35));
assert(-7 * cast(D)Duration(-5) == Duration(35));
assert(0 * cast(D)Duration(-5) == Duration(0));
assert(0 * cast(D)Duration(5) == Duration(0));
}
}
/++
Returns the negation of this $(D Duration).
+/
Duration opUnary(string op)() const nothrow @nogc
if (op == "-")
{
return Duration(-_hnsecs);
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert(-(cast(D)Duration(7)) == Duration(-7));
assert(-(cast(D)Duration(5)) == Duration(-5));
assert(-(cast(D)Duration(-7)) == Duration(7));
assert(-(cast(D)Duration(-5)) == Duration(5));
assert(-(cast(D)Duration(0)) == Duration(0));
}
}
/++
Returns a $(LREF TickDuration) with the same number of hnsecs as this
$(D Duration).
Note that the conventional way to convert between $(D Duration) and
$(D TickDuration) is using $(REF to, std,conv), e.g.:
$(D duration.to!TickDuration())
+/
TickDuration opCast(T)() const nothrow @nogc
if (is(immutable T == immutable TickDuration))
{
return TickDuration.from!"hnsecs"(_hnsecs);
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
foreach (units; AliasSeq!("seconds", "msecs", "usecs", "hnsecs"))
{
enum unitsPerSec = convert!("seconds", units)(1);
if (TickDuration.ticksPerSec >= unitsPerSec)
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
auto t = TickDuration.from!units(1);
assertApprox(cast(T)cast(D)dur!units(1), t - TickDuration(1), t + TickDuration(1), units);
t = TickDuration.from!units(2);
assertApprox(cast(T)cast(D)dur!units(2), t - TickDuration(1), t + TickDuration(1), units);
}
}
else
{
auto t = TickDuration.from!units(1);
assert(t.to!(units, long)() == 0, units);
t = TickDuration.from!units(1_000_000);
assert(t.to!(units, long)() >= 900_000, units);
assert(t.to!(units, long)() <= 1_100_000, units);
}
}
}
}
/++
Allow Duration to be used as a boolean.
Returns: `true` if this duration is non-zero.
+/
bool opCast(T : bool)() const nothrow @nogc
{
return _hnsecs != 0;
}
version (CoreUnittest) unittest
{
auto d = 10.minutes;
assert(d);
assert(!(d - d));
assert(d + d);
}
//Temporary hack until bug http://d.puremagic.com/issues/show_bug.cgi?id=5747 is fixed.
Duration opCast(T)() const nothrow @nogc
if (is(immutable T == immutable Duration))
{
return this;
}
/++
Splits out the Duration into the given units.
split takes the list of time units to split out as template arguments.
The time unit strings must be given in decreasing order. How it returns
the values for those units depends on the overload used.
The overload which accepts function arguments takes integral types in
the order that the time unit strings were given, and those integers are
passed by $(D ref). split assigns the values for the units to each
corresponding integer. Any integral type may be used, but no attempt is
made to prevent integer overflow, so don't use small integral types in
circumstances where the values for those units aren't likely to fit in
an integral type that small.
The overload with no arguments returns the values for the units in a
struct with members whose names are the same as the given time unit
strings. The members are all $(D long)s. This overload will also work
with no time strings being given, in which case $(I all) of the time
units from weeks through hnsecs will be provided (but no nsecs, since it
would always be $(D 0)).
For both overloads, the entire value of the Duration is split among the
units (rather than splitting the Duration across all units and then only
providing the values for the requested units), so if only one unit is
given, the result is equivalent to $(LREF total).
$(D "nsecs") is accepted by split, but $(D "years") and $(D "months")
are not.
For negative durations, all of the split values will be negative.
+/
template split(units...)
if (allAreAcceptedUnits!("weeks", "days", "hours", "minutes", "seconds",
"msecs", "usecs", "hnsecs", "nsecs")([units]) &&
unitsAreInDescendingOrder([units]))
{
/++ Ditto +/
void split(Args...)(out Args args) const nothrow @nogc
if (units.length != 0 && args.length == units.length && allAreMutableIntegralTypes!Args)
{
long hnsecs = _hnsecs;
foreach (i, unit; units)
{
static if (unit == "nsecs")
args[i] = cast(Args[i])convert!("hnsecs", "nsecs")(hnsecs);
else
args[i] = cast(Args[i])splitUnitsFromHNSecs!unit(hnsecs);
}
}
/++ Ditto +/
auto split() const nothrow @nogc
{
static if (units.length == 0)
return split!("weeks", "days", "hours", "minutes", "seconds", "msecs", "usecs", "hnsecs")();
else
{
static string genMemberDecls()
{
string retval;
foreach (unit; units)
{
retval ~= "long ";
retval ~= unit;
retval ~= "; ";
}
return retval;
}
static struct SplitUnits
{
mixin(genMemberDecls());
}
static string genSplitCall()
{
auto retval = "split(";
foreach (i, unit; units)
{
retval ~= "su.";
retval ~= unit;
if (i < units.length - 1)
retval ~= ", ";
else
retval ~= ");";
}
return retval;
}
SplitUnits su = void;
mixin(genSplitCall());
return su;
}
}
/+
Whether all of the given arguments are integral types.
+/
private template allAreMutableIntegralTypes(Args...)
{
static if (Args.length == 0)
enum allAreMutableIntegralTypes = true;
else static if (!is(Args[0] == long) &&
!is(Args[0] == int) &&
!is(Args[0] == short) &&
!is(Args[0] == byte) &&
!is(Args[0] == ulong) &&
!is(Args[0] == uint) &&
!is(Args[0] == ushort) &&
!is(Args[0] == ubyte))
{
enum allAreMutableIntegralTypes = false;
}
else
enum allAreMutableIntegralTypes = allAreMutableIntegralTypes!(Args[1 .. $]);
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(long, int, short, byte, ulong, uint, ushort, ubyte))
static assert(allAreMutableIntegralTypes!T);
foreach (T; AliasSeq!(long, int, short, byte, ulong, uint, ushort, ubyte))
static assert(!allAreMutableIntegralTypes!(const T));
foreach (T; AliasSeq!(char, wchar, dchar, float, double, real, string))
static assert(!allAreMutableIntegralTypes!T);
static assert(allAreMutableIntegralTypes!(long, int, short, byte));
static assert(!allAreMutableIntegralTypes!(long, int, short, char, byte));
static assert(!allAreMutableIntegralTypes!(long, int*, short));
}
}
///
unittest
{
{
auto d = dur!"days"(12) + dur!"minutes"(7) + dur!"usecs"(501223);
long days;
int seconds;
short msecs;
d.split!("days", "seconds", "msecs")(days, seconds, msecs);
assert(days == 12);
assert(seconds == 7 * 60);
assert(msecs == 501);
auto splitStruct = d.split!("days", "seconds", "msecs")();
assert(splitStruct.days == 12);
assert(splitStruct.seconds == 7 * 60);
assert(splitStruct.msecs == 501);
auto fullSplitStruct = d.split();
assert(fullSplitStruct.weeks == 1);
assert(fullSplitStruct.days == 5);
assert(fullSplitStruct.hours == 0);
assert(fullSplitStruct.minutes == 7);
assert(fullSplitStruct.seconds == 0);
assert(fullSplitStruct.msecs == 501);
assert(fullSplitStruct.usecs == 223);
assert(fullSplitStruct.hnsecs == 0);
assert(d.split!"minutes"().minutes == d.total!"minutes");
}
{
auto d = dur!"days"(12);
assert(d.split!"weeks"().weeks == 1);
assert(d.split!"days"().days == 12);
assert(d.split().weeks == 1);
assert(d.split().days == 5);
}
{
auto d = dur!"days"(7) + dur!"hnsecs"(42);
assert(d.split!("seconds", "nsecs")().nsecs == 4200);
}
{
auto d = dur!"days"(-7) + dur!"hours"(-9);
auto result = d.split!("days", "hours")();
assert(result.days == -7);
assert(result.hours == -9);
}
}
version (CoreUnittest) pure nothrow unittest
{
foreach (D; AliasSeq!(const Duration, immutable Duration))
{
D d = dur!"weeks"(3) + dur!"days"(5) + dur!"hours"(19) + dur!"minutes"(7) +
dur!"seconds"(2) + dur!"hnsecs"(1234567);
byte weeks;
ubyte days;
short hours;
ushort minutes;
int seconds;
uint msecs;
long usecs;
ulong hnsecs;
long nsecs;
d.split!("weeks", "days", "hours", "minutes", "seconds", "msecs", "usecs", "hnsecs", "nsecs")
(weeks, days, hours, minutes, seconds, msecs, usecs, hnsecs, nsecs);
assert(weeks == 3);
assert(days == 5);
assert(hours == 19);
assert(minutes == 7);
assert(seconds == 2);
assert(msecs == 123);
assert(usecs == 456);
assert(hnsecs == 7);
assert(nsecs == 0);
d.split!("weeks", "days", "hours", "seconds", "usecs")(weeks, days, hours, seconds, usecs);
assert(weeks == 3);
assert(days == 5);
assert(hours == 19);
assert(seconds == 422);
assert(usecs == 123456);
d.split!("days", "minutes", "seconds", "nsecs")(days, minutes, seconds, nsecs);
assert(days == 26);
assert(minutes == 1147);
assert(seconds == 2);
assert(nsecs == 123456700);
d.split!("minutes", "msecs", "usecs", "hnsecs")(minutes, msecs, usecs, hnsecs);
assert(minutes == 38587);
assert(msecs == 2123);
assert(usecs == 456);
assert(hnsecs == 7);
{
auto result = d.split!("weeks", "days", "hours", "minutes", "seconds",
"msecs", "usecs", "hnsecs", "nsecs");
assert(result.weeks == 3);
assert(result.days == 5);
assert(result.hours == 19);
assert(result.minutes == 7);
assert(result.seconds == 2);
assert(result.msecs == 123);
assert(result.usecs == 456);
assert(result.hnsecs == 7);
assert(result.nsecs == 0);
}
{
auto result = d.split!("weeks", "days", "hours", "seconds", "usecs");
assert(result.weeks == 3);
assert(result.days == 5);
assert(result.hours == 19);
assert(result.seconds == 422);
assert(result.usecs == 123456);
}
{
auto result = d.split!("days", "minutes", "seconds", "nsecs")();
assert(result.days == 26);
assert(result.minutes == 1147);
assert(result.seconds == 2);
assert(result.nsecs == 123456700);
}
{
auto result = d.split!("minutes", "msecs", "usecs", "hnsecs")();
assert(result.minutes == 38587);
assert(result.msecs == 2123);
assert(result.usecs == 456);
assert(result.hnsecs == 7);
}
{
auto result = d.split();
assert(result.weeks == 3);
assert(result.days == 5);
assert(result.hours == 19);
assert(result.minutes == 7);
assert(result.seconds == 2);
assert(result.msecs == 123);
assert(result.usecs == 456);
assert(result.hnsecs == 7);
static assert(!is(typeof(result.nsecs)));
}
static assert(!is(typeof(d.split("seconds", "hnsecs")(seconds))));
static assert(!is(typeof(d.split("hnsecs", "seconds", "minutes")(hnsecs, seconds, minutes))));
static assert(!is(typeof(d.split("hnsecs", "seconds", "msecs")(hnsecs, seconds, msecs))));
static assert(!is(typeof(d.split("seconds", "hnecs", "msecs")(seconds, hnsecs, msecs))));
static assert(!is(typeof(d.split("seconds", "msecs", "msecs")(seconds, msecs, msecs))));
static assert(!is(typeof(d.split("hnsecs", "seconds", "minutes")())));
static assert(!is(typeof(d.split("hnsecs", "seconds", "msecs")())));
static assert(!is(typeof(d.split("seconds", "hnecs", "msecs")())));
static assert(!is(typeof(d.split("seconds", "msecs", "msecs")())));
alias AliasSeq!("nsecs", "hnsecs", "usecs", "msecs", "seconds",
"minutes", "hours", "days", "weeks") timeStrs;
foreach (i, str; timeStrs[1 .. $])
static assert(!is(typeof(d.split!(timeStrs[i - 1], str)())));
D nd = -d;
{
auto result = nd.split();
assert(result.weeks == -3);
assert(result.days == -5);
assert(result.hours == -19);
assert(result.minutes == -7);
assert(result.seconds == -2);
assert(result.msecs == -123);
assert(result.usecs == -456);
assert(result.hnsecs == -7);
}
{
auto result = nd.split!("weeks", "days", "hours", "minutes", "seconds", "nsecs")();
assert(result.weeks == -3);
assert(result.days == -5);
assert(result.hours == -19);
assert(result.minutes == -7);
assert(result.seconds == -2);
assert(result.nsecs == -123456700);
}
}
}
/++
Returns the total number of the given units in this $(D Duration).
So, unlike $(D split), it does not strip out the larger units.
+/
@property long total(string units)() const nothrow @nogc
if (units == "weeks" ||
units == "days" ||
units == "hours" ||
units == "minutes" ||
units == "seconds" ||
units == "msecs" ||
units == "usecs" ||
units == "hnsecs" ||
units == "nsecs")
{
return convert!("hnsecs", units)(_hnsecs);
}
///
unittest
{
assert(dur!"weeks"(12).total!"weeks" == 12);
assert(dur!"weeks"(12).total!"days" == 84);
assert(dur!"days"(13).total!"weeks" == 1);
assert(dur!"days"(13).total!"days" == 13);
assert(dur!"hours"(49).total!"days" == 2);
assert(dur!"hours"(49).total!"hours" == 49);
assert(dur!"nsecs"(2007).total!"hnsecs" == 20);
assert(dur!"nsecs"(2007).total!"nsecs" == 2000);
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(const Duration, immutable Duration))
{
assert((cast(D)dur!"weeks"(12)).total!"weeks" == 12);
assert((cast(D)dur!"weeks"(12)).total!"days" == 84);
assert((cast(D)dur!"days"(13)).total!"weeks" == 1);
assert((cast(D)dur!"days"(13)).total!"days" == 13);
assert((cast(D)dur!"hours"(49)).total!"days" == 2);
assert((cast(D)dur!"hours"(49)).total!"hours" == 49);
assert((cast(D)dur!"nsecs"(2007)).total!"hnsecs" == 20);
assert((cast(D)dur!"nsecs"(2007)).total!"nsecs" == 2000);
}
}
/// Ditto
string toString() const scope nothrow
{
string result;
this.toString((in char[] data) { result ~= data; });
return result;
}
///
unittest
{
assert(Duration.zero.toString() == "0 hnsecs");
assert(weeks(5).toString() == "5 weeks");
assert(days(2).toString() == "2 days");
assert(hours(1).toString() == "1 hour");
assert(minutes(19).toString() == "19 minutes");
assert(seconds(42).toString() == "42 secs");
assert(msecs(42).toString() == "42 ms");
assert(usecs(27).toString() == "27 μs");
assert(hnsecs(5).toString() == "5 hnsecs");
assert(seconds(121).toString() == "2 minutes and 1 sec");
assert((minutes(5) + seconds(3) + usecs(4)).toString() ==
"5 minutes, 3 secs, and 4 μs");
assert(seconds(-42).toString() == "-42 secs");
assert(usecs(-5239492).toString() == "-5 secs, -239 ms, and -492 μs");
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert((cast(D)Duration(0)).toString() == "0 hnsecs");
assert((cast(D)Duration(1)).toString() == "1 hnsec");
assert((cast(D)Duration(7)).toString() == "7 hnsecs");
assert((cast(D)Duration(10)).toString() == "1 μs");
assert((cast(D)Duration(20)).toString() == "2 μs");
assert((cast(D)Duration(10_000)).toString() == "1 ms");
assert((cast(D)Duration(20_000)).toString() == "2 ms");
assert((cast(D)Duration(10_000_000)).toString() == "1 sec");
assert((cast(D)Duration(20_000_000)).toString() == "2 secs");
assert((cast(D)Duration(600_000_000)).toString() == "1 minute");
assert((cast(D)Duration(1_200_000_000)).toString() == "2 minutes");
assert((cast(D)Duration(36_000_000_000)).toString() == "1 hour");
assert((cast(D)Duration(72_000_000_000)).toString() == "2 hours");
assert((cast(D)Duration(864_000_000_000)).toString() == "1 day");
assert((cast(D)Duration(1_728_000_000_000)).toString() == "2 days");
assert((cast(D)Duration(6_048_000_000_000)).toString() == "1 week");
assert((cast(D)Duration(12_096_000_000_000)).toString() == "2 weeks");
assert((cast(D)Duration(12)).toString() == "1 μs and 2 hnsecs");
assert((cast(D)Duration(120_795)).toString() == "12 ms, 79 μs, and 5 hnsecs");
assert((cast(D)Duration(12_096_020_900_003)).toString() == "2 weeks, 2 secs, 90 ms, and 3 hnsecs");
assert((cast(D)Duration(-1)).toString() == "-1 hnsecs");
assert((cast(D)Duration(-7)).toString() == "-7 hnsecs");
assert((cast(D)Duration(-10)).toString() == "-1 μs");
assert((cast(D)Duration(-20)).toString() == "-2 μs");
assert((cast(D)Duration(-10_000)).toString() == "-1 ms");
assert((cast(D)Duration(-20_000)).toString() == "-2 ms");
assert((cast(D)Duration(-10_000_000)).toString() == "-1 secs");
assert((cast(D)Duration(-20_000_000)).toString() == "-2 secs");
assert((cast(D)Duration(-600_000_000)).toString() == "-1 minutes");
assert((cast(D)Duration(-1_200_000_000)).toString() == "-2 minutes");
assert((cast(D)Duration(-36_000_000_000)).toString() == "-1 hours");
assert((cast(D)Duration(-72_000_000_000)).toString() == "-2 hours");
assert((cast(D)Duration(-864_000_000_000)).toString() == "-1 days");
assert((cast(D)Duration(-1_728_000_000_000)).toString() == "-2 days");
assert((cast(D)Duration(-6_048_000_000_000)).toString() == "-1 weeks");
assert((cast(D)Duration(-12_096_000_000_000)).toString() == "-2 weeks");
assert((cast(D)Duration(-12)).toString() == "-1 μs and -2 hnsecs");
assert((cast(D)Duration(-120_795)).toString() == "-12 ms, -79 μs, and -5 hnsecs");
assert((cast(D)Duration(-12_096_020_900_003)).toString() == "-2 weeks, -2 secs, -90 ms, and -3 hnsecs");
}
}
/++
Returns whether this $(D Duration) is negative.
+/
@property bool isNegative() const nothrow @nogc
{
return _hnsecs < 0;
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert(!(cast(D)Duration(100)).isNegative);
assert(!(cast(D)Duration(1)).isNegative);
assert(!(cast(D)Duration(0)).isNegative);
assert((cast(D)Duration(-1)).isNegative);
assert((cast(D)Duration(-100)).isNegative);
}
}
private:
/+
Params:
hnsecs = The total number of hecto-nanoseconds in this $(D Duration).
+/
this(long hnsecs) nothrow @nogc
{
_hnsecs = hnsecs;
}
long _hnsecs;
}
///
unittest
{
import core.time;
// using the dur template
auto numDays = dur!"days"(12);
// using the days function
numDays = days(12);
// alternatively using UFCS syntax
numDays = 12.days;
auto myTime = 100.msecs + 20_000.usecs + 30_000.hnsecs;
assert(myTime == 123.msecs);
}
// Ensure `toString` doesn't allocate if the sink doesn't
version (CoreUnittest) @safe pure nothrow @nogc unittest
{
char[256] buffer; size_t len;
scope sink = (in char[] data) {
assert(data.length + len <= buffer.length);
buffer[len .. len + data.length] = data[];
len += data.length;
};
auto dur = Duration(-12_096_020_900_003);
dur.toString(sink);
assert(buffer[0 .. len] == "-2 weeks, -2 secs, -90 ms, and -3 hnsecs");
}
/++
Converts a $(D TickDuration) to the given units as either an integral
value or a floating point value.
Params:
units = The units to convert to. Accepts $(D "seconds") and smaller
only.
T = The type to convert to (either an integral type or a
floating point type).
td = The TickDuration to convert
+/
T to(string units, T, D)(D td) @safe pure nothrow @nogc
if (is(immutable D == immutable TickDuration) &&
(units == "seconds" ||
units == "msecs" ||
units == "usecs" ||
units == "hnsecs" ||
units == "nsecs"))
{
static if (__traits(isIntegral, T) && T.sizeof >= 4)
{
enum unitsPerSec = convert!("seconds", units)(1);
return cast(T) (td.length / (TickDuration.ticksPerSec / cast(real) unitsPerSec));
}
else static if (__traits(isFloating, T))
{
static if (units == "seconds")
return td.length / cast(T)TickDuration.ticksPerSec;
else
{
enum unitsPerSec = convert!("seconds", units)(1);
return cast(T) (td.length /
(TickDuration.ticksPerSec / cast(real) unitsPerSec));
}
}
else
static assert(0, "Incorrect template constraint.");
}
///
unittest
{
auto t = TickDuration.from!"seconds"(1000);
long tl = to!("seconds",long)(t);
assert(tl == 1000);
import core.stdc.math : fabs;
double td = to!("seconds",double)(t);
assert(fabs(td - 1000) < 0.001);
}
unittest
{
void testFun(string U)() {
auto t1v = 1000;
auto t2v = 333;
auto t1 = TickDuration.from!U(t1v);
auto t2 = TickDuration.from!U(t2v);
auto _str(F)(F val)
{
static if (is(F == int) || is(F == long))
return signedToTempString(val);
else
return unsignedToTempString(val);
}
foreach (F; AliasSeq!(int,uint,long,ulong,float,double,real))
{
F t1f = to!(U,F)(t1);
F t2f = to!(U,F)(t2);
auto t12d = t1 / t2v;
auto t12m = t1 - t2;
F t3f = to!(U,F)(t12d);
F t4f = to!(U,F)(t12m);
static if (is(F == float) || is(F == double) || is(F == real))
{
assert((t1f - cast(F)t1v) <= 3.0,
F.stringof ~ " " ~ U ~ " " ~ doubleToString(t1f) ~ " " ~
doubleToString(cast(F)t1v)
);
assert((t2f - cast(F)t2v) <= 3.0,
F.stringof ~ " " ~ U ~ " " ~ doubleToString(t2f) ~ " " ~
doubleToString(cast(F)t2v)
);
assert(t3f - (cast(F)t1v) / (cast(F)t2v) <= 3.0,
F.stringof ~ " " ~ U ~ " " ~ doubleToString(t3f) ~ " " ~
doubleToString((cast(F)t1v)/(cast(F)t2v))
);
assert(t4f - (cast(F)(t1v - t2v)) <= 3.0,
F.stringof ~ " " ~ U ~ " " ~ doubleToString(t4f) ~ " " ~
doubleToString(cast(F)(t1v - t2v))
);
}
else
{
// even though this should be exact math it is not as internal
// in "to" floating point is used
assert(_abs(t1f) - _abs(cast(F)t1v) <= 3,
F.stringof ~ " " ~ U ~ " " ~ _str(t1f) ~ " " ~
_str(cast(F)t1v)
);
assert(_abs(t2f) - _abs(cast(F)t2v) <= 3,
F.stringof ~ " " ~ U ~ " " ~ _str(t2f) ~ " " ~
_str(cast(F)t2v)
);
assert(_abs(t3f) - _abs((cast(F)t1v) / (cast(F)t2v)) <= 3,
F.stringof ~ " " ~ U ~ " " ~ _str(t3f) ~ " " ~
_str((cast(F)t1v) / (cast(F)t2v))
);
assert(_abs(t4f) - _abs((cast(F)t1v) - (cast(F)t2v)) <= 3,
F.stringof ~ " " ~ U ~ " " ~ _str(t4f) ~ " " ~
_str((cast(F)t1v) - (cast(F)t2v))
);
}
}
}
testFun!"seconds"();
testFun!"msecs"();
testFun!"usecs"();
}
/++
These allow you to construct a $(D Duration) from the given time units
with the given length.
You can either use the generic function $(D dur) and give it the units as
a $(D string) or use the named aliases.
The possible values for units are $(D "weeks"), $(D "days"), $(D "hours"),
$(D "minutes"), $(D "seconds"), $(D "msecs") (milliseconds), $(D "usecs"),
(microseconds), $(D "hnsecs") (hecto-nanoseconds, i.e. 100 ns), and
$(D "nsecs").
Params:
units = The time units of the $(D Duration) (e.g. $(D "days")).
length = The number of units in the $(D Duration).
+/
Duration dur(string units)(long length) @safe pure nothrow @nogc
if (units == "weeks" ||
units == "days" ||
units == "hours" ||
units == "minutes" ||
units == "seconds" ||
units == "msecs" ||
units == "usecs" ||
units == "hnsecs" ||
units == "nsecs")
{
return Duration(convert!(units, "hnsecs")(length));
}
alias weeks = dur!"weeks"; /// Ditto
alias days = dur!"days"; /// Ditto
alias hours = dur!"hours"; /// Ditto
alias minutes = dur!"minutes"; /// Ditto
alias seconds = dur!"seconds"; /// Ditto
alias msecs = dur!"msecs"; /// Ditto
alias usecs = dur!"usecs"; /// Ditto
alias hnsecs = dur!"hnsecs"; /// Ditto
alias nsecs = dur!"nsecs"; /// Ditto
///
unittest
{
// Generic
assert(dur!"weeks"(142).total!"weeks" == 142);
assert(dur!"days"(142).total!"days" == 142);
assert(dur!"hours"(142).total!"hours" == 142);
assert(dur!"minutes"(142).total!"minutes" == 142);
assert(dur!"seconds"(142).total!"seconds" == 142);
assert(dur!"msecs"(142).total!"msecs" == 142);
assert(dur!"usecs"(142).total!"usecs" == 142);
assert(dur!"hnsecs"(142).total!"hnsecs" == 142);
assert(dur!"nsecs"(142).total!"nsecs" == 100);
// Non-generic
assert(weeks(142).total!"weeks" == 142);
assert(days(142).total!"days" == 142);
assert(hours(142).total!"hours" == 142);
assert(minutes(142).total!"minutes" == 142);
assert(seconds(142).total!"seconds" == 142);
assert(msecs(142).total!"msecs" == 142);
assert(usecs(142).total!"usecs" == 142);
assert(hnsecs(142).total!"hnsecs" == 142);
assert(nsecs(142).total!"nsecs" == 100);
}
unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
assert(dur!"weeks"(7).total!"weeks" == 7);
assert(dur!"days"(7).total!"days" == 7);
assert(dur!"hours"(7).total!"hours" == 7);
assert(dur!"minutes"(7).total!"minutes" == 7);
assert(dur!"seconds"(7).total!"seconds" == 7);
assert(dur!"msecs"(7).total!"msecs" == 7);
assert(dur!"usecs"(7).total!"usecs" == 7);
assert(dur!"hnsecs"(7).total!"hnsecs" == 7);
assert(dur!"nsecs"(7).total!"nsecs" == 0);
assert(dur!"weeks"(1007) == weeks(1007));
assert(dur!"days"(1007) == days(1007));
assert(dur!"hours"(1007) == hours(1007));
assert(dur!"minutes"(1007) == minutes(1007));
assert(dur!"seconds"(1007) == seconds(1007));
assert(dur!"msecs"(1007) == msecs(1007));
assert(dur!"usecs"(1007) == usecs(1007));
assert(dur!"hnsecs"(1007) == hnsecs(1007));
assert(dur!"nsecs"(10) == nsecs(10));
}
}
// used in MonoTimeImpl
private string _clockTypeName(ClockType clockType)
{
final switch (clockType)
{
foreach (name; __traits(allMembers, ClockType))
{
case __traits(getMember, ClockType, name):
return name;
}
}
assert(0);
}
// used in MonoTimeImpl
private size_t _clockTypeIdx(ClockType clockType)
{
final switch (clockType)
{
foreach (i, name; __traits(allMembers, ClockType))
{
case __traits(getMember, ClockType, name):
return i;
}
}
assert(0);
}
/++
alias for $(D MonoTimeImpl) instantiated with $(D ClockType.normal). This is
what most programs should use. It's also what much of $(D MonoTimeImpl) uses
in its documentation (particularly in the examples), because that's what's
going to be used in most code.
+/
alias MonoTime = MonoTimeImpl!(ClockType.normal);
/++
Represents a timestamp of the system's monotonic clock.
A monotonic clock is one which always goes forward and never moves
backwards, unlike the system's wall clock time (as represented by
$(REF SysTime, std,datetime)). The system's wall clock time can be adjusted
by the user or by the system itself via services such as NTP, so it is
unreliable to use the wall clock time for timing. Timers which use the wall
clock time could easily end up never going off due to changes made to the
wall clock time or otherwise waiting for a different period of time than
that specified by the programmer. However, because the monotonic clock
always increases at a fixed rate and is not affected by adjustments to the
wall clock time, it is ideal for use with timers or anything which requires
high precision timing.
So, MonoTime should be used for anything involving timers and timing,
whereas $(REF SysTime, std,datetime) should be used when the wall clock time
is required.
The monotonic clock has no relation to wall clock time. Rather, it holds
its time as the number of ticks of the clock which have occurred since the
clock started (typically when the system booted up). So, to determine how
much time has passed between two points in time, one monotonic time is
subtracted from the other to determine the number of ticks which occurred
between the two points of time, and those ticks are divided by the number of
ticks that occur every second (as represented by MonoTime.ticksPerSecond)
to get a meaningful duration of time. Normally, MonoTime does these
calculations for the programmer, but the $(D ticks) and $(D ticksPerSecond)
properties are provided for those who require direct access to the system
ticks. The normal way that MonoTime would be used is
--------------------
MonoTime before = MonoTime.currTime;
// do stuff...
MonoTime after = MonoTime.currTime;
Duration timeElapsed = after - before;
--------------------
$(LREF MonoTime) is an alias to $(D MonoTimeImpl!(ClockType.normal)) and is
what most programs should use for the monotonic clock, so that's what is
used in most of $(D MonoTimeImpl)'s documentation. But $(D MonoTimeImpl)
can be instantiated with other clock types for those rare programs that need
it.
See_Also:
$(LREF ClockType)
+/
struct MonoTimeImpl(ClockType clockType)
{
private enum _clockIdx = _clockTypeIdx(clockType);
private enum _clockName = _clockTypeName(clockType);
@safe:
version (Windows)
{
static if (clockType != ClockType.coarse &&
clockType != ClockType.normal &&
clockType != ClockType.precise)
{
static assert(0, "ClockType." ~ _clockName ~
" is not supported by MonoTimeImpl on this system.");
}
}
else version (Darwin)
{
static if (clockType != ClockType.coarse &&
clockType != ClockType.normal &&
clockType != ClockType.precise)
{
static assert(0, "ClockType." ~ _clockName ~
" is not supported by MonoTimeImpl on this system.");
}
}
else version (Posix)
{
enum clockArg = _posixClock(clockType);
}
else
static assert(0, "Unsupported platform");
// POD value, test mutable/const/immutable conversion
version (CoreUnittest) unittest
{
MonoTimeImpl m;
const MonoTimeImpl cm = m;
immutable MonoTimeImpl im = m;
m = cm;
m = im;
}
/++
The current time of the system's monotonic clock. This has no relation
to the wall clock time, as the wall clock time can be adjusted (e.g.
by NTP), whereas the monotonic clock always moves forward. The source
of the monotonic time is system-specific.
On Windows, $(D QueryPerformanceCounter) is used. On Mac OS X,
$(D mach_absolute_time) is used, while on other POSIX systems,
$(D clock_gettime) is used.
$(RED Warning): On some systems, the monotonic clock may stop counting
when the computer goes to sleep or hibernates. So, the
monotonic clock may indicate less time than has actually
passed if that occurs. This is known to happen on
Mac OS X. It has not been tested whether it occurs on
either Windows or Linux.
+/
static @property MonoTimeImpl currTime() @trusted nothrow @nogc
{
if (ticksPerSecond == 0)
{
import core.internal.abort : abort;
abort("MonoTimeImpl!(ClockType." ~ _clockName ~
") failed to get the frequency of the system's monotonic clock.");
}
version (Windows)
{
long ticks = void;
QueryPerformanceCounter(&ticks);
return MonoTimeImpl(ticks);
}
else version (Darwin)
return MonoTimeImpl(mach_absolute_time());
else version (Posix)
{
timespec ts = void;
immutable error = clock_gettime(clockArg, &ts);
// clockArg is supported and if tv_sec is long or larger
// overflow won't happen before 292 billion years A.D.
static if (ts.tv_sec.max < long.max)
{
if (error)
{
import core.internal.abort : abort;
abort("Call to clock_gettime failed.");
}
}
return MonoTimeImpl(convClockFreq(ts.tv_sec * 1_000_000_000L + ts.tv_nsec,
1_000_000_000L,
ticksPerSecond));
}
}
static @property pure nothrow @nogc
{
/++
A $(D MonoTime) of $(D 0) ticks. It's provided to be consistent with
$(D Duration.zero), and it's more explicit than $(D MonoTime.init).
+/
MonoTimeImpl zero() { return MonoTimeImpl(0); }
/++
Largest $(D MonoTime) possible.
+/
MonoTimeImpl max() { return MonoTimeImpl(long.max); }
/++
Most negative $(D MonoTime) possible.
+/
MonoTimeImpl min() { return MonoTimeImpl(long.min); }
}
version (CoreUnittest) unittest
{
assert(MonoTimeImpl.zero == MonoTimeImpl(0));
assert(MonoTimeImpl.max == MonoTimeImpl(long.max));
assert(MonoTimeImpl.min == MonoTimeImpl(long.min));
assert(MonoTimeImpl.min < MonoTimeImpl.zero);
assert(MonoTimeImpl.zero < MonoTimeImpl.max);
assert(MonoTimeImpl.min < MonoTimeImpl.max);
}
/++
Compares this MonoTime with the given MonoTime.
Returns:
$(BOOKTABLE,
$(TR $(TD this < rhs) $(TD < 0))
$(TR $(TD this == rhs) $(TD 0))
$(TR $(TD this > rhs) $(TD > 0))
)
+/
int opCmp(MonoTimeImpl rhs) const pure nothrow @nogc
{
return (_ticks > rhs._ticks) - (_ticks < rhs._ticks);
}
version (CoreUnittest) unittest
{
import core.internal.traits : rvalueOf;
const t = MonoTimeImpl.currTime;
assert(t == rvalueOf(t));
}
version (CoreUnittest) unittest
{
import core.internal.traits : rvalueOf;
const before = MonoTimeImpl.currTime;
auto after = MonoTimeImpl(before._ticks + 42);
assert(before < after);
assert(rvalueOf(before) <= before);
assert(rvalueOf(after) > before);
assert(after >= rvalueOf(after));
}
version (CoreUnittest) unittest
{
const currTime = MonoTimeImpl.currTime;
assert(MonoTimeImpl(long.max) > MonoTimeImpl(0));
assert(MonoTimeImpl(0) > MonoTimeImpl(long.min));
assert(MonoTimeImpl(long.max) > currTime);
assert(currTime > MonoTimeImpl(0));
assert(MonoTimeImpl(0) < currTime);
assert(MonoTimeImpl(0) < MonoTimeImpl(long.max));
assert(MonoTimeImpl(long.min) < MonoTimeImpl(0));
}
/++
Subtracting two MonoTimes results in a $(LREF Duration) representing
the amount of time which elapsed between them.
The primary way that programs should time how long something takes is to
do
--------------------
MonoTime before = MonoTime.currTime;
// do stuff
MonoTime after = MonoTime.currTime;
// How long it took.
Duration timeElapsed = after - before;
--------------------
or to use a wrapper (such as a stop watch type) which does that.
$(RED Warning):
Because $(LREF Duration) is in hnsecs, whereas MonoTime is in system
ticks, it's usually the case that this assertion will fail
--------------------
auto before = MonoTime.currTime;
// do stuff
auto after = MonoTime.currTime;
auto timeElapsed = after - before;
assert(before + timeElapsed == after);
--------------------
This is generally fine, and by its very nature, converting from
system ticks to any type of seconds (hnsecs, nsecs, etc.) will
introduce rounding errors, but if code needs to avoid any of the
small rounding errors introduced by conversion, then it needs to use
MonoTime's $(D ticks) property and keep all calculations in ticks
rather than using $(LREF Duration).
+/
Duration opBinary(string op)(MonoTimeImpl rhs) const pure nothrow @nogc
if (op == "-")
{
immutable diff = _ticks - rhs._ticks;
return Duration(convClockFreq(diff , ticksPerSecond, hnsecsPer!"seconds"));
}
version (CoreUnittest) unittest
{
import core.internal.traits : rvalueOf;
const t = MonoTimeImpl.currTime;
assert(t - rvalueOf(t) == Duration.zero);
static assert(!__traits(compiles, t + t));
}
version (CoreUnittest) unittest
{
static void test(const scope MonoTimeImpl before, const scope MonoTimeImpl after, const scope Duration min)
{
immutable diff = after - before;
assert(diff >= min);
auto calcAfter = before + diff;
assertApprox(calcAfter, calcAfter - Duration(1), calcAfter + Duration(1));
assert(before - after == -diff);
}
const before = MonoTimeImpl.currTime;
test(before, MonoTimeImpl(before._ticks + 4202), Duration.zero);
test(before, MonoTimeImpl.currTime, Duration.zero);
const durLargerUnits = dur!"minutes"(7) + dur!"seconds"(22);
test(before, before + durLargerUnits + dur!"msecs"(33) + dur!"hnsecs"(571), durLargerUnits);
}
/++
Adding or subtracting a $(LREF Duration) to/from a MonoTime results in
a MonoTime which is adjusted by that amount.
+/
MonoTimeImpl opBinary(string op)(Duration rhs) const pure nothrow @nogc
if (op == "+" || op == "-")
{
immutable rhsConverted = convClockFreq(rhs._hnsecs, hnsecsPer!"seconds", ticksPerSecond);
mixin("return MonoTimeImpl(_ticks " ~ op ~ " rhsConverted);");
}
version (CoreUnittest) unittest
{
const t = MonoTimeImpl.currTime;
assert(t + Duration(0) == t);
assert(t - Duration(0) == t);
}
version (CoreUnittest) unittest
{
const t = MonoTimeImpl.currTime;
// We reassign ticks in order to get the same rounding errors
// that we should be getting with Duration (e.g. MonoTimeImpl may be
// at a higher precision than hnsecs, meaning that 7333 would be
// truncated when converting to hnsecs).
long ticks = 7333;
auto hnsecs = convClockFreq(ticks, ticksPerSecond, hnsecsPer!"seconds");
ticks = convClockFreq(hnsecs, hnsecsPer!"seconds", ticksPerSecond);
assert(t - Duration(hnsecs) == MonoTimeImpl(t._ticks - ticks));
assert(t + Duration(hnsecs) == MonoTimeImpl(t._ticks + ticks));
}
/++ Ditto +/
ref MonoTimeImpl opOpAssign(string op)(Duration rhs) pure nothrow @nogc
if (op == "+" || op == "-")
{
immutable rhsConverted = convClockFreq(rhs._hnsecs, hnsecsPer!"seconds", ticksPerSecond);
mixin("_ticks " ~ op ~ "= rhsConverted;");
return this;
}
version (CoreUnittest) unittest
{
auto mt = MonoTimeImpl.currTime;
const initial = mt;
mt += Duration(0);
assert(mt == initial);
mt -= Duration(0);
assert(mt == initial);
// We reassign ticks in order to get the same rounding errors
// that we should be getting with Duration (e.g. MonoTimeImpl may be
// at a higher precision than hnsecs, meaning that 7333 would be
// truncated when converting to hnsecs).
long ticks = 7333;
auto hnsecs = convClockFreq(ticks, ticksPerSecond, hnsecsPer!"seconds");
ticks = convClockFreq(hnsecs, hnsecsPer!"seconds", ticksPerSecond);
auto before = MonoTimeImpl(initial._ticks - ticks);
assert((mt -= Duration(hnsecs)) == before);
assert(mt == before);
assert((mt += Duration(hnsecs)) == initial);
assert(mt == initial);
}
/++
The number of ticks in the monotonic time.
Most programs should not use this directly, but it's exposed for those
few programs that need it.
The main reasons that a program might need to use ticks directly is if
the system clock has higher precision than hnsecs, and the program needs
that higher precision, or if the program needs to avoid the rounding
errors caused by converting to hnsecs.
+/
@property long ticks() const pure nothrow @nogc
{
return _ticks;
}
version (CoreUnittest) unittest
{
const mt = MonoTimeImpl.currTime;
assert(mt.ticks == mt._ticks);
}
/++
The number of ticks that MonoTime has per second - i.e. the resolution
or frequency of the system's monotonic clock.
e.g. if the system clock had a resolution of microseconds, then
ticksPerSecond would be $(D 1_000_000).
+/
static @property long ticksPerSecond() pure nothrow @nogc
{
return _ticksPerSecond[_clockIdx];
}
version (CoreUnittest) unittest
{
assert(MonoTimeImpl.ticksPerSecond == _ticksPerSecond[_clockIdx]);
}
///
string toString() const pure nothrow
{
static if (clockType == ClockType.normal)
return "MonoTime(" ~ signedToTempString(_ticks) ~ " ticks, " ~ signedToTempString(ticksPerSecond) ~ " ticks per second)";
else
return "MonoTimeImpl!(ClockType." ~ _clockName ~ ")(" ~ signedToTempString(_ticks) ~ " ticks, " ~
signedToTempString(ticksPerSecond) ~ " ticks per second)";
}
version (CoreUnittest) unittest
{
import core.internal.util.math : min;
static void eat(ref string s, const(char)[] exp)
{
assert(s[0 .. min($, exp.length)] == exp, s~" != "~exp);
s = s[exp.length .. $];
}
immutable mt = MonoTimeImpl.currTime;
auto str = mt.toString();
static if (is(typeof(this) == MonoTime))
eat(str, "MonoTime(");
else
eat(str, "MonoTimeImpl!(ClockType."~_clockName~")(");
eat(str, signedToTempString(mt._ticks));
eat(str, " ticks, ");
eat(str, signedToTempString(ticksPerSecond));
eat(str, " ticks per second)");
}
private:
// static immutable long _ticksPerSecond;
version (CoreUnittest) unittest
{
assert(_ticksPerSecond[_clockIdx]);
}
long _ticks;
}
// This is supposed to be a static variable in MonoTimeImpl with the static
// constructor being in there, but https://issues.dlang.org/show_bug.cgi?id=14517
// prevents that from working. However, moving it back to a static ctor will
// reraise issues with other systems using MonoTime, so we should leave this
// here even when that bug is fixed.
private immutable long[__traits(allMembers, ClockType).length] _ticksPerSecond;
// This is called directly from the runtime initilization function (rt_init),
// instead of using a static constructor. Other subsystems inside the runtime
// (namely, the GC) may need time functionality, but cannot wait until the
// static ctors have run. Therefore, we initialize these specially. Because
// it's a normal function, we need to do some dangerous casting PLEASE take
// care when modifying this function, and it should NOT be called except from
// the runtime init.
//
// NOTE: the code below SPECIFICALLY does not assert when it cannot initialize
// the ticks per second array. This allows cases where a clock is never used on
// a system that doesn't support it. See bugzilla issue
// https://issues.dlang.org/show_bug.cgi?id=14863
// The assert will occur when someone attempts to use _ticksPerSecond for that
// value.
extern(C) void _d_initMonoTime()
{
// We need a mutable pointer to the ticksPerSecond array. Although this
// would appear to break immutability, it is logically the same as a static
// ctor. So we should ONLY write these values once (we will check for 0
// values when setting to ensure this is truly only called once).
auto tps = cast(long[])_ticksPerSecond[];
// If we try to do anything with ClockType in the documentation build, it'll
// trigger the static assertions related to ClockType, since the
// documentation build defines all of the possible ClockTypes, which won't
// work when they're used in the static ifs, because no system supports them
// all.
version (CoreDdoc)
{}
else version (Windows)
{
long ticksPerSecond;
if (QueryPerformanceFrequency(&ticksPerSecond) != 0)
{
foreach (i, typeStr; __traits(allMembers, ClockType))
{
// ensure we are only writing immutable data once
if (tps[i] != 0)
// should only be called once
assert(0);
tps[i] = ticksPerSecond;
}
}
}
else version (Darwin)
{
immutable long ticksPerSecond = machTicksPerSecond();
foreach (i, typeStr; __traits(allMembers, ClockType))
{
// ensure we are only writing immutable data once
if (tps[i] != 0)
// should only be called once
assert(0);
tps[i] = ticksPerSecond;
}
}
else version (Posix)
{
timespec ts;
foreach (i, typeStr; __traits(allMembers, ClockType))
{
static if (typeStr != "second")
{
enum clockArg = _posixClock(__traits(getMember, ClockType, typeStr));
if (clock_getres(clockArg, &ts) == 0)
{
// ensure we are only writing immutable data once
if (tps[i] != 0)
// should only be called once
assert(0);
// For some reason, on some systems, clock_getres returns
// a resolution which is clearly wrong:
// - it's a millisecond or worse, but the time is updated
// much more frequently than that.
// - it's negative
// - it's zero
// In such cases, we'll just use nanosecond resolution.
tps[i] = ts.tv_sec != 0 || ts.tv_nsec <= 0 || ts.tv_nsec >= 1000
? 1_000_000_000L : 1_000_000_000L / ts.tv_nsec;
}
}
}
}
}
// Tests for MonoTimeImpl.currTime. It has to be outside, because MonoTimeImpl
// is a template. This unittest block also makes sure that MonoTimeImpl actually
// is instantiated with all of the various ClockTypes so that those types and
// their tests are compiled and run.
unittest
{
// This test is separate so that it can be tested with MonoTime and not just
// MonoTimeImpl.
auto norm1 = MonoTime.currTime;
auto norm2 = MonoTimeImpl!(ClockType.normal).currTime;
assert(norm1 <= norm2);
static bool clockSupported(ClockType c)
{
// Skip unsupported clocks on older linux kernels, assume that only
// CLOCK_MONOTONIC and CLOCK_REALTIME exist, as that is the lowest
// common denominator supported by all versions of Linux pre-2.6.12.
version (Linux_Pre_2639)
return c == ClockType.normal || c == ClockType.precise;
else
return c != ClockType.second; // second doesn't work with MonoTimeImpl
}
foreach (typeStr; __traits(allMembers, ClockType))
{
mixin("alias type = ClockType." ~ typeStr ~ ";");
static if (clockSupported(type))
{
auto v1 = MonoTimeImpl!type.currTime;
auto v2 = MonoTimeImpl!type.currTime;
scope(failure)
{
printf("%s: v1 %s, v2 %s, tps %s\n",
(type.stringof ~ "\0").ptr,
numToStringz(v1._ticks),
numToStringz(v2._ticks),
numToStringz(typeof(v1).ticksPerSecond));
}
assert(v1 <= v2);
foreach (otherStr; __traits(allMembers, ClockType))
{
mixin("alias other = ClockType." ~ otherStr ~ ";");
static if (clockSupported(other))
{
static assert(is(typeof({auto o1 = MonTimeImpl!other.currTime; auto b = v1 <= o1;})) ==
is(type == other));
}
}
}
}
}
/++
Converts the given time from one clock frequency/resolution to another.
See_Also:
$(LREF ticksToNSecs)
+/
long convClockFreq(long ticks, long srcTicksPerSecond, long dstTicksPerSecond) @safe pure nothrow @nogc
{
// This would be more straightforward with floating point arithmetic,
// but we avoid it here in order to avoid the rounding errors that that
// introduces. Also, by splitting out the units in this way, we're able
// to deal with much larger values before running into problems with
// integer overflow.
return ticks / srcTicksPerSecond * dstTicksPerSecond +
ticks % srcTicksPerSecond * dstTicksPerSecond / srcTicksPerSecond;
}
///
unittest
{
// one tick is one second -> one tick is a hecto-nanosecond
assert(convClockFreq(45, 1, 10_000_000) == 450_000_000);
// one tick is one microsecond -> one tick is a millisecond
assert(convClockFreq(9029, 1_000_000, 1_000) == 9);
// one tick is 1/3_515_654 of a second -> 1/1_001_010 of a second
assert(convClockFreq(912_319, 3_515_654, 1_001_010) == 259_764);
// one tick is 1/MonoTime.ticksPerSecond -> one tick is a nanosecond
// Equivalent to ticksToNSecs
auto nsecs = convClockFreq(1982, MonoTime.ticksPerSecond, 1_000_000_000);
}
unittest
{
assert(convClockFreq(99, 43, 57) == 131);
assert(convClockFreq(131, 57, 43) == 98);
assert(convClockFreq(1234567890, 10_000_000, 1_000_000_000) == 123456789000);
assert(convClockFreq(1234567890, 1_000_000_000, 10_000_000) == 12345678);
assert(convClockFreq(123456789000, 1_000_000_000, 10_000_000) == 1234567890);
assert(convClockFreq(12345678, 10_000_000, 1_000_000_000) == 1234567800);
assert(convClockFreq(13131, 3_515_654, 10_000_000) == 37350);
assert(convClockFreq(37350, 10_000_000, 3_515_654) == 13130);
assert(convClockFreq(37350, 3_515_654, 10_000_000) == 106239);
assert(convClockFreq(106239, 10_000_000, 3_515_654) == 37349);
// It would be too expensive to cover a large range of possible values for
// ticks, so we use random values in an attempt to get reasonable coverage.
import core.stdc.stdlib;
immutable seed = cast(int)time(null);
srand(seed);
scope(failure) printf("seed %d\n", seed);
enum freq1 = 5_527_551L;
enum freq2 = 10_000_000L;
enum freq3 = 1_000_000_000L;
enum freq4 = 98_123_320L;
immutable freq5 = MonoTime.ticksPerSecond;
// This makes it so that freq6 is the first multiple of 10 which is greater
// than or equal to freq5, which at one point was considered for MonoTime's
// ticksPerSecond rather than using the system's actual clock frequency, so
// it seemed like a good test case to have.
import core.stdc.math;
immutable numDigitsMinus1 = cast(int)floor(log10(freq5));
auto freq6 = cast(long)pow(10, numDigitsMinus1);
if (freq5 > freq6)
freq6 *= 10;
foreach (_; 0 .. 10_000)
{
long[2] values = [rand(), cast(long)rand() * (rand() % 16)];
foreach (i; values)
{
scope(failure) printf("i %s\n", numToStringz(i));
assertApprox(convClockFreq(convClockFreq(i, freq1, freq2), freq2, freq1), i - 10, i + 10);
assertApprox(convClockFreq(convClockFreq(i, freq2, freq1), freq1, freq2), i - 10, i + 10);
assertApprox(convClockFreq(convClockFreq(i, freq3, freq4), freq4, freq3), i - 100, i + 100);
assertApprox(convClockFreq(convClockFreq(i, freq4, freq3), freq3, freq4), i - 100, i + 100);
scope(failure) printf("sys %s mt %s\n", numToStringz(freq5), numToStringz(freq6));
assertApprox(convClockFreq(convClockFreq(i, freq5, freq6), freq6, freq5), i - 10, i + 10);
assertApprox(convClockFreq(convClockFreq(i, freq6, freq5), freq5, freq6), i - 10, i + 10);
// This is here rather than in a unittest block immediately after
// ticksToNSecs in order to avoid code duplication in the unit tests.
assert(convClockFreq(i, MonoTime.ticksPerSecond, 1_000_000_000) == ticksToNSecs(i));
}
}
}
/++
Convenience wrapper around $(LREF convClockFreq) which converts ticks at
a clock frequency of $(D MonoTime.ticksPerSecond) to nanoseconds.
It's primarily of use when $(D MonoTime.ticksPerSecond) is greater than
hecto-nanosecond resolution, and an application needs a higher precision
than hecto-nanoceconds.
See_Also:
$(LREF convClockFreq)
+/
long ticksToNSecs(long ticks) @safe pure nothrow @nogc
{
return convClockFreq(ticks, MonoTime.ticksPerSecond, 1_000_000_000);
}
///
unittest
{
auto before = MonoTime.currTime;
// do stuff
auto after = MonoTime.currTime;
auto diffInTicks = after.ticks - before.ticks;
auto diffInNSecs = ticksToNSecs(diffInTicks);
assert(diffInNSecs == convClockFreq(diffInTicks, MonoTime.ticksPerSecond, 1_000_000_000));
}
/++
The reverse of $(LREF ticksToNSecs).
+/
long nsecsToTicks(long ticks) @safe pure nothrow @nogc
{
return convClockFreq(ticks, 1_000_000_000, MonoTime.ticksPerSecond);
}
unittest
{
long ticks = 123409832717333;
auto nsecs = convClockFreq(ticks, MonoTime.ticksPerSecond, 1_000_000_000);
ticks = convClockFreq(nsecs, 1_000_000_000, MonoTime.ticksPerSecond);
assert(nsecsToTicks(nsecs) == ticks);
}
/++
$(RED Warning: TickDuration will be deprecated in the near future (once all
uses of it in Phobos have been deprecated). Please use
$(LREF MonoTime) for the cases where a monotonic timestamp is needed
and $(LREF Duration) when a duration is needed, rather than using
TickDuration. It has been decided that TickDuration is too confusing
(e.g. it conflates a monotonic timestamp and a duration in monotonic
clock ticks) and that having multiple duration types is too awkward
and confusing.)
Represents a duration of time in system clock ticks.
The system clock ticks are the ticks of the system clock at the highest
precision that the system provides.
+/
struct TickDuration
{
/++
The number of ticks that the system clock has in one second.
If $(D ticksPerSec) is $(D 0), then then $(D TickDuration) failed to
get the value of $(D ticksPerSec) on the current system, and
$(D TickDuration) is not going to work. That would be highly abnormal
though.
+/
static immutable long ticksPerSec;
/++
The tick of the system clock (as a $(D TickDuration)) when the
application started.
+/
static immutable TickDuration appOrigin;
static @property @safe pure nothrow @nogc
{
/++
It's the same as $(D TickDuration(0)), but it's provided to be
consistent with $(D Duration), which provides a $(D zero) property.
+/
TickDuration zero() { return TickDuration(0); }
/++
Largest $(D TickDuration) possible.
+/
TickDuration max() { return TickDuration(long.max); }
/++
Most negative $(D TickDuration) possible.
+/
TickDuration min() { return TickDuration(long.min); }
}
version (CoreUnittest) unittest
{
assert(zero == TickDuration(0));
assert(TickDuration.max == TickDuration(long.max));
assert(TickDuration.min == TickDuration(long.min));
assert(TickDuration.min < TickDuration.zero);
assert(TickDuration.zero < TickDuration.max);
assert(TickDuration.min < TickDuration.max);
assert(TickDuration.min - TickDuration(1) == TickDuration.max);
assert(TickDuration.max + TickDuration(1) == TickDuration.min);
}
@trusted shared static this()
{
version (Windows)
{
if (QueryPerformanceFrequency(cast(long*)&ticksPerSec) == 0)
ticksPerSec = 0;
}
else version (Darwin)
{
ticksPerSec = machTicksPerSecond();
}
else version (Posix)
{
static if (is(typeof(clock_gettime)))
{
timespec ts;
if (clock_getres(CLOCK_MONOTONIC, &ts) != 0)
ticksPerSec = 0;
else
{
//For some reason, on some systems, clock_getres returns
//a resolution which is clearly wrong (it's a millisecond
//or worse, but the time is updated much more frequently
//than that). In such cases, we'll just use nanosecond
//resolution.
ticksPerSec = ts.tv_nsec >= 1000 ? 1_000_000_000
: 1_000_000_000 / ts.tv_nsec;
}
}
else
ticksPerSec = 1_000_000;
}
if (ticksPerSec != 0)
appOrigin = TickDuration.currSystemTick;
}
version (CoreUnittest) unittest
{
assert(ticksPerSec);
}
/++
The number of system ticks in this $(D TickDuration).
You can convert this $(D length) into the number of seconds by dividing
it by $(D ticksPerSec) (or using one the appropriate property function
to do it).
+/
long length;
/++
Returns the total number of seconds in this $(D TickDuration).
+/
@property long seconds() @safe const pure nothrow @nogc
{
return this.to!("seconds", long)();
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
assert((cast(T)TickDuration(ticksPerSec)).seconds == 1);
assert((cast(T)TickDuration(ticksPerSec - 1)).seconds == 0);
assert((cast(T)TickDuration(ticksPerSec * 2)).seconds == 2);
assert((cast(T)TickDuration(ticksPerSec * 2 - 1)).seconds == 1);
assert((cast(T)TickDuration(-1)).seconds == 0);
assert((cast(T)TickDuration(-ticksPerSec - 1)).seconds == -1);
assert((cast(T)TickDuration(-ticksPerSec)).seconds == -1);
}
}
/++
Returns the total number of milliseconds in this $(D TickDuration).
+/
@property long msecs() @safe const pure nothrow @nogc
{
return this.to!("msecs", long)();
}
/++
Returns the total number of microseconds in this $(D TickDuration).
+/
@property long usecs() @safe const pure nothrow @nogc
{
return this.to!("usecs", long)();
}
/++
Returns the total number of hecto-nanoseconds in this $(D TickDuration).
+/
@property long hnsecs() @safe const pure nothrow @nogc
{
return this.to!("hnsecs", long)();
}
/++
Returns the total number of nanoseconds in this $(D TickDuration).
+/
@property long nsecs() @safe const pure nothrow @nogc
{
return this.to!("nsecs", long)();
}
/++
This allows you to construct a $(D TickDuration) from the given time
units with the given length.
Params:
units = The time units of the $(D TickDuration) (e.g. $(D "msecs")).
length = The number of units in the $(D TickDuration).
+/
static TickDuration from(string units)(long length) @safe pure nothrow @nogc
if (units == "seconds" ||
units == "msecs" ||
units == "usecs" ||
units == "hnsecs" ||
units == "nsecs")
{
enum unitsPerSec = convert!("seconds", units)(1);
return TickDuration(cast(long)(length * (ticksPerSec / cast(real)unitsPerSec)));
}
version (CoreUnittest) unittest
{
foreach (units; AliasSeq!("seconds", "msecs", "usecs", "nsecs"))
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
assertApprox((cast(T)TickDuration.from!units(1000)).to!(units, long)(),
500, 1500, units);
assertApprox((cast(T)TickDuration.from!units(1_000_000)).to!(units, long)(),
900_000, 1_100_000, units);
assertApprox((cast(T)TickDuration.from!units(2_000_000)).to!(units, long)(),
1_900_000, 2_100_000, units);
}
}
}
/++
Returns a $(LREF Duration) with the same number of hnsecs as this
$(D TickDuration).
Note that the conventional way to convert between $(D TickDuration)
and $(D Duration) is using $(REF to, std,conv), e.g.:
$(D tickDuration.to!Duration())
+/
Duration opCast(T)() @safe const pure nothrow @nogc
if (is(immutable T == immutable Duration))
{
return Duration(hnsecs);
}
version (CoreUnittest) unittest
{
foreach (D; AliasSeq!(Duration, const Duration, immutable Duration))
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
auto expected = dur!"seconds"(1);
assert(cast(D)cast(T)TickDuration.from!"seconds"(1) == expected);
foreach (units; AliasSeq!("msecs", "usecs", "hnsecs"))
{
D actual = cast(D)cast(T)TickDuration.from!units(1_000_000);
assertApprox(actual, dur!units(900_000), dur!units(1_100_000));
}
}
}
}
//Temporary hack until bug http://d.puremagic.com/issues/show_bug.cgi?id=5747 is fixed.
TickDuration opCast(T)() @safe const pure nothrow @nogc
if (is(immutable T == immutable TickDuration))
{
return this;
}
/++
Adds or subtracts two $(D TickDuration)s as well as assigning the result
to this $(D TickDuration).
The legal types of arithmetic for $(D TickDuration) using this operator
are
$(TABLE
$(TR $(TD TickDuration) $(TD +=) $(TD TickDuration) $(TD -->) $(TD TickDuration))
$(TR $(TD TickDuration) $(TD -=) $(TD TickDuration) $(TD -->) $(TD TickDuration))
)
Params:
rhs = The $(D TickDuration) to add to or subtract from this
$(D $(D TickDuration)).
+/
ref TickDuration opOpAssign(string op)(TickDuration rhs) @safe pure nothrow @nogc
if (op == "+" || op == "-")
{
mixin("length " ~ op ~ "= rhs.length;");
return this;
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
auto a = TickDuration.currSystemTick;
auto result = a += cast(T)TickDuration.currSystemTick;
assert(a == result);
assert(a.to!("seconds", real)() >= 0);
auto b = TickDuration.currSystemTick;
result = b -= cast(T)TickDuration.currSystemTick;
assert(b == result);
assert(b.to!("seconds", real)() <= 0);
foreach (U; AliasSeq!(const TickDuration, immutable TickDuration))
{
U u = TickDuration(12);
static assert(!__traits(compiles, u += cast(T)TickDuration.currSystemTick));
static assert(!__traits(compiles, u -= cast(T)TickDuration.currSystemTick));
}
}
}
/++
Adds or subtracts two $(D TickDuration)s.
The legal types of arithmetic for $(D TickDuration) using this operator
are
$(TABLE
$(TR $(TD TickDuration) $(TD +) $(TD TickDuration) $(TD -->) $(TD TickDuration))
$(TR $(TD TickDuration) $(TD -) $(TD TickDuration) $(TD -->) $(TD TickDuration))
)
Params:
rhs = The $(D TickDuration) to add to or subtract from this
$(D TickDuration).
+/
TickDuration opBinary(string op)(TickDuration rhs) @safe const pure nothrow @nogc
if (op == "+" || op == "-")
{
return TickDuration(mixin("length " ~ op ~ " rhs.length"));
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
T a = TickDuration.currSystemTick;
T b = TickDuration.currSystemTick;
assert((a + b).usecs > 0);
assert((a - b).seconds <= 0);
}
}
/++
Returns the negation of this $(D TickDuration).
+/
TickDuration opUnary(string op)() @safe const pure nothrow @nogc
if (op == "-")
{
return TickDuration(-length);
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
assert(-(cast(T)TickDuration(7)) == TickDuration(-7));
assert(-(cast(T)TickDuration(5)) == TickDuration(-5));
assert(-(cast(T)TickDuration(-7)) == TickDuration(7));
assert(-(cast(T)TickDuration(-5)) == TickDuration(5));
assert(-(cast(T)TickDuration(0)) == TickDuration(0));
}
}
/++
operator overloading "<, >, <=, >="
+/
int opCmp(TickDuration rhs) @safe const pure nothrow @nogc
{
return (length > rhs.length) - (length < rhs.length);
}
version (CoreUnittest) unittest
{
import core.internal.traits : rvalueOf;
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
foreach (U; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
T t = TickDuration.currSystemTick;
U u = t;
assert(t == u);
assert(rvalueOf(t) == u);
assert(t == rvalueOf(u));
}
}
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
foreach (U; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
T t = TickDuration.currSystemTick;
U u = t + t;
assert(t < u);
assert(t <= t);
assert(u > t);
assert(u >= u);
assert(rvalueOf(t) < u);
assert(rvalueOf(t) <= t);
assert(rvalueOf(u) > t);
assert(rvalueOf(u) >= u);
assert(t < rvalueOf(u));
assert(t <= rvalueOf(t));
assert(u > rvalueOf(t));
assert(u >= rvalueOf(u));
}
}
}
/++
The legal types of arithmetic for $(D TickDuration) using this operator
overload are
$(TABLE
$(TR $(TD TickDuration) $(TD *) $(TD long) $(TD -->) $(TD TickDuration))
$(TR $(TD TickDuration) $(TD *) $(TD floating point) $(TD -->) $(TD TickDuration))
)
Params:
value = The value to divide from this duration.
+/
void opOpAssign(string op, T)(T value) @safe pure nothrow @nogc
if (op == "*" &&
(__traits(isIntegral, T) || __traits(isFloating, T)))
{
length = cast(long)(length * value);
}
version (CoreUnittest) unittest
{
immutable curr = TickDuration.currSystemTick;
TickDuration t1 = curr;
immutable t2 = curr + curr;
t1 *= 2;
assert(t1 == t2);
t1 = curr;
t1 *= 2.0;
immutable tol = TickDuration(cast(long)(_abs(t1.length) * double.epsilon * 2.0));
assertApprox(t1, t2 - tol, t2 + tol);
t1 = curr;
t1 *= 2.1;
assert(t1 > t2);
foreach (T; AliasSeq!(const TickDuration, immutable TickDuration))
{
T t = TickDuration.currSystemTick;
assert(!__traits(compiles, t *= 12));
assert(!__traits(compiles, t *= 12.0));
}
}
/++
The legal types of arithmetic for $(D TickDuration) using this operator
overload are
$(TABLE
$(TR $(TD TickDuration) $(TD /) $(TD long) $(TD -->) $(TD TickDuration))
$(TR $(TD TickDuration) $(TD /) $(TD floating point) $(TD -->) $(TD TickDuration))
)
Params:
value = The value to divide from this $(D TickDuration).
Throws:
$(D TimeException) if an attempt to divide by $(D 0) is made.
+/
void opOpAssign(string op, T)(T value) @safe pure
if (op == "/" &&
(__traits(isIntegral, T) || __traits(isFloating, T)))
{
if (value == 0)
throw new TimeException("Attempted division by 0.");
length = cast(long)(length / value);
}
version (CoreUnittest) unittest
{
immutable curr = TickDuration.currSystemTick;
immutable t1 = curr;
TickDuration t2 = curr + curr;
t2 /= 2;
assert(t1 == t2);
t2 = curr + curr;
t2 /= 2.0;
immutable tol = TickDuration(cast(long)(_abs(t2.length) * double.epsilon / 2.0));
assertApprox(t1, t2 - tol, t2 + tol);
t2 = curr + curr;
t2 /= 2.1;
assert(t1 > t2);
_assertThrown!TimeException(t2 /= 0);
foreach (T; AliasSeq!(const TickDuration, immutable TickDuration))
{
T t = TickDuration.currSystemTick;
assert(!__traits(compiles, t /= 12));
assert(!__traits(compiles, t /= 12.0));
}
}
/++
The legal types of arithmetic for $(D TickDuration) using this operator
overload are
$(TABLE
$(TR $(TD TickDuration) $(TD *) $(TD long) $(TD -->) $(TD TickDuration))
$(TR $(TD TickDuration) $(TD *) $(TD floating point) $(TD -->) $(TD TickDuration))
)
Params:
value = The value to divide from this $(D TickDuration).
+/
TickDuration opBinary(string op, T)(T value) @safe const pure nothrow @nogc
if (op == "*" &&
(__traits(isIntegral, T) || __traits(isFloating, T)))
{
return TickDuration(cast(long)(length * value));
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
T t1 = TickDuration.currSystemTick;
T t2 = t1 + t1;
assert(t1 * 2 == t2);
immutable tol = TickDuration(cast(long)(_abs(t1.length) * double.epsilon * 2.0));
assertApprox(t1 * 2.0, t2 - tol, t2 + tol);
assert(t1 * 2.1 > t2);
}
}
/++
The legal types of arithmetic for $(D TickDuration) using this operator
overload are
$(TABLE
$(TR $(TD TickDuration) $(TD /) $(TD long) $(TD -->) $(TD TickDuration))
$(TR $(TD TickDuration) $(TD /) $(TD floating point) $(TD -->) $(TD TickDuration))
)
Params:
value = The value to divide from this $(D TickDuration).
Throws:
$(D TimeException) if an attempt to divide by $(D 0) is made.
+/
TickDuration opBinary(string op, T)(T value) @safe const pure
if (op == "/" &&
(__traits(isIntegral, T) || __traits(isFloating, T)))
{
if (value == 0)
throw new TimeException("Attempted division by 0.");
return TickDuration(cast(long)(length / value));
}
version (CoreUnittest) unittest
{
foreach (T; AliasSeq!(TickDuration, const TickDuration, immutable TickDuration))
{
T t1 = TickDuration.currSystemTick;
T t2 = t1 + t1;
assert(t2 / 2 == t1);
immutable tol = TickDuration(cast(long)(_abs(t2.length) * double.epsilon / 2.0));
assertApprox(t2 / 2.0, t1 - tol, t1 + tol);
assert(t2 / 2.1 < t1);
_assertThrown!TimeException(t2 / 0);
}
}
/++
Params:
ticks = The number of ticks in the TickDuration.
+/
@safe pure nothrow @nogc this(long ticks)
{
this.length = ticks;
}
version (CoreUnittest) unittest
{
foreach (i; [-42, 0, 42])
assert(TickDuration(i).length == i);
}
/++
The current system tick. The number of ticks per second varies from
system to system. $(D currSystemTick) uses a monotonic clock, so it's
intended for precision timing by comparing relative time values, not for
getting the current system time.
On Windows, $(D QueryPerformanceCounter) is used. On Mac OS X,
$(D mach_absolute_time) is used, while on other Posix systems,
$(D clock_gettime) is used. If $(D mach_absolute_time) or
$(D clock_gettime) is unavailable, then Posix systems use
$(D gettimeofday) (the decision is made when $(D TickDuration) is
compiled), which unfortunately, is not monotonic, but if
$(D mach_absolute_time) and $(D clock_gettime) aren't available, then
$(D gettimeofday) is the the best that there is.
$(RED Warning):
On some systems, the monotonic clock may stop counting when
the computer goes to sleep or hibernates. So, the monotonic
clock could be off if that occurs. This is known to happen
on Mac OS X. It has not been tested whether it occurs on
either Windows or on Linux.
Throws:
$(D TimeException) if it fails to get the time.
+/
static @property TickDuration currSystemTick() @trusted nothrow @nogc
{
import core.internal.abort : abort;
version (Windows)
{
ulong ticks = void;
QueryPerformanceCounter(cast(long*)&ticks);
return TickDuration(ticks);
}
else version (Darwin)
{
static if (is(typeof(mach_absolute_time)))
return TickDuration(cast(long)mach_absolute_time());
else
{
timeval tv = void;
gettimeofday(&tv, null);
return TickDuration(tv.tv_sec * TickDuration.ticksPerSec +
tv.tv_usec * TickDuration.ticksPerSec / 1000 / 1000);
}
}
else version (Posix)
{
static if (is(typeof(clock_gettime)))
{
timespec ts = void;
immutable error = clock_gettime(CLOCK_MONOTONIC, &ts);
// CLOCK_MONOTONIC is supported and if tv_sec is long or larger
// overflow won't happen before 292 billion years A.D.
static if (ts.tv_sec.max < long.max)
{
if (error)
{
import core.internal.abort : abort;
abort("Call to clock_gettime failed.");
}
}
return TickDuration(ts.tv_sec * TickDuration.ticksPerSec +
ts.tv_nsec * TickDuration.ticksPerSec / 1000 / 1000 / 1000);
}
else
{
timeval tv = void;
gettimeofday(&tv, null);
return TickDuration(tv.tv_sec * TickDuration.ticksPerSec +
tv.tv_usec * TickDuration.ticksPerSec / 1000 / 1000);
}
}
}
version (CoreUnittest) @safe nothrow unittest
{
assert(TickDuration.currSystemTick.length > 0);
}
}
/++
Generic way of converting between two time units. Conversions to smaller
units use truncating division. Years and months can be converted to each
other, small units can be converted to each other, but years and months
cannot be converted to or from smaller units (due to the varying number
of days in a month or year).
Params:
from = The units of time to convert from.
to = The units of time to convert to.
value = The value to convert.
+/
long convert(string from, string to)(long value) @safe pure nothrow @nogc
if (((from == "weeks" ||
from == "days" ||
from == "hours" ||
from == "minutes" ||
from == "seconds" ||
from == "msecs" ||
from == "usecs" ||
from == "hnsecs" ||
from == "nsecs") &&
(to == "weeks" ||
to == "days" ||
to == "hours" ||
to == "minutes" ||
to == "seconds" ||
to == "msecs" ||
to == "usecs" ||
to == "hnsecs" ||
to == "nsecs")) ||
((from == "years" || from == "months") && (to == "years" || to == "months")))
{
static if (from == "years")
{
static if (to == "years")
return value;
else static if (to == "months")
return value * 12;
else
static assert(0, "A generic month or year cannot be converted to or from smaller units.");
}
else static if (from == "months")
{
static if (to == "years")
return value / 12;
else static if (to == "months")
return value;
else
static assert(0, "A generic month or year cannot be converted to or from smaller units.");
}
else static if (from == "nsecs" && to == "nsecs")
return value;
else static if (from == "nsecs")
return convert!("hnsecs", to)(value / 100);
else static if (to == "nsecs")
return convert!(from, "hnsecs")(value) * 100;
else
return (hnsecsPer!from * value) / hnsecsPer!to;
}
///
unittest
{
assert(convert!("years", "months")(1) == 12);
assert(convert!("months", "years")(12) == 1);
assert(convert!("weeks", "days")(1) == 7);
assert(convert!("hours", "seconds")(1) == 3600);
assert(convert!("seconds", "days")(1) == 0);
assert(convert!("seconds", "days")(86_400) == 1);
assert(convert!("nsecs", "nsecs")(1) == 1);
assert(convert!("nsecs", "hnsecs")(1) == 0);
assert(convert!("hnsecs", "nsecs")(1) == 100);
assert(convert!("nsecs", "seconds")(1) == 0);
assert(convert!("seconds", "nsecs")(1) == 1_000_000_000);
}
unittest
{
foreach (units; AliasSeq!("weeks", "days", "hours", "seconds", "msecs", "usecs", "hnsecs", "nsecs"))
{
static assert(!__traits(compiles, convert!("years", units)(12)), units);
static assert(!__traits(compiles, convert!(units, "years")(12)), units);
}
foreach (units; AliasSeq!("years", "months", "weeks", "days",
"hours", "seconds", "msecs", "usecs", "hnsecs", "nsecs"))
{
assert(convert!(units, units)(12) == 12);
}
assert(convert!("weeks", "hnsecs")(1) == 6_048_000_000_000L);
assert(convert!("days", "hnsecs")(1) == 864_000_000_000L);
assert(convert!("hours", "hnsecs")(1) == 36_000_000_000L);
assert(convert!("minutes", "hnsecs")(1) == 600_000_000L);
assert(convert!("seconds", "hnsecs")(1) == 10_000_000L);
assert(convert!("msecs", "hnsecs")(1) == 10_000);
assert(convert!("usecs", "hnsecs")(1) == 10);
assert(convert!("hnsecs", "weeks")(6_048_000_000_000L) == 1);
assert(convert!("hnsecs", "days")(864_000_000_000L) == 1);
assert(convert!("hnsecs", "hours")(36_000_000_000L) == 1);
assert(convert!("hnsecs", "minutes")(600_000_000L) == 1);
assert(convert!("hnsecs", "seconds")(10_000_000L) == 1);
assert(convert!("hnsecs", "msecs")(10_000) == 1);
assert(convert!("hnsecs", "usecs")(10) == 1);
assert(convert!("weeks", "days")(1) == 7);
assert(convert!("days", "weeks")(7) == 1);
assert(convert!("days", "hours")(1) == 24);
assert(convert!("hours", "days")(24) == 1);
assert(convert!("hours", "minutes")(1) == 60);
assert(convert!("minutes", "hours")(60) == 1);
assert(convert!("minutes", "seconds")(1) == 60);
assert(convert!("seconds", "minutes")(60) == 1);
assert(convert!("seconds", "msecs")(1) == 1000);
assert(convert!("msecs", "seconds")(1000) == 1);
assert(convert!("msecs", "usecs")(1) == 1000);
assert(convert!("usecs", "msecs")(1000) == 1);
assert(convert!("usecs", "hnsecs")(1) == 10);
assert(convert!("hnsecs", "usecs")(10) == 1);
assert(convert!("weeks", "nsecs")(1) == 604_800_000_000_000L);
assert(convert!("days", "nsecs")(1) == 86_400_000_000_000L);
assert(convert!("hours", "nsecs")(1) == 3_600_000_000_000L);
assert(convert!("minutes", "nsecs")(1) == 60_000_000_000L);
assert(convert!("seconds", "nsecs")(1) == 1_000_000_000L);
assert(convert!("msecs", "nsecs")(1) == 1_000_000);
assert(convert!("usecs", "nsecs")(1) == 1000);
assert(convert!("hnsecs", "nsecs")(1) == 100);
assert(convert!("nsecs", "weeks")(604_800_000_000_000L) == 1);
assert(convert!("nsecs", "days")(86_400_000_000_000L) == 1);
assert(convert!("nsecs", "hours")(3_600_000_000_000L) == 1);
assert(convert!("nsecs", "minutes")(60_000_000_000L) == 1);
assert(convert!("nsecs", "seconds")(1_000_000_000L) == 1);
assert(convert!("nsecs", "msecs")(1_000_000) == 1);
assert(convert!("nsecs", "usecs")(1000) == 1);
assert(convert!("nsecs", "hnsecs")(100) == 1);
}
/++
Exception type used by core.time.
+/
class TimeException : Exception
{
/++
Params:
msg = The message for the exception.
file = The file where the exception occurred.
line = The line number where the exception occurred.
next = The previous exception in the chain of exceptions, if any.
+/
this(string msg, string file = __FILE__, size_t line = __LINE__, Throwable next = null) @safe pure nothrow
{
super(msg, file, line, next);
}
/++
Params:
msg = The message for the exception.
next = The previous exception in the chain of exceptions.
file = The file where the exception occurred.
line = The line number where the exception occurred.
+/
this(string msg, Throwable next, string file = __FILE__, size_t line = __LINE__) @safe pure nothrow
{
super(msg, file, line, next);
}
}
unittest
{
{
auto e = new TimeException("hello");
assert(e.msg == "hello");
assert(e.file == __FILE__);
assert(e.line == __LINE__ - 3);
assert(e.next is null);
}
{
auto next = new Exception("foo");
auto e = new TimeException("goodbye", next);
assert(e.msg == "goodbye");
assert(e.file == __FILE__);
assert(e.line == __LINE__ - 3);
assert(e.next is next);
}
}
/++
Returns the absolute value of a duration.
+/
Duration abs(Duration duration) @safe pure nothrow @nogc
{
return Duration(_abs(duration._hnsecs));
}
/++ Ditto +/
TickDuration abs(TickDuration duration) @safe pure nothrow @nogc
{
return TickDuration(_abs(duration.length));
}
unittest
{
assert(abs(dur!"msecs"(5)) == dur!"msecs"(5));
assert(abs(dur!"msecs"(-5)) == dur!"msecs"(5));
assert(abs(TickDuration(17)) == TickDuration(17));
assert(abs(TickDuration(-17)) == TickDuration(17));
}
//==============================================================================
// Private Section.
//
// Much of this is a copy or simplified copy of what's in std.datetime.
//==============================================================================
private:
/+
Template to help with converting between time units.
+/
template hnsecsPer(string units)
if (units == "weeks" ||
units == "days" ||
units == "hours" ||
units == "minutes" ||
units == "seconds" ||
units == "msecs" ||
units == "usecs" ||
units == "hnsecs")
{
static if (units == "hnsecs")
enum hnsecsPer = 1L;
else static if (units == "usecs")
enum hnsecsPer = 10L;
else static if (units == "msecs")
enum hnsecsPer = 1000 * hnsecsPer!"usecs";
else static if (units == "seconds")
enum hnsecsPer = 1000 * hnsecsPer!"msecs";
else static if (units == "minutes")
enum hnsecsPer = 60 * hnsecsPer!"seconds";
else static if (units == "hours")
enum hnsecsPer = 60 * hnsecsPer!"minutes";
else static if (units == "days")
enum hnsecsPer = 24 * hnsecsPer!"hours";
else static if (units == "weeks")
enum hnsecsPer = 7 * hnsecsPer!"days";
}
/+
Splits out a particular unit from hnsecs and gives you the value for that
unit and the remaining hnsecs. It really shouldn't be used unless all units
larger than the given units have already been split out.
Params:
units = The units to split out.
hnsecs = The current total hnsecs. Upon returning, it is the hnsecs left
after splitting out the given units.
Returns:
The number of the given units from converting hnsecs to those units.
+/
long splitUnitsFromHNSecs(string units)(ref long hnsecs) @safe pure nothrow @nogc
if (units == "weeks" ||
units == "days" ||
units == "hours" ||
units == "minutes" ||
units == "seconds" ||
units == "msecs" ||
units == "usecs" ||
units == "hnsecs")
{
immutable value = convert!("hnsecs", units)(hnsecs);
hnsecs -= convert!(units, "hnsecs")(value);
return value;
}
unittest
{
auto hnsecs = 2595000000007L;
immutable days = splitUnitsFromHNSecs!"days"(hnsecs);
assert(days == 3);
assert(hnsecs == 3000000007);
immutable minutes = splitUnitsFromHNSecs!"minutes"(hnsecs);
assert(minutes == 5);
assert(hnsecs == 7);
}
/+
Whether all of the given strings are among the accepted strings.
+/
bool allAreAcceptedUnits(acceptedUnits...)(scope string[] units)
{
foreach (unit; units)
{
bool found = false;
foreach (acceptedUnit; acceptedUnits)
{
if (unit == acceptedUnit)
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
unittest
{
assert(allAreAcceptedUnits!("hours", "seconds")(["seconds", "hours"]));
assert(!allAreAcceptedUnits!("hours", "seconds")(["minutes", "hours"]));
assert(!allAreAcceptedUnits!("hours", "seconds")(["seconds", "minutes"]));
assert(allAreAcceptedUnits!("days", "hours", "minutes", "seconds", "msecs")(["minutes"]));
assert(!allAreAcceptedUnits!("days", "hours", "minutes", "seconds", "msecs")(["usecs"]));
assert(!allAreAcceptedUnits!("days", "hours", "minutes", "seconds", "msecs")(["secs"]));
}
/+
Whether the given time unit strings are arranged in order from largest to
smallest.
+/
bool unitsAreInDescendingOrder(scope string[] units)
{
if (units.length <= 1)
return true;
immutable string[] timeStrings = ["nsecs", "hnsecs", "usecs", "msecs", "seconds",
"minutes", "hours", "days", "weeks", "months", "years"];
size_t currIndex = 42;
foreach (i, timeStr; timeStrings)
{
if (units[0] == timeStr)
{
currIndex = i;
break;
}
}
assert(currIndex != 42);
foreach (unit; units[1 .. $])
{
size_t nextIndex = 42;
foreach (i, timeStr; timeStrings)
{
if (unit == timeStr)
{
nextIndex = i;
break;
}
}
assert(nextIndex != 42);
if (currIndex <= nextIndex)
return false;
currIndex = nextIndex;
}
return true;
}
unittest
{
assert(unitsAreInDescendingOrder(["years", "months", "weeks", "days", "hours", "minutes",
"seconds", "msecs", "usecs", "hnsecs", "nsecs"]));
assert(unitsAreInDescendingOrder(["weeks", "hours", "msecs"]));
assert(unitsAreInDescendingOrder(["days", "hours", "minutes"]));
assert(unitsAreInDescendingOrder(["hnsecs"]));
assert(!unitsAreInDescendingOrder(["days", "hours", "hours"]));
assert(!unitsAreInDescendingOrder(["days", "hours", "days"]));
}
version (Darwin)
long machTicksPerSecond()
{
// Be optimistic that ticksPerSecond (1e9*denom/numer) is integral. So far
// so good on Darwin based platforms OS X, iOS.
import core.internal.abort : abort;
mach_timebase_info_data_t info;
if (mach_timebase_info(&info) != 0)
abort("Failed in mach_timebase_info().");
long scaledDenom = 1_000_000_000L * info.denom;
if (scaledDenom % info.numer != 0)
abort("Non integral ticksPerSecond from mach_timebase_info.");
return scaledDenom / info.numer;
}
/+
Local version of abs, since std.math.abs is in Phobos, not druntime.
+/
long _abs(long val) @safe pure nothrow @nogc
{
return val >= 0 ? val : -val;
}
double _abs(double val) @safe pure nothrow @nogc
{
return val >= 0.0 ? val : -val;
}
version (CoreUnittest)
string doubleToString(double value) @safe pure nothrow
{
string result;
if (value < 0 && cast(long)value == 0)
result = "-0";
else
result = signedToTempString(cast(long)value).idup;
result ~= '.';
result ~= unsignedToTempString(cast(ulong)(_abs((value - cast(long)value) * 1_000_000) + .5));
while (result[$-1] == '0')
result = result[0 .. $-1];
return result;
}
unittest
{
auto a = 1.337;
auto aStr = doubleToString(a);
assert(aStr == "1.337", aStr);
a = 0.337;
aStr = doubleToString(a);
assert(aStr == "0.337", aStr);
a = -0.337;
aStr = doubleToString(a);
assert(aStr == "-0.337", aStr);
}
version (CoreUnittest) const(char)* numToStringz()(long value) @trusted pure nothrow
{
return (signedToTempString(value) ~ "\0").ptr;
}
import core.internal.traits : AliasSeq;
/+ An adjusted copy of std.exception.assertThrown. +/
version (CoreUnittest) void _assertThrown(T : Throwable = Exception, E)
(lazy E expression,
string msg = null,
string file = __FILE__,
size_t line = __LINE__)
{
bool thrown = false;
try
expression();
catch (T t)
thrown = true;
if (!thrown)
{
immutable tail = msg.length == 0 ? "." : ": " ~ msg;
throw new AssertError("assertThrown() failed: No " ~ T.stringof ~ " was thrown" ~ tail, file, line);
}
}
unittest
{
void throwEx(Throwable t)
{
throw t;
}
void nothrowEx()
{}
try
_assertThrown!Exception(throwEx(new Exception("It's an Exception")));
catch (AssertError)
assert(0);
try
_assertThrown!Exception(throwEx(new Exception("It's an Exception")), "It's a message");
catch (AssertError)
assert(0);
try
_assertThrown!AssertError(throwEx(new AssertError("It's an AssertError", __FILE__, __LINE__)));
catch (AssertError)
assert(0);
try
_assertThrown!AssertError(throwEx(new AssertError("It's an AssertError", __FILE__, __LINE__)), "It's a message");
catch (AssertError)
assert(0);
{
bool thrown = false;
try
_assertThrown!Exception(nothrowEx());
catch (AssertError)
thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
_assertThrown!Exception(nothrowEx(), "It's a message");
catch (AssertError)
thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
_assertThrown!AssertError(nothrowEx());
catch (AssertError)
thrown = true;
assert(thrown);
}
{
bool thrown = false;
try
_assertThrown!AssertError(nothrowEx(), "It's a message");
catch (AssertError)
thrown = true;
assert(thrown);
}
}
version (CoreUnittest) void assertApprox(D, E)(D actual,
E lower,
E upper,
string msg = "unittest failure",
size_t line = __LINE__)
if (is(D : const Duration) && is(E : const Duration))
{
if (actual < lower)
throw new AssertError(msg ~ ": lower: " ~ actual.toString(), __FILE__, line);
if (actual > upper)
throw new AssertError(msg ~ ": upper: " ~ actual.toString(), __FILE__, line);
}
version (CoreUnittest) void assertApprox(D, E)(D actual,
E lower,
E upper,
string msg = "unittest failure",
size_t line = __LINE__)
if (is(D : const TickDuration) && is(E : const TickDuration))
{
if (actual.length < lower.length || actual.length > upper.length)
{
throw new AssertError(msg ~ (": [" ~ signedToTempString(lower.length) ~ "] [" ~
signedToTempString(actual.length) ~ "] [" ~
signedToTempString(upper.length) ~ "]").idup,
__FILE__, line);
}
}
version (CoreUnittest) void assertApprox(MT)(MT actual,
MT lower,
MT upper,
string msg = "unittest failure",
size_t line = __LINE__)
if (is(MT == MonoTimeImpl!type, ClockType type))
{
assertApprox(actual._ticks, lower._ticks, upper._ticks, msg, line);
}
version (CoreUnittest) void assertApprox()(long actual,
long lower,
long upper,
string msg = "unittest failure",
size_t line = __LINE__)
{
if (actual < lower)
throw new AssertError(msg ~ ": lower: " ~ signedToTempString(actual).idup, __FILE__, line);
if (actual > upper)
throw new AssertError(msg ~ ": upper: " ~ signedToTempString(actual).idup, __FILE__, line);
}
|