1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
|
// Written in the D programming language.
/**
This is a submodule of $(MREF std, algorithm).
It contains generic _mutation algorithms.
$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Function Name) $(TH Description))
$(T2 bringToFront,
If $(D a = [1, 2, 3]) and $(D b = [4, 5, 6, 7]),
$(D bringToFront(a, b)) leaves $(D a = [4, 5, 6]) and
$(D b = [7, 1, 2, 3]).)
$(T2 copy,
Copies a range to another. If
$(D a = [1, 2, 3]) and $(D b = new int[5]), then $(D copy(a, b))
leaves $(D b = [1, 2, 3, 0, 0]) and returns $(D b[3 .. $]).)
$(T2 fill,
Fills a range with a pattern,
e.g., if $(D a = new int[3]), then $(D fill(a, 4))
leaves $(D a = [4, 4, 4]) and $(D fill(a, [3, 4])) leaves
$(D a = [3, 4, 3]).)
$(T2 initializeAll,
If $(D a = [1.2, 3.4]), then $(D initializeAll(a)) leaves
$(D a = [double.init, double.init]).)
$(T2 move,
$(D move(a, b)) moves $(D a) into $(D b). $(D move(a)) reads $(D a)
destructively when necessary.)
$(T2 moveEmplace,
Similar to $(D move) but assumes `target` is uninitialized.)
$(T2 moveAll,
Moves all elements from one range to another.)
$(T2 moveEmplaceAll,
Similar to $(D moveAll) but assumes all elements in `target` are uninitialized.)
$(T2 moveSome,
Moves as many elements as possible from one range to another.)
$(T2 moveEmplaceSome,
Similar to $(D moveSome) but assumes all elements in `target` are uninitialized.)
$(T2 remove,
Removes elements from a range in-place, and returns the shortened
range.)
$(T2 reverse,
If $(D a = [1, 2, 3]), $(D reverse(a)) changes it to $(D [3, 2, 1]).)
$(T2 strip,
Strips all leading and trailing elements equal to a value, or that
satisfy a predicate.
If $(D a = [1, 1, 0, 1, 1]), then $(D strip(a, 1)) and
$(D strip!(e => e == 1)(a)) returns $(D [0]).)
$(T2 stripLeft,
Strips all leading elements equal to a value, or that satisfy a
predicate. If $(D a = [1, 1, 0, 1, 1]), then $(D stripLeft(a, 1)) and
$(D stripLeft!(e => e == 1)(a)) returns $(D [0, 1, 1]).)
$(T2 stripRight,
Strips all trailing elements equal to a value, or that satisfy a
predicate.
If $(D a = [1, 1, 0, 1, 1]), then $(D stripRight(a, 1)) and
$(D stripRight!(e => e == 1)(a)) returns $(D [1, 1, 0]).)
$(T2 swap,
Swaps two values.)
$(T2 swapAt,
Swaps two values by indices.)
$(T2 swapRanges,
Swaps all elements of two ranges.)
$(T2 uninitializedFill,
Fills a range (assumed uninitialized) with a value.)
)
Copyright: Andrei Alexandrescu 2008-.
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP erdani.com, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/algorithm/_mutation.d)
Macros:
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
*/
module std.algorithm.mutation;
import std.range.primitives;
import std.traits : isArray, isBlitAssignable, isNarrowString, Unqual, isSomeChar;
// FIXME
import std.typecons; // : tuple, Tuple;
// bringToFront
/**
The $(D bringToFront) function has considerable flexibility and
usefulness. It can rotate elements in one buffer left or right, swap
buffers of equal length, and even move elements across disjoint
buffers of different types and different lengths.
$(D bringToFront) takes two ranges $(D front) and $(D back), which may
be of different types. Considering the concatenation of $(D front) and
$(D back) one unified range, $(D bringToFront) rotates that unified
range such that all elements in $(D back) are brought to the beginning
of the unified range. The relative ordering of elements in $(D front)
and $(D back), respectively, remains unchanged.
The $(D bringToFront) function treats strings at the code unit
level and it is not concerned with Unicode character integrity.
$(D bringToFront) is designed as a function for moving elements
in ranges, not as a string function.
Performs $(BIGOH max(front.length, back.length)) evaluations of $(D
swap).
Preconditions:
Either $(D front) and $(D back) are disjoint, or $(D back) is
reachable from $(D front) and $(D front) is not reachable from $(D
back).
Params:
front = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
back = a $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
Returns:
The number of elements brought to the front, i.e., the length of $(D back).
See_Also:
$(HTTP sgi.com/tech/stl/_rotate.html, STL's rotate)
*/
size_t bringToFront(InputRange, ForwardRange)(InputRange front, ForwardRange back)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
import std.string : representation;
static if (isNarrowString!InputRange)
{
auto frontW = representation(front);
}
else
{
alias frontW = front;
}
static if (isNarrowString!ForwardRange)
{
auto backW = representation(back);
}
else
{
alias backW = back;
}
return bringToFrontImpl(frontW, backW);
}
private size_t bringToFrontImpl(InputRange, ForwardRange)(InputRange front, ForwardRange back)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
import std.array : sameHead;
import std.range : take, Take;
enum bool sameHeadExists = is(typeof(front.sameHead(back)));
size_t result;
for (bool semidone; !front.empty && !back.empty; )
{
static if (sameHeadExists)
{
if (front.sameHead(back)) break; // shortcut
}
// Swap elements until front and/or back ends.
auto back0 = back.save;
size_t nswaps;
do
{
static if (sameHeadExists)
{
// Detect the stepping-over condition.
if (front.sameHead(back0)) back0 = back.save;
}
swapFront(front, back);
++nswaps;
front.popFront();
back.popFront();
}
while (!front.empty && !back.empty);
if (!semidone) result += nswaps;
// Now deal with the remaining elements.
if (back.empty)
{
if (front.empty) break;
// Right side was shorter, which means that we've brought
// all the back elements to the front.
semidone = true;
// Next pass: bringToFront(front, back0) to adjust the rest.
back = back0;
}
else
{
assert(front.empty);
// Left side was shorter. Let's step into the back.
static if (is(InputRange == Take!ForwardRange))
{
front = take(back0, nswaps);
}
else
{
immutable subresult = bringToFront(take(back0, nswaps),
back);
if (!semidone) result += subresult;
break; // done
}
}
}
return result;
}
/**
The simplest use of $(D bringToFront) is for rotating elements in a
buffer. For example:
*/
@safe unittest
{
auto arr = [4, 5, 6, 7, 1, 2, 3];
auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);
assert(p == arr.length - 4);
assert(arr == [ 1, 2, 3, 4, 5, 6, 7 ]);
}
/**
The $(D front) range may actually "step over" the $(D back)
range. This is very useful with forward ranges that cannot compute
comfortably right-bounded subranges like $(D arr[0 .. 4]) above. In
the example below, $(D r2) is a right subrange of $(D r1).
*/
@safe unittest
{
import std.algorithm.comparison : equal;
import std.container : SList;
import std.range.primitives : popFrontN;
auto list = SList!(int)(4, 5, 6, 7, 1, 2, 3);
auto r1 = list[];
auto r2 = list[]; popFrontN(r2, 4);
assert(equal(r2, [ 1, 2, 3 ]));
bringToFront(r1, r2);
assert(equal(list[], [ 1, 2, 3, 4, 5, 6, 7 ]));
}
/**
Elements can be swapped across ranges of different types:
*/
@safe unittest
{
import std.algorithm.comparison : equal;
import std.container : SList;
auto list = SList!(int)(4, 5, 6, 7);
auto vec = [ 1, 2, 3 ];
bringToFront(list[], vec);
assert(equal(list[], [ 1, 2, 3, 4 ]));
assert(equal(vec, [ 5, 6, 7 ]));
}
/**
Unicode integrity is not preserved:
*/
@safe unittest
{
import std.string : representation;
auto ar = representation("a".dup);
auto br = representation("ç".dup);
bringToFront(ar, br);
auto a = cast(char[]) ar;
auto b = cast(char[]) br;
// Illegal UTF-8
assert(a == "\303");
// Illegal UTF-8
assert(b == "\247a");
}
@safe unittest
{
import std.algorithm.comparison : equal;
import std.conv : text;
import std.random : Random, unpredictableSeed, uniform;
// a more elaborate test
{
auto rnd = Random(unpredictableSeed);
int[] a = new int[uniform(100, 200, rnd)];
int[] b = new int[uniform(100, 200, rnd)];
foreach (ref e; a) e = uniform(-100, 100, rnd);
foreach (ref e; b) e = uniform(-100, 100, rnd);
int[] c = a ~ b;
// writeln("a= ", a);
// writeln("b= ", b);
auto n = bringToFront(c[0 .. a.length], c[a.length .. $]);
//writeln("c= ", c);
assert(n == b.length);
assert(c == b ~ a, text(c, "\n", a, "\n", b));
}
// different types, moveFront, no sameHead
{
static struct R(T)
{
T[] data;
size_t i;
@property
{
R save() { return this; }
bool empty() { return i >= data.length; }
T front() { return data[i]; }
T front(real e) { return data[i] = cast(T) e; }
}
void popFront() { ++i; }
}
auto a = R!int([1, 2, 3, 4, 5]);
auto b = R!real([6, 7, 8, 9]);
auto n = bringToFront(a, b);
assert(n == 4);
assert(a.data == [6, 7, 8, 9, 1]);
assert(b.data == [2, 3, 4, 5]);
}
// front steps over back
{
int[] arr, r1, r2;
// back is shorter
arr = [4, 5, 6, 7, 1, 2, 3];
r1 = arr;
r2 = arr[4 .. $];
bringToFront(r1, r2) == 3 || assert(0);
assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
// front is shorter
arr = [5, 6, 7, 1, 2, 3, 4];
r1 = arr;
r2 = arr[3 .. $];
bringToFront(r1, r2) == 4 || assert(0);
assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
}
// Bugzilla 16959
auto arr = ['4', '5', '6', '7', '1', '2', '3'];
auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);
assert(p == arr.length - 4);
assert(arr == ['1', '2', '3', '4', '5', '6', '7']);
}
// Tests if types are arrays and support slice assign.
private enum bool areCopyCompatibleArrays(T1, T2) =
isArray!T1 && isArray!T2 && is(typeof(T2.init[] = T1.init[]));
// copy
/**
Copies the content of $(D source) into $(D target) and returns the
remaining (unfilled) part of $(D target).
Preconditions: $(D target) shall have enough room to accommodate
the entirety of $(D source).
Params:
source = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
target = an output range
Returns:
The unfilled part of target
See_Also:
$(HTTP sgi.com/tech/stl/_copy.html, STL's _copy)
*/
TargetRange copy(SourceRange, TargetRange)(SourceRange source, TargetRange target)
if (areCopyCompatibleArrays!(SourceRange, TargetRange))
{
const tlen = target.length;
const slen = source.length;
assert(tlen >= slen,
"Cannot copy a source range into a smaller target range.");
immutable overlaps = __ctfe || () @trusted {
return source.ptr < target.ptr + tlen &&
target.ptr < source.ptr + slen; }();
if (overlaps)
{
foreach (idx; 0 .. slen)
target[idx] = source[idx];
return target[slen .. tlen];
}
else
{
// Array specialization. This uses optimized memory copying
// routines under the hood and is about 10-20x faster than the
// generic implementation.
target[0 .. slen] = source[];
return target[slen .. $];
}
}
/// ditto
TargetRange copy(SourceRange, TargetRange)(SourceRange source, TargetRange target)
if (!areCopyCompatibleArrays!(SourceRange, TargetRange) &&
isInputRange!SourceRange &&
isOutputRange!(TargetRange, ElementType!SourceRange))
{
// Specialize for 2 random access ranges.
// Typically 2 random access ranges are faster iterated by common
// index than by x.popFront(), y.popFront() pair
static if (isRandomAccessRange!SourceRange &&
hasLength!SourceRange &&
hasSlicing!TargetRange &&
isRandomAccessRange!TargetRange &&
hasLength!TargetRange)
{
auto len = source.length;
foreach (idx; 0 .. len)
target[idx] = source[idx];
return target[len .. target.length];
}
else
{
put(target, source);
return target;
}
}
///
@safe unittest
{
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
int[] buf = new int[](a.length + b.length + 10);
auto rem = a.copy(buf); // copy a into buf
rem = b.copy(rem); // copy b into remainder of buf
assert(buf[0 .. a.length + b.length] == [1, 5, 9, 8]);
assert(rem.length == 10); // unused slots in buf
}
/**
As long as the target range elements support assignment from source
range elements, different types of ranges are accepted:
*/
@safe unittest
{
float[] src = [ 1.0f, 5 ];
double[] dest = new double[src.length];
src.copy(dest);
}
/**
To _copy at most $(D n) elements from a range, you may want to use
$(REF take, std,range):
*/
@safe unittest
{
import std.range;
int[] src = [ 1, 5, 8, 9, 10 ];
auto dest = new int[](3);
src.take(dest.length).copy(dest);
assert(dest == [ 1, 5, 8 ]);
}
/**
To _copy just those elements from a range that satisfy a predicate,
use $(LREF filter):
*/
@safe unittest
{
import std.algorithm.iteration : filter;
int[] src = [ 1, 5, 8, 9, 10, 1, 2, 0 ];
auto dest = new int[src.length];
auto rem = src
.filter!(a => (a & 1) == 1)
.copy(dest);
assert(dest[0 .. $ - rem.length] == [ 1, 5, 9, 1 ]);
}
/**
$(REF retro, std,range) can be used to achieve behavior similar to
$(HTTP sgi.com/tech/stl/copy_backward.html, STL's copy_backward'):
*/
@safe unittest
{
import std.algorithm, std.range;
int[] src = [1, 2, 4];
int[] dest = [0, 0, 0, 0, 0];
src.retro.copy(dest.retro);
assert(dest == [0, 0, 1, 2, 4]);
}
// Test CTFE copy.
@safe unittest
{
enum c = copy([1,2,3], [4,5,6,7]);
assert(c == [7]);
}
@safe unittest
{
import std.algorithm.iteration : filter;
{
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
auto e = copy(filter!("a > 1")(a), b);
assert(b[0] == 5 && e.length == 1);
}
{
int[] a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
copy(a[5 .. 10], a[4 .. 9]);
assert(a[4 .. 9] == [6, 7, 8, 9, 10]);
}
{ // Test for bug 7898
enum v =
{
import std.algorithm;
int[] arr1 = [10, 20, 30, 40, 50];
int[] arr2 = arr1.dup;
copy(arr1, arr2);
return 35;
}();
assert(v == 35);
}
}
@safe unittest
{
// Issue 13650
import std.meta : AliasSeq;
foreach (Char; AliasSeq!(char, wchar, dchar))
{
Char[3] a1 = "123";
Char[6] a2 = "456789";
assert(copy(a1[], a2[]) is a2[3..$]);
assert(a1[] == "123");
assert(a2[] == "123789");
}
}
/**
Assigns $(D value) to each element of input _range $(D range).
Params:
range = An
$(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
that exposes references to its elements and has assignable
elements
value = Assigned to each element of range
See_Also:
$(LREF uninitializedFill)
$(LREF initializeAll)
*/
void fill(Range, Value)(auto ref Range range, auto ref Value value)
if ((isInputRange!Range && is(typeof(range.front = value)) ||
isSomeChar!Value && is(typeof(range[] = value))))
{
alias T = ElementType!Range;
static if (is(typeof(range[] = value)))
{
range[] = value;
}
else static if (is(typeof(range[] = T(value))))
{
range[] = T(value);
}
else
{
for ( ; !range.empty; range.popFront() )
{
range.front = value;
}
}
}
///
@safe unittest
{
int[] a = [ 1, 2, 3, 4 ];
fill(a, 5);
assert(a == [ 5, 5, 5, 5 ]);
}
// issue 16342, test fallback on mutable narrow strings
@safe unittest
{
char[] chars = ['a', 'b'];
fill(chars, 'c');
assert(chars == "cc");
char[2] chars2 = ['a', 'b'];
fill(chars2, 'c');
assert(chars2 == "cc");
wchar[] wchars = ['a', 'b'];
fill(wchars, wchar('c'));
assert(wchars == "cc"w);
dchar[] dchars = ['a', 'b'];
fill(dchars, dchar('c'));
assert(dchars == "cc"d);
}
@nogc @safe unittest
{
const(char)[] chars;
assert(chars.length == 0);
static assert(!__traits(compiles, fill(chars, 'c')));
wstring wchars;
assert(wchars.length == 0);
static assert(!__traits(compiles, fill(wchars, wchar('c'))));
}
@nogc @safe unittest
{
char[] chars;
fill(chars, 'c');
assert(chars == ""c);
}
@safe unittest
{
shared(char)[] chrs = ['r'];
fill(chrs, 'c');
assert(chrs == [shared(char)('c')]);
}
@nogc @safe unittest
{
struct Str(size_t len)
{
private char[len] _data;
void opIndexAssign(char value) @safe @nogc
{_data[] = value;}
}
Str!2 str;
str.fill(':');
assert(str._data == "::");
}
@safe unittest
{
char[] chars = ['a','b','c','d'];
chars[1 .. 3].fill(':');
assert(chars == "a::d");
}
// end issue 16342
@safe unittest
{
import std.conv : text;
import std.internal.test.dummyrange;
int[] a = [ 1, 2, 3 ];
fill(a, 6);
assert(a == [ 6, 6, 6 ], text(a));
void fun0()
{
foreach (i; 0 .. 1000)
{
foreach (ref e; a) e = 6;
}
}
void fun1() { foreach (i; 0 .. 1000) fill(a, 6); }
// fill should accept InputRange
alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input);
enum filler = uint.max;
InputRange range;
fill(range, filler);
foreach (value; range.arr)
assert(value == filler);
}
@safe unittest
{
//ER8638_1 IS_NOT self assignable
static struct ER8638_1
{
void opAssign(int){}
}
//ER8638_1 IS self assignable
static struct ER8638_2
{
void opAssign(ER8638_2){}
void opAssign(int){}
}
auto er8638_1 = new ER8638_1[](10);
auto er8638_2 = new ER8638_2[](10);
er8638_1.fill(5); //generic case
er8638_2.fill(5); //opSlice(T.init) case
}
@safe unittest
{
{
int[] a = [1, 2, 3];
immutable(int) b = 0;
a.fill(b);
assert(a == [0, 0, 0]);
}
{
double[] a = [1, 2, 3];
immutable(int) b = 0;
a.fill(b);
assert(a == [0, 0, 0]);
}
}
/**
Fills $(D range) with a pattern copied from $(D filler). The length of
$(D range) does not have to be a multiple of the length of $(D
filler). If $(D filler) is empty, an exception is thrown.
Params:
range = An $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
that exposes references to its elements and has assignable elements.
filler = The
$(REF_ALTTEXT forward _range, isForwardRange, std,_range,primitives)
representing the _fill pattern.
*/
void fill(InputRange, ForwardRange)(InputRange range, ForwardRange filler)
if (isInputRange!InputRange
&& (isForwardRange!ForwardRange
|| (isInputRange!ForwardRange && isInfinite!ForwardRange))
&& is(typeof(InputRange.init.front = ForwardRange.init.front)))
{
static if (isInfinite!ForwardRange)
{
//ForwardRange is infinite, no need for bounds checking or saving
static if (hasSlicing!ForwardRange && hasLength!InputRange
&& is(typeof(filler[0 .. range.length])))
{
copy(filler[0 .. range.length], range);
}
else
{
//manual feed
for ( ; !range.empty; range.popFront(), filler.popFront())
{
range.front = filler.front;
}
}
}
else
{
import std.exception : enforce;
enforce(!filler.empty, "Cannot fill range with an empty filler");
static if (hasLength!InputRange && hasLength!ForwardRange
&& is(typeof(range.length > filler.length)))
{
//Case we have access to length
immutable len = filler.length;
//Start by bulk copies
while (range.length > len)
{
range = copy(filler.save, range);
}
//and finally fill the partial range. No need to save here.
static if (hasSlicing!ForwardRange && is(typeof(filler[0 .. range.length])))
{
//use a quick copy
auto len2 = range.length;
range = copy(filler[0 .. len2], range);
}
else
{
//iterate. No need to check filler, it's length is longer than range's
for (; !range.empty; range.popFront(), filler.popFront())
{
range.front = filler.front;
}
}
}
else
{
//Most basic case.
auto bck = filler.save;
for (; !range.empty; range.popFront(), filler.popFront())
{
if (filler.empty) filler = bck.save;
range.front = filler.front;
}
}
}
}
///
@safe unittest
{
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = [ 8, 9 ];
fill(a, b);
assert(a == [ 8, 9, 8, 9, 8 ]);
}
@safe unittest
{
import std.exception : assertThrown;
import std.internal.test.dummyrange;
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = [1, 2];
fill(a, b);
assert(a == [ 1, 2, 1, 2, 1 ]);
// fill should accept InputRange
alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input);
InputRange range;
fill(range,[1,2]);
foreach (i,value;range.arr)
assert(value == (i%2 == 0?1:2));
//test with a input being a "reference forward" range
fill(a, new ReferenceForwardRange!int([8, 9]));
assert(a == [8, 9, 8, 9, 8]);
//test with a input being an "infinite input" range
fill(a, new ReferenceInfiniteInputRange!int());
assert(a == [0, 1, 2, 3, 4]);
//empty filler test
assertThrown(fill(a, a[$..$]));
}
/**
Initializes all elements of $(D range) with their $(D .init) value.
Assumes that the elements of the range are uninitialized.
Params:
range = An
$(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
that exposes references to its elements and has assignable
elements
See_Also:
$(LREF fill)
$(LREF uninitializeFill)
*/
void initializeAll(Range)(Range range)
if (isInputRange!Range && hasLvalueElements!Range && hasAssignableElements!Range)
{
import core.stdc.string : memset, memcpy;
import std.traits : hasElaborateAssign, isDynamicArray;
alias T = ElementType!Range;
static if (hasElaborateAssign!T)
{
import std.algorithm.internal : addressOf;
//Elaborate opAssign. Must go the memcpy road.
//We avoid calling emplace here, because our goal is to initialize to
//the static state of T.init,
//So we want to avoid any un-necassarilly CC'ing of T.init
auto p = typeid(T).initializer();
if (p.ptr)
{
for ( ; !range.empty ; range.popFront() )
{
static if (__traits(isStaticArray, T))
{
// static array initializer only contains initialization
// for one element of the static array.
auto elemp = cast(void *) addressOf(range.front);
auto endp = elemp + T.sizeof;
while (elemp < endp)
{
memcpy(elemp, p.ptr, p.length);
elemp += p.length;
}
}
else
{
memcpy(addressOf(range.front), p.ptr, T.sizeof);
}
}
}
else
static if (isDynamicArray!Range)
memset(range.ptr, 0, range.length * T.sizeof);
else
for ( ; !range.empty ; range.popFront() )
memset(addressOf(range.front), 0, T.sizeof);
}
else
fill(range, T.init);
}
/// ditto
void initializeAll(Range)(Range range)
if (is(Range == char[]) || is(Range == wchar[]))
{
alias T = ElementEncodingType!Range;
range[] = T.init;
}
///
@system unittest
{
import core.stdc.stdlib : malloc, free;
struct S
{
int a = 10;
}
auto s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5];
initializeAll(s);
assert(s == [S(10), S(10), S(10), S(10), S(10)]);
scope(exit) free(s.ptr);
}
@system unittest
{
import std.algorithm.iteration : filter;
import std.meta : AliasSeq;
import std.traits : hasElaborateAssign;
//Test strings:
//Must work on narrow strings.
//Must reject const
char[3] a = void;
a[].initializeAll();
assert(a[] == [char.init, char.init, char.init]);
string s;
assert(!__traits(compiles, s.initializeAll()));
assert(!__traits(compiles, s.initializeAll()));
assert(s.empty);
//Note: Cannot call uninitializedFill on narrow strings
enum e {e1, e2}
e[3] b1 = void;
b1[].initializeAll();
assert(b1[] == [e.e1, e.e1, e.e1]);
e[3] b2 = void;
b2[].uninitializedFill(e.e2);
assert(b2[] == [e.e2, e.e2, e.e2]);
static struct S1
{
int i;
}
static struct S2
{
int i = 1;
}
static struct S3
{
int i;
this(this){}
}
static struct S4
{
int i = 1;
this(this){}
}
static assert(!hasElaborateAssign!S1);
static assert(!hasElaborateAssign!S2);
static assert( hasElaborateAssign!S3);
static assert( hasElaborateAssign!S4);
assert(!typeid(S1).initializer().ptr);
assert( typeid(S2).initializer().ptr);
assert(!typeid(S3).initializer().ptr);
assert( typeid(S4).initializer().ptr);
foreach (S; AliasSeq!(S1, S2, S3, S4))
{
//initializeAll
{
//Array
S[3] ss1 = void;
ss1[].initializeAll();
assert(ss1[] == [S.init, S.init, S.init]);
//Not array
S[3] ss2 = void;
auto sf = ss2[].filter!"true"();
sf.initializeAll();
assert(ss2[] == [S.init, S.init, S.init]);
}
//uninitializedFill
{
//Array
S[3] ss1 = void;
ss1[].uninitializedFill(S(2));
assert(ss1[] == [S(2), S(2), S(2)]);
//Not array
S[3] ss2 = void;
auto sf = ss2[].filter!"true"();
sf.uninitializedFill(S(2));
assert(ss2[] == [S(2), S(2), S(2)]);
}
}
}
// test that initializeAll works for arrays of static arrays of structs with
// elaborate assigns.
@system unittest
{
struct Int {
~this() {}
int x = 3;
}
Int[2] xs = [Int(1), Int(2)];
struct R {
bool done;
bool empty() { return done; }
ref Int[2] front() { return xs; }
void popFront() { done = true; }
}
initializeAll(R());
assert(xs[0].x == 3);
assert(xs[1].x == 3);
}
// move
/**
Moves `source` into `target`, via a destructive copy when necessary.
If `T` is a struct with a destructor or postblit defined, source is reset
to its `.init` value after it is moved into target, otherwise it is
left unchanged.
Preconditions:
If source has internal pointers that point to itself, it cannot be moved, and
will trigger an assertion failure.
Params:
source = Data to copy.
target = Where to copy into. The destructor, if any, is invoked before the
copy is performed.
*/
void move(T)(ref T source, ref T target)
{
// test @safe destructible
static if (__traits(compiles, (T t) @safe {}))
trustedMoveImpl(source, target);
else
moveImpl(source, target);
}
/// For non-struct types, `move` just performs `target = source`:
@safe unittest
{
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3;
move(obj2, obj3);
assert(obj3 is obj1);
// obj2 unchanged
assert(obj2 is obj1);
}
///
pure nothrow @safe @nogc unittest
{
// Structs without destructors are simply copied
struct S1
{
int a = 1;
int b = 2;
}
S1 s11 = { 10, 11 };
S1 s12;
move(s11, s12);
assert(s12 == S1(10, 11));
assert(s11 == s12);
// But structs with destructors or postblits are reset to their .init value
// after copying to the target.
struct S2
{
int a = 1;
int b = 2;
~this() pure nothrow @safe @nogc { }
}
S2 s21 = { 3, 4 };
S2 s22;
move(s21, s22);
assert(s21 == S2(1, 2));
assert(s22 == S2(3, 4));
}
@safe unittest
{
import std.exception : assertCTFEable;
import std.traits;
assertCTFEable!((){
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3;
move(obj2, obj3);
assert(obj3 is obj1);
static struct S1 { int a = 1, b = 2; }
S1 s11 = { 10, 11 };
S1 s12;
move(s11, s12);
assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
static struct S2 { int a = 1; int * b; }
S2 s21 = { 10, null };
s21.b = new int;
S2 s22;
move(s21, s22);
assert(s21 == s22);
});
// Issue 5661 test(1)
static struct S3
{
static struct X { int n = 0; ~this(){n = 0;} }
X x;
}
static assert(hasElaborateDestructor!S3);
S3 s31, s32;
s31.x.n = 1;
move(s31, s32);
assert(s31.x.n == 0);
assert(s32.x.n == 1);
// Issue 5661 test(2)
static struct S4
{
static struct X { int n = 0; this(this){n = 0;} }
X x;
}
static assert(hasElaborateCopyConstructor!S4);
S4 s41, s42;
s41.x.n = 1;
move(s41, s42);
assert(s41.x.n == 0);
assert(s42.x.n == 1);
// Issue 13990 test
class S5;
S5 s51;
S5 s52 = s51;
S5 s53;
move(s52, s53);
assert(s53 is s51);
}
/// Ditto
T move(T)(ref T source)
{
// test @safe destructible
static if (__traits(compiles, (T t) @safe {}))
return trustedMoveImpl(source);
else
return moveImpl(source);
}
/// Non-copyable structs can still be moved:
pure nothrow @safe @nogc unittest
{
struct S
{
int a = 1;
@disable this(this);
~this() pure nothrow @safe @nogc {}
}
S s1;
s1.a = 2;
S s2 = move(s1);
assert(s1.a == 1);
assert(s2.a == 2);
}
private void trustedMoveImpl(T)(ref T source, ref T target) @trusted
{
moveImpl(source, target);
}
private void moveImpl(T)(ref T source, ref T target)
{
import std.traits : hasElaborateDestructor;
static if (is(T == struct))
{
if (&source == &target) return;
// Destroy target before overwriting it
static if (hasElaborateDestructor!T) target.__xdtor();
}
// move and emplace source into target
moveEmplace(source, target);
}
private T trustedMoveImpl(T)(ref T source) @trusted
{
return moveImpl(source);
}
private T moveImpl(T)(ref T source)
{
T result = void;
moveEmplace(source, result);
return result;
}
@safe unittest
{
import std.exception : assertCTFEable;
import std.traits;
assertCTFEable!((){
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3 = move(obj2);
assert(obj3 is obj1);
static struct S1 { int a = 1, b = 2; }
S1 s11 = { 10, 11 };
S1 s12 = move(s11);
assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
static struct S2 { int a = 1; int * b; }
S2 s21 = { 10, null };
s21.b = new int;
S2 s22 = move(s21);
assert(s21 == s22);
});
// Issue 5661 test(1)
static struct S3
{
static struct X { int n = 0; ~this(){n = 0;} }
X x;
}
static assert(hasElaborateDestructor!S3);
S3 s31;
s31.x.n = 1;
S3 s32 = move(s31);
assert(s31.x.n == 0);
assert(s32.x.n == 1);
// Issue 5661 test(2)
static struct S4
{
static struct X { int n = 0; this(this){n = 0;} }
X x;
}
static assert(hasElaborateCopyConstructor!S4);
S4 s41;
s41.x.n = 1;
S4 s42 = move(s41);
assert(s41.x.n == 0);
assert(s42.x.n == 1);
// Issue 13990 test
class S5;
S5 s51;
S5 s52 = s51;
S5 s53;
s53 = move(s52);
assert(s53 is s51);
}
@system unittest
{
static struct S { int n = 0; ~this() @system { n = 0; } }
S a, b;
static assert(!__traits(compiles, () @safe { move(a, b); }));
static assert(!__traits(compiles, () @safe { move(a); }));
a.n = 1;
() @trusted { move(a, b); }();
assert(a.n == 0);
a.n = 1;
() @trusted { move(a); }();
assert(a.n == 0);
}
@safe unittest//Issue 6217
{
import std.algorithm.iteration : map;
auto x = map!"a"([1,2,3]);
x = move(x);
}
@safe unittest// Issue 8055
{
static struct S
{
int x;
~this()
{
assert(x == 0);
}
}
S foo(S s)
{
return move(s);
}
S a;
a.x = 0;
auto b = foo(a);
assert(b.x == 0);
}
@system unittest// Issue 8057
{
int n = 10;
struct S
{
int x;
~this()
{
// Access to enclosing scope
assert(n == 10);
}
}
S foo(S s)
{
// Move nested struct
return move(s);
}
S a;
a.x = 1;
auto b = foo(a);
assert(b.x == 1);
// Regression 8171
static struct Array(T)
{
// nested struct has no member
struct Payload
{
~this() {}
}
}
Array!int.Payload x = void;
move(x);
move(x, x);
}
/**
* Similar to $(LREF move) but assumes `target` is uninitialized. This
* is more efficient because `source` can be blitted over `target`
* without destroying or initializing it first.
*
* Params:
* source = value to be moved into target
* target = uninitialized value to be filled by source
*/
void moveEmplace(T)(ref T source, ref T target) @system
{
import core.stdc.string : memcpy, memset;
import std.traits : hasAliasing, hasElaborateAssign,
hasElaborateCopyConstructor, hasElaborateDestructor,
isAssignable;
static if (!is(T == class) && hasAliasing!T) if (!__ctfe)
{
import std.exception : doesPointTo;
assert(!doesPointTo(source, source), "Cannot move object with internal pointer.");
}
static if (is(T == struct))
{
assert(&source !is &target, "source and target must not be identical");
static if (hasElaborateAssign!T || !isAssignable!T)
memcpy(&target, &source, T.sizeof);
else
target = source;
// If the source defines a destructor or a postblit hook, we must obliterate the
// object in order to avoid double freeing and undue aliasing
static if (hasElaborateDestructor!T || hasElaborateCopyConstructor!T)
{
// If T is nested struct, keep original context pointer
static if (__traits(isNested, T))
enum sz = T.sizeof - (void*).sizeof;
else
enum sz = T.sizeof;
auto init = typeid(T).initializer();
if (init.ptr is null) // null ptr means initialize to 0s
memset(&source, 0, sz);
else
memcpy(&source, init.ptr, sz);
}
}
else
{
// Primitive data (including pointers and arrays) or class -
// assignment works great
target = source;
}
}
///
pure nothrow @nogc @system unittest
{
static struct Foo
{
pure nothrow @nogc:
this(int* ptr) { _ptr = ptr; }
~this() { if (_ptr) ++*_ptr; }
int* _ptr;
}
int val;
Foo foo1 = void; // uninitialized
auto foo2 = Foo(&val); // initialized
assert(foo2._ptr is &val);
// Using `move(foo2, foo1)` would have an undefined effect because it would destroy
// the uninitialized foo1.
// moveEmplace directly overwrites foo1 without destroying or initializing it first.
moveEmplace(foo2, foo1);
assert(foo1._ptr is &val);
assert(foo2._ptr is null);
assert(val == 0);
}
// moveAll
/**
Calls `move(a, b)` for each element `a` in `src` and the corresponding
element `b` in `tgt`, in increasing order.
Preconditions:
`walkLength(src) <= walkLength(tgt)`.
This precondition will be asserted. If you cannot ensure there is enough room in
`tgt` to accommodate all of `src` use $(LREF moveSome) instead.
Params:
src = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
movable elements.
tgt = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
elements that elements from $(D src) can be moved into.
Returns: The leftover portion of $(D tgt) after all elements from $(D src) have
been moved.
*/
InputRange2 moveAll(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt)
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(move(src.front, tgt.front))))
{
return moveAllImpl!move(src, tgt);
}
///
pure nothrow @safe @nogc unittest
{
int[3] a = [ 1, 2, 3 ];
int[5] b;
assert(moveAll(a[], b[]) is b[3 .. $]);
assert(a[] == b[0 .. 3]);
int[3] cmp = [ 1, 2, 3 ];
assert(a[] == cmp[]);
}
/**
* Similar to $(LREF moveAll) but assumes all elements in `tgt` are
* uninitialized. Uses $(LREF moveEmplace) to move elements from
* `src` over elements from `tgt`.
*/
InputRange2 moveEmplaceAll(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt) @system
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(moveEmplace(src.front, tgt.front))))
{
return moveAllImpl!moveEmplace(src, tgt);
}
///
pure nothrow @nogc @system unittest
{
static struct Foo
{
~this() pure nothrow @nogc { if (_ptr) ++*_ptr; }
int* _ptr;
}
int[3] refs = [0, 1, 2];
Foo[3] src = [Foo(&refs[0]), Foo(&refs[1]), Foo(&refs[2])];
Foo[5] dst = void;
auto tail = moveEmplaceAll(src[], dst[]); // move 3 value from src over dst
assert(tail.length == 2); // returns remaining uninitialized values
initializeAll(tail);
import std.algorithm.searching : all;
assert(src[].all!(e => e._ptr is null));
assert(dst[0 .. 3].all!(e => e._ptr !is null));
}
@system unittest
{
struct InputRange
{
ref int front() { return data[0]; }
void popFront() { data.popFront; }
bool empty() { return data.empty; }
int[] data;
}
auto a = InputRange([ 1, 2, 3 ]);
auto b = InputRange(new int[5]);
moveAll(a, b);
assert(a.data == b.data[0 .. 3]);
assert(a.data == [ 1, 2, 3 ]);
}
private InputRange2 moveAllImpl(alias moveOp, InputRange1, InputRange2)(
ref InputRange1 src, ref InputRange2 tgt)
{
import std.exception : enforce;
static if (isRandomAccessRange!InputRange1 && hasLength!InputRange1 && hasLength!InputRange2
&& hasSlicing!InputRange2 && isRandomAccessRange!InputRange2)
{
auto toMove = src.length;
assert(toMove <= tgt.length);
foreach (idx; 0 .. toMove)
moveOp(src[idx], tgt[idx]);
return tgt[toMove .. tgt.length];
}
else
{
for (; !src.empty; src.popFront(), tgt.popFront())
{
assert(!tgt.empty);
moveOp(src.front, tgt.front);
}
return tgt;
}
}
// moveSome
/**
Calls `move(a, b)` for each element `a` in `src` and the corresponding
element `b` in `tgt`, in increasing order, stopping when either range has been
exhausted.
Params:
src = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
movable elements.
tgt = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
elements that elements from $(D src) can be moved into.
Returns: The leftover portions of the two ranges after one or the other of the
ranges have been exhausted.
*/
Tuple!(InputRange1, InputRange2) moveSome(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt)
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(move(src.front, tgt.front))))
{
return moveSomeImpl!move(src, tgt);
}
///
pure nothrow @safe @nogc unittest
{
int[5] a = [ 1, 2, 3, 4, 5 ];
int[3] b;
assert(moveSome(a[], b[])[0] is a[3 .. $]);
assert(a[0 .. 3] == b);
assert(a == [ 1, 2, 3, 4, 5 ]);
}
/**
* Same as $(LREF moveSome) but assumes all elements in `tgt` are
* uninitialized. Uses $(LREF moveEmplace) to move elements from
* `src` over elements from `tgt`.
*/
Tuple!(InputRange1, InputRange2) moveEmplaceSome(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt) @system
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(move(src.front, tgt.front))))
{
return moveSomeImpl!moveEmplace(src, tgt);
}
///
pure nothrow @nogc @system unittest
{
static struct Foo
{
~this() pure nothrow @nogc { if (_ptr) ++*_ptr; }
int* _ptr;
}
int[4] refs = [0, 1, 2, 3];
Foo[4] src = [Foo(&refs[0]), Foo(&refs[1]), Foo(&refs[2]), Foo(&refs[3])];
Foo[3] dst = void;
auto res = moveEmplaceSome(src[], dst[]);
assert(res.length == 2);
import std.algorithm.searching : all;
assert(src[0 .. 3].all!(e => e._ptr is null));
assert(src[3]._ptr !is null);
assert(dst[].all!(e => e._ptr !is null));
}
private Tuple!(InputRange1, InputRange2) moveSomeImpl(alias moveOp, InputRange1, InputRange2)(
ref InputRange1 src, ref InputRange2 tgt)
{
for (; !src.empty && !tgt.empty; src.popFront(), tgt.popFront())
moveOp(src.front, tgt.front);
return tuple(src, tgt);
}
// SwapStrategy
/**
Defines the swapping strategy for algorithms that need to swap
elements in a range (such as partition and sort). The strategy
concerns the swapping of elements that are not the core concern of the
algorithm. For example, consider an algorithm that sorts $(D [ "abc",
"b", "aBc" ]) according to $(D toUpper(a) < toUpper(b)). That
algorithm might choose to swap the two equivalent strings $(D "abc")
and $(D "aBc"). That does not affect the sorting since both $(D [
"abc", "aBc", "b" ]) and $(D [ "aBc", "abc", "b" ]) are valid
outcomes.
Some situations require that the algorithm must NOT ever change the
relative ordering of equivalent elements (in the example above, only
$(D [ "abc", "aBc", "b" ]) would be the correct result). Such
algorithms are called $(B stable). If the ordering algorithm may swap
equivalent elements discretionarily, the ordering is called $(B
unstable).
Yet another class of algorithms may choose an intermediate tradeoff by
being stable only on a well-defined subrange of the range. There is no
established terminology for such behavior; this library calls it $(B
semistable).
Generally, the $(D stable) ordering strategy may be more costly in
time and/or space than the other two because it imposes additional
constraints. Similarly, $(D semistable) may be costlier than $(D
unstable). As (semi-)stability is not needed very often, the ordering
algorithms in this module parameterized by $(D SwapStrategy) all
choose $(D SwapStrategy.unstable) as the default.
*/
enum SwapStrategy
{
/**
Allows freely swapping of elements as long as the output
satisfies the algorithm's requirements.
*/
unstable,
/**
In algorithms partitioning ranges in two, preserve relative
ordering of elements only to the left of the partition point.
*/
semistable,
/**
Preserve the relative ordering of elements to the largest
extent allowed by the algorithm's requirements.
*/
stable,
}
///
@safe unittest
{
import std.stdio;
import std.algorithm.sorting : partition;
int[] a = [0, 1, 2, 3];
assert(remove!(SwapStrategy.stable)(a, 1) == [0, 2, 3]);
a = [0, 1, 2, 3];
assert(remove!(SwapStrategy.unstable)(a, 1) == [0, 3, 2]);
}
///
@safe unittest
{
import std.algorithm.sorting : partition;
// Put stuff greater than 3 on the left
auto arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert(partition!(a => a > 3, SwapStrategy.stable)(arr) == [1, 2, 3]);
assert(arr == [4, 5, 6, 7, 8, 9, 10, 1, 2, 3]);
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert(partition!(a => a > 3, SwapStrategy.semistable)(arr) == [2, 3, 1]);
assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1]);
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert(partition!(a => a > 3, SwapStrategy.unstable)(arr) == [3, 2, 1]);
assert(arr == [10, 9, 8, 4, 5, 6, 7, 3, 2, 1]);
}
/**
Eliminates elements at given offsets from `range` and returns the shortened
range.
For example, here is how to _remove a single element from an array:
----
string[] a = [ "a", "b", "c", "d" ];
a = a.remove(1); // remove element at offset 1
assert(a == [ "a", "c", "d"]);
----
Note that `remove` does not change the length of the original _range directly;
instead, it returns the shortened _range. If its return value is not assigned to
the original _range, the original _range will retain its original length, though
its contents will have changed:
----
int[] a = [ 3, 5, 7, 8 ];
assert(remove(a, 1) == [ 3, 7, 8 ]);
assert(a == [ 3, 7, 8, 8 ]);
----
The element at _offset `1` has been removed and the rest of the elements have
shifted up to fill its place, however, the original array remains of the same
length. This is because all functions in `std.algorithm` only change $(I
content), not $(I topology). The value `8` is repeated because $(LREF move) was
invoked to rearrange elements, and on integers `move` simply copies the source
to the destination. To replace `a` with the effect of the removal, simply
assign the slice returned by `remove` to it, as shown in the first example.
Multiple indices can be passed into $(D remove). In that case,
elements at the respective indices are all removed. The indices must
be passed in increasing order, otherwise an exception occurs.
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, 3, 5) ==
[ 0, 2, 4, 6, 7, 8, 9, 10 ]);
----
(Note that all indices refer to slots in the $(I original) array, not
in the array as it is being progressively shortened.) Finally, any
combination of integral offsets and tuples composed of two integral
offsets can be passed in.
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, tuple(3, 5), 9) == [ 0, 2, 5, 6, 7, 8, 10 ]);
----
In this case, the slots at positions 1, 3, 4, and 9 are removed from
the array. The tuple passes in a range closed to the left and open to
the right (consistent with built-in slices), e.g. $(D tuple(3, 5))
means indices $(D 3) and $(D 4) but not $(D 5).
If the need is to remove some elements in the range but the order of
the remaining elements does not have to be preserved, you may want to
pass $(D SwapStrategy.unstable) to $(D remove).
----
int[] a = [ 0, 1, 2, 3 ];
assert(remove!(SwapStrategy.unstable)(a, 1) == [ 0, 3, 2 ]);
----
In the case above, the element at slot $(D 1) is removed, but replaced
with the last element of the range. Taking advantage of the relaxation
of the stability requirement, $(D remove) moved elements from the end
of the array over the slots to be removed. This way there is less data
movement to be done which improves the execution time of the function.
The function $(D remove) works on bidirectional ranges that have assignable
lvalue elements. The moving strategy is (listed from fastest to slowest):
$(UL $(LI If $(D s == SwapStrategy.unstable && isRandomAccessRange!Range &&
hasLength!Range && hasLvalueElements!Range), then elements are moved from the
end of the range into the slots to be filled. In this case, the absolute
minimum of moves is performed.) $(LI Otherwise, if $(D s ==
SwapStrategy.unstable && isBidirectionalRange!Range && hasLength!Range
&& hasLvalueElements!Range), then elements are still moved from the
end of the range, but time is spent on advancing between slots by repeated
calls to $(D range.popFront).) $(LI Otherwise, elements are moved
incrementally towards the front of $(D range); a given element is never
moved several times, but more elements are moved than in the previous
cases.))
Params:
s = a SwapStrategy to determine if the original order needs to be preserved
range = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,_range,primitives)
with a length member
offset = which element(s) to remove
Returns:
a range containing all of the elements of range with offset removed
*/
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset...)
(Range range, Offset offset)
if (s != SwapStrategy.stable
&& isBidirectionalRange!Range
&& hasLvalueElements!Range
&& hasLength!Range
&& Offset.length >= 1)
{
Tuple!(size_t, "pos", size_t, "len")[offset.length] blackouts;
foreach (i, v; offset)
{
static if (is(typeof(v[0]) : size_t) && is(typeof(v[1]) : size_t))
{
blackouts[i].pos = v[0];
blackouts[i].len = v[1] - v[0];
}
else
{
static assert(is(typeof(v) : size_t), typeof(v).stringof);
blackouts[i].pos = v;
blackouts[i].len = 1;
}
static if (i > 0)
{
import std.exception : enforce;
enforce(blackouts[i - 1].pos + blackouts[i - 1].len
<= blackouts[i].pos,
"remove(): incorrect ordering of elements to remove");
}
}
size_t left = 0, right = offset.length - 1;
auto tgt = range.save;
size_t tgtPos = 0;
while (left <= right)
{
// Look for a blackout on the right
if (blackouts[right].pos + blackouts[right].len >= range.length)
{
range.popBackExactly(blackouts[right].len);
// Since right is unsigned, we must check for this case, otherwise
// we might turn it into size_t.max and the loop condition will not
// fail when it should.
if (right > 0)
{
--right;
continue;
}
else
break;
}
// Advance to next blackout on the left
assert(blackouts[left].pos >= tgtPos);
tgt.popFrontExactly(blackouts[left].pos - tgtPos);
tgtPos = blackouts[left].pos;
// Number of elements to the right of blackouts[right]
immutable tailLen = range.length - (blackouts[right].pos + blackouts[right].len);
size_t toMove = void;
if (tailLen < blackouts[left].len)
{
toMove = tailLen;
blackouts[left].pos += toMove;
blackouts[left].len -= toMove;
}
else
{
toMove = blackouts[left].len;
++left;
}
tgtPos += toMove;
foreach (i; 0 .. toMove)
{
move(range.back, tgt.front);
range.popBack();
tgt.popFront();
}
}
return range;
}
/// Ditto
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset...)
(Range range, Offset offset)
if (s == SwapStrategy.stable
&& isBidirectionalRange!Range
&& hasLvalueElements!Range
&& Offset.length >= 1)
{
auto result = range;
auto src = range, tgt = range;
size_t pos;
foreach (pass, i; offset)
{
static if (is(typeof(i[0])) && is(typeof(i[1])))
{
auto from = i[0], delta = i[1] - i[0];
}
else
{
auto from = i;
enum delta = 1;
}
static if (pass > 0)
{
import std.exception : enforce;
enforce(pos <= from,
"remove(): incorrect ordering of elements to remove");
for (; pos < from; ++pos, src.popFront(), tgt.popFront())
{
move(src.front, tgt.front);
}
}
else
{
src.popFrontExactly(from);
tgt.popFrontExactly(from);
pos = from;
}
// now skip source to the "to" position
src.popFrontExactly(delta);
result.popBackExactly(delta);
pos += delta;
}
// leftover move
moveAll(src, tgt);
return result;
}
///
@safe pure unittest
{
import std.typecons : tuple;
auto a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.stable)(a, 1) == [ 0, 2, 3, 4, 5 ]);
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.stable)(a, 1, 3) == [ 0, 2, 4, 5] );
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 6)) == [ 0, 2 ]);
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.unstable)(a, 1) == [0, 5, 2, 3, 4]);
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4)) == [0, 5, 4]);
}
@safe unittest
{
import std.exception : assertThrown;
import std.range;
// http://d.puremagic.com/issues/show_bug.cgi?id=10173
int[] test = iota(0, 10).array();
assertThrown(remove!(SwapStrategy.stable)(test, tuple(2, 4), tuple(1, 3)));
assertThrown(remove!(SwapStrategy.unstable)(test, tuple(2, 4), tuple(1, 3)));
assertThrown(remove!(SwapStrategy.stable)(test, 2, 4, 1, 3));
assertThrown(remove!(SwapStrategy.unstable)(test, 2, 4, 1, 3));
}
@safe unittest
{
import std.range;
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1) ==
[ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.unstable)(a, 0, 10) ==
[ 9, 1, 2, 3, 4, 5, 6, 7, 8 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.unstable)(a, 0, tuple(9, 11)) ==
[ 8, 1, 2, 3, 4, 5, 6, 7 ]);
// http://d.puremagic.com/issues/show_bug.cgi?id=5224
a = [ 1, 2, 3, 4 ];
assert(remove!(SwapStrategy.unstable)(a, 2) ==
[ 1, 2, 4 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, 5) ==
[ 0, 2, 3, 4, 6, 7, 8, 9, 10 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, 3, 5)
== [ 0, 2, 4, 6, 7, 8, 9, 10]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5))
== [ 0, 2, 5, 6, 7, 8, 9, 10]);
a = iota(0, 10).array();
assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4), tuple(6, 7))
== [0, 9, 8, 7, 4, 5]);
}
@safe unittest
{
// Issue 11576
auto arr = [1,2,3];
arr = arr.remove!(SwapStrategy.unstable)(2);
assert(arr == [1,2]);
}
@safe unittest
{
import std.range;
// Bug# 12889
int[1][] arr = [[0], [1], [2], [3], [4], [5], [6]];
auto orig = arr.dup;
foreach (i; iota(arr.length))
{
assert(orig == arr.remove!(SwapStrategy.unstable)(tuple(i,i)));
assert(orig == arr.remove!(SwapStrategy.stable)(tuple(i,i)));
}
}
/**
Reduces the length of the
$(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,_range,primitives) $(D range) by removing
elements that satisfy $(D pred). If $(D s = SwapStrategy.unstable),
elements are moved from the right end of the range over the elements
to eliminate. If $(D s = SwapStrategy.stable) (the default),
elements are moved progressively to front such that their relative
order is preserved. Returns the filtered range.
Params:
range = a bidirectional ranges with lvalue elements
Returns:
the range with all of the elements where $(D pred) is $(D true)
removed
*/
Range remove(alias pred, SwapStrategy s = SwapStrategy.stable, Range)
(Range range)
if (isBidirectionalRange!Range
&& hasLvalueElements!Range)
{
import std.functional : unaryFun;
auto result = range;
static if (s != SwapStrategy.stable)
{
for (;!range.empty;)
{
if (!unaryFun!pred(range.front))
{
range.popFront();
continue;
}
move(range.back, range.front);
range.popBack();
result.popBack();
}
}
else
{
auto tgt = range;
for (; !range.empty; range.popFront())
{
if (unaryFun!(pred)(range.front))
{
// yank this guy
result.popBack();
continue;
}
// keep this guy
move(range.front, tgt.front);
tgt.popFront();
}
}
return result;
}
///
@safe unittest
{
static immutable base = [1, 2, 3, 2, 4, 2, 5, 2];
int[] arr = base[].dup;
// using a string-based predicate
assert(remove!("a == 2")(arr) == [ 1, 3, 4, 5 ]);
// The original array contents have been modified,
// so we need to reset it to its original state.
// The length is unmodified however.
arr[] = base[];
// using a lambda predicate
assert(remove!(a => a == 2)(arr) == [ 1, 3, 4, 5 ]);
}
@safe unittest
{
int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
assert(remove!("a == 2", SwapStrategy.unstable)(a) ==
[ 1, 6, 3, 5, 3, 4, 5 ]);
a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
assert(remove!("a == 2", SwapStrategy.stable)(a) ==
[ 1, 3, 3, 4, 5, 5, 6 ]);
}
@nogc @system unittest
{
// @nogc test
int[10] arr = [0,1,2,3,4,5,6,7,8,9];
alias pred = e => e < 5;
auto r = arr[].remove!(SwapStrategy.unstable)(0);
r = r.remove!(SwapStrategy.stable)(0);
r = r.remove!(pred, SwapStrategy.unstable);
r = r.remove!(pred, SwapStrategy.stable);
}
@safe unittest
{
import std.algorithm.comparison : min;
import std.algorithm.searching : all, any;
import std.algorithm.sorting : isStrictlyMonotonic;
import std.array : array;
import std.meta : AliasSeq;
import std.range : iota, only;
import std.typecons : Tuple;
alias S = Tuple!(int[2]);
S[] soffsets;
foreach (start; 0 .. 5)
foreach (end; min(start+1,5) .. 5)
soffsets ~= S([start,end]);
alias D = Tuple!(int[2],int[2]);
D[] doffsets;
foreach (start1; 0 .. 10)
foreach (end1; min(start1+1,10) .. 10)
foreach (start2; end1 .. 10)
foreach (end2; min(start2+1,10) .. 10)
doffsets ~= D([start1,end1],[start2,end2]);
alias T = Tuple!(int[2],int[2],int[2]);
T[] toffsets;
foreach (start1; 0 .. 15)
foreach (end1; min(start1+1,15) .. 15)
foreach (start2; end1 .. 15)
foreach (end2; min(start2+1,15) .. 15)
foreach (start3; end2 .. 15)
foreach (end3; min(start3+1,15) .. 15)
toffsets ~= T([start1,end1],[start2,end2],[start3,end3]);
static void verify(O...)(int[] r, int len, int removed, bool stable, O offsets)
{
assert(r.length == len - removed);
assert(!stable || r.isStrictlyMonotonic);
assert(r.all!(e => all!(o => e < o[0] || e >= o[1])(offsets.only)));
}
foreach (offsets; AliasSeq!(soffsets,doffsets,toffsets))
foreach (os; offsets)
{
int len = 5*os.length;
auto w = iota(0, len).array;
auto x = w.dup;
auto y = w.dup;
auto z = w.dup;
alias pred = e => any!(o => o[0] <= e && e < o[1])(only(os.expand));
w = w.remove!(SwapStrategy.unstable)(os.expand);
x = x.remove!(SwapStrategy.stable)(os.expand);
y = y.remove!(pred, SwapStrategy.unstable);
z = z.remove!(pred, SwapStrategy.stable);
int removed;
foreach (o; os)
removed += o[1] - o[0];
verify(w, len, removed, false, os[]);
verify(x, len, removed, true, os[]);
verify(y, len, removed, false, os[]);
verify(z, len, removed, true, os[]);
assert(w == y);
assert(x == z);
}
}
// reverse
/**
Reverses $(D r) in-place. Performs $(D r.length / 2) evaluations of $(D
swap).
Params:
r = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
with swappable elements or a random access range with a length member
See_Also:
$(HTTP sgi.com/tech/stl/_reverse.html, STL's _reverse), $(REF retro, std,range) for a lazy reversed range view
*/
void reverse(Range)(Range r)
if (isBidirectionalRange!Range && !isRandomAccessRange!Range
&& hasSwappableElements!Range)
{
while (!r.empty)
{
swap(r.front, r.back);
r.popFront();
if (r.empty) break;
r.popBack();
}
}
///
@safe unittest
{
int[] arr = [ 1, 2, 3 ];
reverse(arr);
assert(arr == [ 3, 2, 1 ]);
}
///ditto
void reverse(Range)(Range r)
if (isRandomAccessRange!Range && hasLength!Range)
{
//swapAt is in fact the only way to swap non lvalue ranges
immutable last = r.length-1;
immutable steps = r.length/2;
for (size_t i = 0; i < steps; i++)
{
r.swapAt(i, last-i);
}
}
@safe unittest
{
int[] range = null;
reverse(range);
range = [ 1 ];
reverse(range);
assert(range == [1]);
range = [1, 2];
reverse(range);
assert(range == [2, 1]);
range = [1, 2, 3];
reverse(range);
assert(range == [3, 2, 1]);
}
/**
Reverses $(D r) in-place, where $(D r) is a narrow string (having
elements of type $(D char) or $(D wchar)). UTF sequences consisting of
multiple code units are preserved properly.
Params:
s = a narrow string
Bugs:
When passing a sting with unicode modifiers on characters, such as $(D \u0301),
this function will not properly keep the position of the modifier. For example,
reversing $(D ba\u0301d) ("bád") will result in d\u0301ab ("d́ab") instead of
$(D da\u0301b) ("dáb").
*/
void reverse(Char)(Char[] s)
if (isNarrowString!(Char[]) && !is(Char == const) && !is(Char == immutable))
{
import std.string : representation;
import std.utf : stride;
auto r = representation(s);
for (size_t i = 0; i < s.length; )
{
immutable step = stride(s, i);
if (step > 1)
{
.reverse(r[i .. i + step]);
i += step;
}
else
{
++i;
}
}
reverse(r);
}
///
@safe unittest
{
char[] arr = "hello\U00010143\u0100\U00010143".dup;
reverse(arr);
assert(arr == "\U00010143\u0100\U00010143olleh");
}
@safe unittest
{
void test(string a, string b)
{
auto c = a.dup;
reverse(c);
assert(c == b, c ~ " != " ~ b);
}
test("a", "a");
test(" ", " ");
test("\u2029", "\u2029");
test("\u0100", "\u0100");
test("\u0430", "\u0430");
test("\U00010143", "\U00010143");
test("abcdefcdef", "fedcfedcba");
test("hello\U00010143\u0100\U00010143", "\U00010143\u0100\U00010143olleh");
}
/**
The strip group of functions allow stripping of either leading, trailing,
or both leading and trailing elements.
The $(D stripLeft) function will strip the $(D front) of the range,
the $(D stripRight) function will strip the $(D back) of the range,
while the $(D strip) function will strip both the $(D front) and $(D back)
of the range.
Note that the $(D strip) and $(D stripRight) functions require the range to
be a $(LREF BidirectionalRange) range.
All of these functions come in two varieties: one takes a target element,
where the range will be stripped as long as this element can be found.
The other takes a lambda predicate, where the range will be stripped as
long as the predicate returns true.
Params:
range = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
or $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
element = the elements to remove
Returns:
a Range with all of range except element at the start and end
*/
Range strip(Range, E)(Range range, E element)
if (isBidirectionalRange!Range && is(typeof(range.front == element) : bool))
{
return range.stripLeft(element).stripRight(element);
}
/// ditto
Range strip(alias pred, Range)(Range range)
if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool))
{
return range.stripLeft!pred().stripRight!pred();
}
/// ditto
Range stripLeft(Range, E)(Range range, E element)
if (isInputRange!Range && is(typeof(range.front == element) : bool))
{
import std.algorithm.searching : find;
return find!((auto ref a) => a != element)(range);
}
/// ditto
Range stripLeft(alias pred, Range)(Range range)
if (isInputRange!Range && is(typeof(pred(range.front)) : bool))
{
import std.algorithm.searching : find;
import std.functional : not;
return find!(not!pred)(range);
}
/// ditto
Range stripRight(Range, E)(Range range, E element)
if (isBidirectionalRange!Range && is(typeof(range.back == element) : bool))
{
for (; !range.empty; range.popBack())
{
if (range.back != element)
break;
}
return range;
}
/// ditto
Range stripRight(alias pred, Range)(Range range)
if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool))
{
for (; !range.empty; range.popBack())
{
if (!pred(range.back))
break;
}
return range;
}
/// Strip leading and trailing elements equal to the target element.
@safe pure unittest
{
assert(" foobar ".strip(' ') == "foobar");
assert("00223.444500".strip('0') == "223.4445");
assert("ëëêéüŗōpéêëë".strip('ë') == "êéüŗōpéê");
assert([1, 1, 0, 1, 1].strip(1) == [0]);
assert([0.0, 0.01, 0.01, 0.0].strip(0).length == 2);
}
/// Strip leading and trailing elements while the predicate returns true.
@safe pure unittest
{
assert(" foobar ".strip!(a => a == ' ')() == "foobar");
assert("00223.444500".strip!(a => a == '0')() == "223.4445");
assert("ëëêéüŗōpéêëë".strip!(a => a == 'ë')() == "êéüŗōpéê");
assert([1, 1, 0, 1, 1].strip!(a => a == 1)() == [0]);
assert([0.0, 0.01, 0.5, 0.6, 0.01, 0.0].strip!(a => a < 0.4)().length == 2);
}
/// Strip leading elements equal to the target element.
@safe pure unittest
{
assert(" foobar ".stripLeft(' ') == "foobar ");
assert("00223.444500".stripLeft('0') == "223.444500");
assert("ůůűniçodêéé".stripLeft('ů') == "űniçodêéé");
assert([1, 1, 0, 1, 1].stripLeft(1) == [0, 1, 1]);
assert([0.0, 0.01, 0.01, 0.0].stripLeft(0).length == 3);
}
/// Strip leading elements while the predicate returns true.
@safe pure unittest
{
assert(" foobar ".stripLeft!(a => a == ' ')() == "foobar ");
assert("00223.444500".stripLeft!(a => a == '0')() == "223.444500");
assert("ůůűniçodêéé".stripLeft!(a => a == 'ů')() == "űniçodêéé");
assert([1, 1, 0, 1, 1].stripLeft!(a => a == 1)() == [0, 1, 1]);
assert([0.0, 0.01, 0.10, 0.5, 0.6].stripLeft!(a => a < 0.4)().length == 2);
}
/// Strip trailing elements equal to the target element.
@safe pure unittest
{
assert(" foobar ".stripRight(' ') == " foobar");
assert("00223.444500".stripRight('0') == "00223.4445");
assert("ùniçodêéé".stripRight('é') == "ùniçodê");
assert([1, 1, 0, 1, 1].stripRight(1) == [1, 1, 0]);
assert([0.0, 0.01, 0.01, 0.0].stripRight(0).length == 3);
}
/// Strip trailing elements while the predicate returns true.
@safe pure unittest
{
assert(" foobar ".stripRight!(a => a == ' ')() == " foobar");
assert("00223.444500".stripRight!(a => a == '0')() == "00223.4445");
assert("ùniçodêéé".stripRight!(a => a == 'é')() == "ùniçodê");
assert([1, 1, 0, 1, 1].stripRight!(a => a == 1)() == [1, 1, 0]);
assert([0.0, 0.01, 0.10, 0.5, 0.6].stripRight!(a => a > 0.4)().length == 3);
}
// swap
/**
Swaps $(D lhs) and $(D rhs). The instances $(D lhs) and $(D rhs) are moved in
memory, without ever calling $(D opAssign), nor any other function. $(D T)
need not be assignable at all to be swapped.
If $(D lhs) and $(D rhs) reference the same instance, then nothing is done.
$(D lhs) and $(D rhs) must be mutable. If $(D T) is a struct or union, then
its fields must also all be (recursively) mutable.
Params:
lhs = Data to be swapped with $(D rhs).
rhs = Data to be swapped with $(D lhs).
*/
void swap(T)(ref T lhs, ref T rhs) @trusted pure nothrow @nogc
if (isBlitAssignable!T && !is(typeof(lhs.proxySwap(rhs))))
{
import std.traits : hasAliasing, hasElaborateAssign, isAssignable,
isStaticArray;
static if (hasAliasing!T) if (!__ctfe)
{
import std.exception : doesPointTo;
assert(!doesPointTo(lhs, lhs), "Swap: lhs internal pointer.");
assert(!doesPointTo(rhs, rhs), "Swap: rhs internal pointer.");
assert(!doesPointTo(lhs, rhs), "Swap: lhs points to rhs.");
assert(!doesPointTo(rhs, lhs), "Swap: rhs points to lhs.");
}
static if (hasElaborateAssign!T || !isAssignable!T)
{
if (&lhs != &rhs)
{
// For structs with non-trivial assignment, move memory directly
ubyte[T.sizeof] t = void;
auto a = (cast(ubyte*) &lhs)[0 .. T.sizeof];
auto b = (cast(ubyte*) &rhs)[0 .. T.sizeof];
t[] = a[];
a[] = b[];
b[] = t[];
}
}
else
{
//Avoid assigning overlapping arrays. Dynamic arrays are fine, because
//it's their ptr and length properties which get assigned rather
//than their elements when assigning them, but static arrays are value
//types and therefore all of their elements get copied as part of
//assigning them, which would be assigning overlapping arrays if lhs
//and rhs were the same array.
static if (isStaticArray!T)
{
if (lhs.ptr == rhs.ptr)
return;
}
// For non-struct types, suffice to do the classic swap
auto tmp = lhs;
lhs = rhs;
rhs = tmp;
}
}
///
@safe unittest
{
// Swapping POD (plain old data) types:
int a = 42, b = 34;
swap(a, b);
assert(a == 34 && b == 42);
// Swapping structs with indirection:
static struct S { int x; char c; int[] y; }
S s1 = { 0, 'z', [ 1, 2 ] };
S s2 = { 42, 'a', [ 4, 6 ] };
swap(s1, s2);
assert(s1.x == 42);
assert(s1.c == 'a');
assert(s1.y == [ 4, 6 ]);
assert(s2.x == 0);
assert(s2.c == 'z');
assert(s2.y == [ 1, 2 ]);
// Immutables cannot be swapped:
immutable int imm1 = 1, imm2 = 2;
static assert(!__traits(compiles, swap(imm1, imm2)));
int c = imm1 + 0;
int d = imm2 + 0;
swap(c, d);
assert(c == 2);
assert(d == 1);
}
///
@safe unittest
{
// Non-copyable types can still be swapped.
static struct NoCopy
{
this(this) { assert(0); }
int n;
string s;
}
NoCopy nc1, nc2;
nc1.n = 127; nc1.s = "abc";
nc2.n = 513; nc2.s = "uvwxyz";
swap(nc1, nc2);
assert(nc1.n == 513 && nc1.s == "uvwxyz");
assert(nc2.n == 127 && nc2.s == "abc");
swap(nc1, nc1);
swap(nc2, nc2);
assert(nc1.n == 513 && nc1.s == "uvwxyz");
assert(nc2.n == 127 && nc2.s == "abc");
// Types containing non-copyable fields can also be swapped.
static struct NoCopyHolder
{
NoCopy noCopy;
}
NoCopyHolder h1, h2;
h1.noCopy.n = 31; h1.noCopy.s = "abc";
h2.noCopy.n = 65; h2.noCopy.s = null;
swap(h1, h2);
assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");
swap(h1, h1);
swap(h2, h2);
assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");
// Const types cannot be swapped.
const NoCopy const1, const2;
assert(const1.n == 0 && const2.n == 0);
static assert(!__traits(compiles, swap(const1, const2)));
}
@safe unittest
{
//Bug# 4789
int[1] s = [1];
swap(s, s);
int[3] a = [1, 2, 3];
swap(a[1], a[2]);
assert(a == [1, 3, 2]);
}
@safe unittest
{
static struct NoAssign
{
int i;
void opAssign(NoAssign) @disable;
}
auto s1 = NoAssign(1);
auto s2 = NoAssign(2);
swap(s1, s2);
assert(s1.i == 2);
assert(s2.i == 1);
}
@safe unittest
{
struct S
{
const int i;
int i2 = 2;
int i3 = 3;
}
S s;
static assert(!__traits(compiles, swap(s, s)));
swap(s.i2, s.i3);
assert(s.i2 == 3);
assert(s.i3 == 2);
}
@safe unittest
{
//11853
import std.traits : isAssignable;
alias T = Tuple!(int, double);
static assert(isAssignable!T);
}
@safe unittest
{
// 12024
import std.datetime;
SysTime a, b;
swap(a, b);
}
@system unittest // 9975
{
import std.exception : doesPointTo, mayPointTo;
static struct S2
{
union
{
size_t sz;
string s;
}
}
S2 a , b;
a.sz = -1;
assert(!doesPointTo(a, b));
assert( mayPointTo(a, b));
swap(a, b);
//Note: we can catch an error here, because there is no RAII in this test
import std.exception : assertThrown;
void* p, pp;
p = &p;
assertThrown!Error(move(p));
assertThrown!Error(move(p, pp));
assertThrown!Error(swap(p, pp));
}
@system unittest
{
static struct A
{
int* x;
this(this) { x = new int; }
}
A a1, a2;
swap(a1, a2);
static struct B
{
int* x;
void opAssign(B) { x = new int; }
}
B b1, b2;
swap(b1, b2);
}
/// ditto
void swap(T)(ref T lhs, ref T rhs)
if (is(typeof(lhs.proxySwap(rhs))))
{
lhs.proxySwap(rhs);
}
/**
Swaps two elements in-place of a range `r`,
specified by their indices `i1` and `i2`.
Params:
r = a range with swappable elements
i1 = first index
i2 = second index
*/
void swapAt(R)(auto ref R r, size_t i1, size_t i2)
{
static if (is(typeof(&r.swapAt)))
{
r.swapAt(i1, i2);
}
else static if (is(typeof(&r[i1])))
{
swap(r[i1], r[i2]);
}
else
{
if (i1 == i2) return;
auto t1 = r.moveAt(i1);
auto t2 = r.moveAt(i2);
r[i2] = t1;
r[i1] = t2;
}
}
///
pure @safe nothrow unittest
{
import std.algorithm.comparison : equal;
auto a = [1, 2, 3];
a.swapAt(1, 2);
assert(a.equal([1, 3, 2]));
}
pure @safe nothrow unittest
{
import std.algorithm.comparison : equal;
auto a = [4, 5, 6];
a.swapAt(1, 1);
assert(a.equal([4, 5, 6]));
}
pure @safe nothrow unittest
{
// test non random access ranges
import std.algorithm.comparison : equal;
import std.array : array;
char[] b = ['a', 'b', 'c'];
b.swapAt(1, 2);
assert(b.equal(['a', 'c', 'b']));
int[3] c = [1, 2, 3];
c.swapAt(1, 2);
assert(c.array.equal([1, 3, 2]));
// opIndex returns lvalue
struct RandomIndexType(T)
{
T payload;
@property ref auto opIndex(size_t i)
{
return payload[i];
}
}
auto d = RandomIndexType!(int[])([4, 5, 6]);
d.swapAt(1, 2);
assert(d.payload.equal([4, 6, 5]));
// custom moveAt and opIndexAssign
struct RandomMoveAtType(T)
{
T payload;
ElementType!T moveAt(size_t i)
{
return payload.moveAt(i);
}
void opIndexAssign(ElementType!T val, size_t idx)
{
payload[idx] = val;
}
}
auto e = RandomMoveAtType!(int[])([7, 8, 9]);
e.swapAt(1, 2);
assert(e.payload.equal([7, 9, 8]));
// custom swapAt
struct RandomSwapAtType(T)
{
T payload;
void swapAt(size_t i)
{
return payload.swapAt(i);
}
}
auto f = RandomMoveAtType!(int[])([10, 11, 12]);
swapAt(f, 1, 2);
assert(f.payload.equal([10, 12, 11]));
}
private void swapFront(R1, R2)(R1 r1, R2 r2)
if (isInputRange!R1 && isInputRange!R2)
{
static if (is(typeof(swap(r1.front, r2.front))))
{
swap(r1.front, r2.front);
}
else
{
auto t1 = moveFront(r1), t2 = moveFront(r2);
r1.front = move(t2);
r2.front = move(t1);
}
}
// swapRanges
/**
Swaps all elements of $(D r1) with successive elements in $(D r2).
Returns a tuple containing the remainder portions of $(D r1) and $(D
r2) that were not swapped (one of them will be empty). The ranges may
be of different types but must have the same element type and support
swapping.
Params:
r1 = an $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
with swappable elements
r2 = an $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
with swappable elements
Returns:
Tuple containing the remainder portions of r1 and r2 that were not swapped
*/
Tuple!(InputRange1, InputRange2)
swapRanges(InputRange1, InputRange2)(InputRange1 r1, InputRange2 r2)
if (hasSwappableElements!InputRange1 && hasSwappableElements!InputRange2
&& is(ElementType!InputRange1 == ElementType!InputRange2))
{
for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront())
{
swap(r1.front, r2.front);
}
return tuple(r1, r2);
}
///
@safe unittest
{
import std.range : empty;
int[] a = [ 100, 101, 102, 103 ];
int[] b = [ 0, 1, 2, 3 ];
auto c = swapRanges(a[1 .. 3], b[2 .. 4]);
assert(c[0].empty && c[1].empty);
assert(a == [ 100, 2, 3, 103 ]);
assert(b == [ 0, 1, 101, 102 ]);
}
/**
Initializes each element of $(D range) with $(D value).
Assumes that the elements of the range are uninitialized.
This is of interest for structs that
define copy constructors (for all other types, $(LREF fill) and
uninitializedFill are equivalent).
Params:
range = An
$(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
that exposes references to its elements and has assignable
elements
value = Assigned to each element of range
See_Also:
$(LREF fill)
$(LREF initializeAll)
*/
void uninitializedFill(Range, Value)(Range range, Value value)
if (isInputRange!Range && hasLvalueElements!Range && is(typeof(range.front = value)))
{
import std.traits : hasElaborateAssign;
alias T = ElementType!Range;
static if (hasElaborateAssign!T)
{
import std.conv : emplaceRef;
// Must construct stuff by the book
for (; !range.empty; range.popFront())
emplaceRef!T(range.front, value);
}
else
// Doesn't matter whether fill is initialized or not
return fill(range, value);
}
///
nothrow @system unittest
{
import core.stdc.stdlib : malloc, free;
auto s = (cast(int*) malloc(5 * int.sizeof))[0 .. 5];
uninitializedFill(s, 42);
assert(s == [ 42, 42, 42, 42, 42 ]);
scope(exit) free(s.ptr);
}
|