1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
|
// MT-optimized allocator -*- C++ -*-
// Copyright (C) 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file ext/mt_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _MT_ALLOCATOR_H
#define _MT_ALLOCATOR_H 1
#include <cstdlib>
#include <bits/functexcept.h>
#include <bits/stl_threads.h>
#include <bits/atomicity.h>
#include <bits/allocator_traits.h>
namespace __gnu_cxx
{
/**
* This is a fixed size (power of 2) allocator which - when compiled
* with thread support - will maintain one freelist per size per thread
* plus a "global" one. Steps are taken to limit the per thread freelist
* sizes (by returning excess back to "global").
*
* Usage examples:
* @code
* vector<int, __gnu_cxx::__mt_alloc<0> > v1;
*
* typedef std::__allocator<char, __gnu_cxx::__mt_alloc<0> > string_alloc;
* std::basic_string<char, std::char_traits<char>, string_alloc> s1;
* @endcode
*/
template<int __inst>
class __mt_alloc
{
private:
/*
* We need to create the initial lists and set up some variables
* before we can answer to the first request for memory.
* The initialization of these variables is done at file scope
* below class declaration.
*/
#ifdef __GTHREADS
static __gthread_once_t _S_once_mt;
#endif
static bool _S_initialized;
/*
* Using short int as type for the binmap implies we are never caching
* blocks larger than 65535 with this allocator
*/
typedef unsigned short int binmap_type;
static binmap_type* _S_binmap;
static void _S_init();
/*
* Variables used to "tune" the behavior of the allocator, assigned
* and explained in detail below.
*/
static size_t _S_max_bytes;
static size_t _S_chunk_size;
static size_t _S_max_threads;
static size_t _S_no_of_bins;
static size_t _S_freelist_headroom;
/*
* Each requesting thread is assigned an id ranging from 1 to
* _S_max_threads. Thread id 0 is used as a global memory pool.
* In order to get constant performance on the thread assignment
* routine, we keep a list of free ids. When a thread first requests
* memory we remove the first record in this list and stores the address
* in a __gthread_key. When initializing the __gthread_key
* we specify a destructor. When this destructor (i.e. the thread dies)
* is called, we return the thread id to the back of this list.
*/
#ifdef __GTHREADS
struct thread_record
{
/*
* Points to next free thread id record. NULL if last record in list.
*/
thread_record* next;
/*
* Thread id ranging from 1 to _S_max_threads.
*/
size_t id;
};
static thread_record* _S_thread_freelist_first;
static thread_record* _S_thread_freelist_last;
static __gthread_mutex_t _S_thread_freelist_mutex;
static void _S_thread_key_destr(void* freelist_pos);
static __gthread_key_t _S_thread_key;
static size_t _S_get_thread_id();
#endif
struct block_record
{
/*
* Points to the next block_record for its thread_id.
*/
block_record* next;
/*
* The thread id of the thread which has requested this block.
* All blocks are initially "owned" by global pool thread id 0.
*/
size_t thread_id;
};
struct bin_record
{
/*
* An "array" of pointers to the first/last free block for each
* thread id. Memory to these "arrays" is allocated in _S_init()
* for _S_max_threads + global pool 0.
*/
block_record** first;
block_record** last;
/*
* An "array" of counters used to keep track of the amount of blocks
* that are on the freelist/used for each thread id.
* Memory to these "arrays" is allocated in _S_init()
* for _S_max_threads + global pool 0.
*/
size_t* free;
size_t* used;
/*
* Each bin has its own mutex which is used to ensure data integrity
* while changing "ownership" on a block.
* The mutex is initialized in _S_init().
*/
#ifdef __GTHREADS
__gthread_mutex_t* mutex;
#endif
};
/*
* An "array" of bin_records each of which represents a specific
* power of 2 size. Memory to this "array" is allocated in _S_init().
*/
static bin_record* _S_bin;
public:
static void*
allocate(size_t __n)
{
/*
* Requests larger than _S_max_bytes are handled by
* malloc/free directly
*/
if (__n > _S_max_bytes)
{
void* __ret = malloc(__n);
if (!__ret)
__throw_bad_alloc();
return __ret;
}
/*
* Although the test in __gthread_once() would suffice, we
* wrap test of the once condition in our own unlocked
* check. This saves one function call to pthread_once()
* (which itself only tests for the once value unlocked anyway
* and immediately returns if set)
*/
if (!_S_initialized)
{
#ifdef __GTHREADS
if (__gthread_active_p())
__gthread_once(&_S_once_mt, _S_init);
else
#endif
{
_S_max_threads = 0;
_S_init();
}
}
/*
* Round up to power of 2 and figure out which bin to use
*/
size_t bin = _S_binmap[__n];
#ifdef __GTHREADS
size_t thread_id = _S_get_thread_id();
#else
size_t thread_id = 0;
#endif
block_record* block;
/*
* Find out if we have blocks on our freelist.
* If so, go ahead and use them directly without
* having to lock anything.
*/
if (_S_bin[bin].first[thread_id] == NULL)
{
/*
* Are we using threads?
* - Yes, lock and check if there are free blocks on the global
* list (and if not add new ones), get the first one
* and change owner.
* - No, all operations are made directly to global pool 0
* no need to lock or change ownership but check for free
* blocks on global list (and if not add new ones) and
* get the first one.
*/
#ifdef __GTHREADS
if (__gthread_active_p())
{
__gthread_mutex_lock(_S_bin[bin].mutex);
if (_S_bin[bin].first[0] == NULL)
{
_S_bin[bin].first[0] =
(block_record*)malloc(_S_chunk_size);
if (!_S_bin[bin].first[0])
{
__gthread_mutex_unlock(_S_bin[bin].mutex);
__throw_bad_alloc();
}
size_t bin_t = 1 << bin;
size_t block_count =
_S_chunk_size /(bin_t + sizeof(block_record));
_S_bin[bin].free[0] = block_count;
block_count--;
block = _S_bin[bin].first[0];
while (block_count > 0)
{
block->next = (block_record*)((char*)block +
(bin_t + sizeof(block_record)));
block = block->next;
block_count--;
}
block->next = NULL;
_S_bin[bin].last[0] = block;
}
block = _S_bin[bin].first[0];
/*
* Remove from list and count down the available counter on
* global pool 0.
*/
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
_S_bin[bin].free[0]--;
__gthread_mutex_unlock(_S_bin[bin].mutex);
/*
* Now that we have removed the block from the global
* freelist we can change owner and update the used
* counter for this thread without locking.
*/
block->thread_id = thread_id;
_S_bin[bin].used[thread_id]++;
}
else
#endif
{
_S_bin[bin].first[0] = (block_record*)malloc(_S_chunk_size);
if (!_S_bin[bin].first[0])
__throw_bad_alloc();
size_t bin_t = 1 << bin;
size_t block_count =
_S_chunk_size / (bin_t + sizeof(block_record));
_S_bin[bin].free[0] = block_count;
block_count--;
block = _S_bin[bin].first[0];
while (block_count > 0)
{
block->next = (block_record*)((char*)block +
(bin_t + sizeof(block_record)));
block = block->next;
block_count--;
}
block->next = NULL;
_S_bin[bin].last[0] = block;
block = _S_bin[bin].first[0];
/*
* Remove from list and count down the available counter on
* global pool 0 and increase it's used counter.
*/
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
_S_bin[bin].free[0]--;
_S_bin[bin].used[0]++;
}
}
else
{
/*
* "Default" operation - we have blocks on our own freelist
* grab the first record and update the counters.
*/
block = _S_bin[bin].first[thread_id];
_S_bin[bin].first[thread_id] = _S_bin[bin].first[thread_id]->next;
_S_bin[bin].free[thread_id]--;
_S_bin[bin].used[thread_id]++;
}
return (void*)((char*)block + sizeof(block_record));
}
static void
deallocate(void* __p, size_t __n)
{
/*
* Requests larger than _S_max_bytes are handled by
* malloc/free directly
*/
if (__n > _S_max_bytes)
{
free(__p);
return;
}
/*
* Round up to power of 2 and figure out which bin to use
*/
size_t bin = _S_binmap[__n];
#ifdef __GTHREADS
size_t thread_id = _S_get_thread_id();
#else
size_t thread_id = 0;
#endif
block_record* block = (block_record*)((char*)__p
- sizeof(block_record));
/*
* This block will always be at the back of a list and thus
* we set its next pointer to NULL.
*/
block->next = NULL;
#ifdef __GTHREADS
if (__gthread_active_p())
{
/*
* Calculate the number of records to remove from our freelist
*/
int remove = _S_bin[bin].free[thread_id] -
(_S_bin[bin].used[thread_id] / _S_freelist_headroom);
/*
* The calculation above will almost always tell us to
* remove one or two records at a time, but this creates
* too much contention when locking and therefore we
* wait until the number of records is "high enough".
*/
if (remove > (int)(100 * (_S_no_of_bins - bin)) &&
remove > (int)(_S_bin[bin].free[thread_id] /
_S_freelist_headroom))
{
__gthread_mutex_lock(_S_bin[bin].mutex);
while (remove > 0)
{
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = _S_bin[bin].first[thread_id];
else
_S_bin[bin].last[0]->next = _S_bin[bin].first[thread_id];
_S_bin[bin].last[0] = _S_bin[bin].first[thread_id];
_S_bin[bin].first[thread_id] =
_S_bin[bin].first[thread_id]->next;
_S_bin[bin].free[0]++;
_S_bin[bin].free[thread_id]--;
remove--;
}
_S_bin[bin].last[0]->next = NULL;
__gthread_mutex_unlock(_S_bin[bin].mutex);
}
/*
* Did we allocate this block?
* - Yes, return it to our freelist
* - No, return it to global pool
*/
if (thread_id == block->thread_id)
{
if (_S_bin[bin].first[thread_id] == NULL)
_S_bin[bin].first[thread_id] = block;
else
_S_bin[bin].last[thread_id]->next = block;
_S_bin[bin].last[thread_id] = block;
_S_bin[bin].free[thread_id]++;
_S_bin[bin].used[thread_id]--;
}
else
{
__gthread_mutex_lock(_S_bin[bin].mutex);
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = block;
else
_S_bin[bin].last[0]->next = block;
_S_bin[bin].last[0] = block;
_S_bin[bin].free[0]++;
_S_bin[bin].used[block->thread_id]--;
__gthread_mutex_unlock(_S_bin[bin].mutex);
}
}
else
#endif
{
/*
* Single threaded application - return to global pool
*/
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = block;
else
_S_bin[bin].last[0]->next = block;
_S_bin[bin].last[0] = block;
_S_bin[bin].free[0]++;
_S_bin[bin].used[0]--;
}
}
};
template<int __inst>
void
__mt_alloc<__inst>::
_S_init()
{
/*
* Calculate the number of bins required based on _S_max_bytes,
* _S_no_of_bins is initialized to 1 below.
*/
{
size_t bin_t = 1;
while (_S_max_bytes > bin_t)
{
bin_t = bin_t << 1;
_S_no_of_bins++;
}
}
/*
* Setup the bin map for quick lookup of the relevant bin
*/
_S_binmap = (binmap_type*)
malloc ((_S_max_bytes + 1) * sizeof(binmap_type));
if (!_S_binmap)
__throw_bad_alloc();
binmap_type* bp_t = _S_binmap;
binmap_type bin_max_t = 1;
binmap_type bin_t = 0;
for (binmap_type ct = 0; ct <= _S_max_bytes; ct++)
{
if (ct > bin_max_t)
{
bin_max_t <<= 1;
bin_t++;
}
*bp_t++ = bin_t;
}
/*
* If __gthread_active_p() create and initialize the list of
* free thread ids. Single threaded applications use thread id 0
* directly and have no need for this.
*/
#ifdef __GTHREADS
if (__gthread_active_p())
{
_S_thread_freelist_first =
(thread_record*)malloc(sizeof(thread_record) * _S_max_threads);
if (!_S_thread_freelist_first)
__throw_bad_alloc();
/*
* NOTE! The first assignable thread id is 1 since the global
* pool uses id 0
*/
size_t i;
for (i = 1; i < _S_max_threads; i++)
{
_S_thread_freelist_first[i - 1].next =
&_S_thread_freelist_first[i];
_S_thread_freelist_first[i - 1].id = i;
}
/*
* Set last record and pointer to this
*/
_S_thread_freelist_first[i - 1].next = NULL;
_S_thread_freelist_first[i - 1].id = i;
_S_thread_freelist_last = &_S_thread_freelist_first[i - 1];
/*
* Initialize per thread key to hold pointer to
* _S_thread_freelist NOTE! Here's an ugly workaround - if
* _S_thread_key_destr is not explicitly called at least
* once it won't be linked into the application. This is the
* behavior of template methods and __gthread_key_create()
* takes only a pointer to the function and does not cause
* the compiler to create an instance.
*/
_S_thread_key_destr(NULL);
__gthread_key_create(&_S_thread_key, _S_thread_key_destr);
}
#endif
/*
* Initialize _S_bin and its members
*/
_S_bin = (bin_record*)malloc(sizeof(bin_record) * _S_no_of_bins);
if (!_S_bin)
__throw_bad_alloc();
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
{
_S_bin[bin].first = (block_record**)
malloc(sizeof(block_record*) * (_S_max_threads + 1));
if (!_S_bin[bin].first)
__throw_bad_alloc();
_S_bin[bin].last = (block_record**)
malloc(sizeof(block_record*) * (_S_max_threads + 1));
if (!_S_bin[bin].last)
__throw_bad_alloc();
_S_bin[bin].free = (size_t*)
malloc(sizeof(size_t) * (_S_max_threads + 1));
if (!_S_bin[bin].free)
__throw_bad_alloc();
_S_bin[bin].used = (size_t*)
malloc(sizeof(size_t) * (_S_max_threads + 1));
if (!_S_bin[bin].used)
__throw_bad_alloc();
/*
* Ugly workaround of what at the time of writing seems to be
* a parser problem - see PR c++/9779 for more info.
*/
#ifdef __GTHREADS
size_t s = sizeof(__gthread_mutex_t);
_S_bin[bin].mutex = (__gthread_mutex_t*)malloc(s);
if (!_S_bin[bin].mutex)
__throw_bad_alloc();
#ifdef __GTHREAD_MUTEX_INIT
{
// Do not copy a POSIX/gthr mutex once in use.
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
*_S_bin[bin].mutex = __tmp;
}
#else
{ __GTHREAD_MUTEX_INIT_FUNCTION (_S_bin[bin].mutex); }
#endif
#endif
for (size_t thread = 0; thread <= _S_max_threads; thread++)
{
_S_bin[bin].first[thread] = NULL;
_S_bin[bin].last[thread] = NULL;
_S_bin[bin].free[thread] = 0;
_S_bin[bin].used[thread] = 0;
}
}
_S_initialized = true;
}
#ifdef __GTHREADS
template<int __inst>
void
__mt_alloc<__inst>::
_S_thread_key_destr(void* freelist_pos)
{
/*
* This is due to the ugly workaround mentioned in _S_init()
*/
if (freelist_pos == NULL)
return;
/*
* If the thread - when it dies - still have records on its
* freelist we return them to the global pool here.
*/
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
{
block_record* block =
_S_bin[bin].first[((thread_record*)freelist_pos)->id];
if (block != NULL)
{
__gthread_mutex_lock(_S_bin[bin].mutex);
while (block != NULL)
{
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = block;
else
_S_bin[bin].last[0]->next = block;
_S_bin[bin].last[0] = block;
block = block->next;
_S_bin[bin].free[0]++;
}
_S_bin[bin].last[0]->next = NULL;
__gthread_mutex_unlock(_S_bin[bin].mutex);
}
}
/*
* Return this thread id record to thread_freelist
*/
__gthread_mutex_lock(&_S_thread_freelist_mutex);
_S_thread_freelist_last->next = (thread_record*)freelist_pos;
_S_thread_freelist_last = (thread_record*)freelist_pos;
_S_thread_freelist_last->next = NULL;
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
}
template<int __inst>
size_t
__mt_alloc<__inst>::
_S_get_thread_id()
{
/*
* If we have thread support and it's active we check the thread
* key value and return it's id or if it's not set we take the
* first record from _S_thread_freelist and sets the key and
* returns it's id.
*/
if (__gthread_active_p())
{
thread_record* freelist_pos;
if ((freelist_pos =
(thread_record*)__gthread_getspecific(_S_thread_key)) == NULL)
{
__gthread_mutex_lock(&_S_thread_freelist_mutex);
/*
* Since _S_max_threads must be larger than the
* theoretical max number of threads of the OS the list
* can never be empty.
*/
freelist_pos = _S_thread_freelist_first;
_S_thread_freelist_first = _S_thread_freelist_first->next;
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
__gthread_setspecific(_S_thread_key, (void*)freelist_pos);
/*
* Since thread_ids may/will be reused (espcially in
* producer/consumer applications) we make sure that the
* list pointers and free counter is reset BUT as the
* "old" thread may still be owner of some memory (which
* is referred to by other threads and thus not freed)
* we don't reset the used counter.
*/
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
{
_S_bin[bin].first[freelist_pos->id] = NULL;
_S_bin[bin].last[freelist_pos->id] = NULL;
_S_bin[bin].free[freelist_pos->id] = 0;
}
}
return freelist_pos->id;
}
/*
* Otherwise (no thread support or inactive) all requests are
* served from the global pool 0.
*/
return 0;
}
template<int __inst> __gthread_once_t
__mt_alloc<__inst>::_S_once_mt = __GTHREAD_ONCE_INIT;
#endif
template<int __inst> bool
__mt_alloc<__inst>::_S_initialized = false;
template<int __inst> typename __mt_alloc<__inst>::binmap_type*
__mt_alloc<__inst>::_S_binmap = NULL;
/*
* Allocation requests (after round-up to power of 2) below this
* value will be handled by the allocator. A raw malloc/free() call
* will be used for requests larger than this value.
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_max_bytes = 128;
/*
* In order to avoid fragmenting and minimize the number of malloc()
* calls we always request new memory using this value. Based on
* previous discussions on the libstdc++ mailing list we have
* choosen the value below. See
* http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_chunk_size = 4096 - 4 * sizeof(void*);
/*
* The maximum number of supported threads. Our Linux 2.4.18 reports
* 4070 in /proc/sys/kernel/threads-max
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_max_threads = 4096;
/*
* Actual value calculated in _S_init()
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_no_of_bins = 1;
/*
* Each time a deallocation occurs in a threaded application we make
* sure that there are no more than _S_freelist_headroom % of used
* memory on the freelist. If the number of additional records is
* more than _S_freelist_headroom % of the freelist, we move these
* records back to the global pool.
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_freelist_headroom = 10;
/*
* Actual initialization in _S_init()
*/
#ifdef __GTHREADS
template<int __inst> typename __mt_alloc<__inst>::thread_record*
__mt_alloc<__inst>::_S_thread_freelist_first = NULL;
template<int __inst> typename __mt_alloc<__inst>::thread_record*
__mt_alloc<__inst>::_S_thread_freelist_last = NULL;
template<int __inst> __gthread_mutex_t
__mt_alloc<__inst>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;
/*
* Actual initialization in _S_init()
*/
template<int __inst> __gthread_key_t
__mt_alloc<__inst>::_S_thread_key;
#endif
template<int __inst> typename __mt_alloc<__inst>::bin_record*
__mt_alloc<__inst>::_S_bin = NULL;
template<int __inst>
inline bool
operator==(const __mt_alloc<__inst>&, const __mt_alloc<__inst>&)
{ return true; }
template<int __inst>
inline bool
operator!=(const __mt_alloc<__inst>&, const __mt_alloc<__inst>&)
{ return false; }
} // namespace __gnu_cxx
namespace std
{
template<typename _Tp, int __inst>
struct _Alloc_traits<_Tp, __gnu_cxx::__mt_alloc<__inst> >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx:: __mt_alloc<__inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
template<typename _Tp, typename _Tp1, int __inst>
struct _Alloc_traits<_Tp,
__allocator<_Tp1, __gnu_cxx::__mt_alloc<__inst> > >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx:: __mt_alloc<__inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
} // namespace std
#endif
|