summaryrefslogtreecommitdiff
path: root/gdb/m88k-tdep.c
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2002-07-24 23:51:36 +0000
committerAndrew Cagney <cagney@redhat.com>2002-07-24 23:51:36 +0000
commit640f409399078d9ce47167d0ecab2ba093e5f6e2 (patch)
tree8aa13f03dea20338f8cfa8686d5a88b8cc5ff83b /gdb/m88k-tdep.c
parentcdd476f8690254fd8e3dda07fabc16e21ada4e5e (diff)
downloadgdb-640f409399078d9ce47167d0ecab2ba093e5f6e2.tar.gz
Obsolete m88k.
Diffstat (limited to 'gdb/m88k-tdep.c')
-rw-r--r--gdb/m88k-tdep.c1322
1 files changed, 661 insertions, 661 deletions
diff --git a/gdb/m88k-tdep.c b/gdb/m88k-tdep.c
index 3c96d37a8de..da0b67ca3d5 100644
--- a/gdb/m88k-tdep.c
+++ b/gdb/m88k-tdep.c
@@ -1,661 +1,661 @@
-/* Target-machine dependent code for Motorola 88000 series, for GDB.
-
- Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
- 2000, 2001, 2002 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "value.h"
-#include "gdbcore.h"
-#include "symtab.h"
-#include "setjmp.h"
-#include "value.h"
-#include "regcache.h"
-
-/* Size of an instruction */
-#define BYTES_PER_88K_INSN 4
-
-void frame_find_saved_regs ();
-
-/* Is this target an m88110? Otherwise assume m88100. This has
- relevance for the ways in which we screw with instruction pointers. */
-
-int target_is_m88110 = 0;
-
-void
-m88k_target_write_pc (CORE_ADDR pc, ptid_t ptid)
-{
- /* According to the MC88100 RISC Microprocessor User's Manual,
- section 6.4.3.1.2:
-
- ... can be made to return to a particular instruction by placing
- a valid instruction address in the SNIP and the next sequential
- instruction address in the SFIP (with V bits set and E bits
- clear). The rte resumes execution at the instruction pointed to
- by the SNIP, then the SFIP.
-
- The E bit is the least significant bit (bit 0). The V (valid)
- bit is bit 1. This is why we logical or 2 into the values we are
- writing below. It turns out that SXIP plays no role when
- returning from an exception so nothing special has to be done
- with it. We could even (presumably) give it a totally bogus
- value.
-
- -- Kevin Buettner */
-
- write_register_pid (SXIP_REGNUM, pc, ptid);
- write_register_pid (SNIP_REGNUM, (pc | 2), ptid);
- write_register_pid (SFIP_REGNUM, (pc | 2) + 4, ptid);
-}
-
-/* The type of a register. */
-struct type *
-m88k_register_type (int regnum)
-{
- if (regnum >= XFP_REGNUM)
- return builtin_type_m88110_ext;
- else if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
- return builtin_type_void_func_ptr;
- else
- return builtin_type_int32;
-}
-
-
-/* The m88k kernel aligns all instructions on 4-byte boundaries. The
- kernel also uses the least significant two bits for its own hocus
- pocus. When gdb receives an address from the kernel, it needs to
- preserve those right-most two bits, but gdb also needs to be careful
- to realize that those two bits are not really a part of the address
- of an instruction. Shrug. */
-
-CORE_ADDR
-m88k_addr_bits_remove (CORE_ADDR addr)
-{
- return ((addr) & ~3);
-}
-
-
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
-
-CORE_ADDR
-frame_chain (struct frame_info *thisframe)
-{
-
- frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
- the ADDRESS, of SP_REGNUM. It also depends on the cache of
- frame_find_saved_regs results. */
- if (thisframe->fsr->regs[SP_REGNUM])
- return thisframe->fsr->regs[SP_REGNUM];
- else
- return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
-}
-
-int
-frameless_function_invocation (struct frame_info *frame)
-{
-
- frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
- /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
- the ADDRESS, of SP_REGNUM. It also depends on the cache of
- frame_find_saved_regs results. */
- if (frame->fsr->regs[SP_REGNUM])
- return 0; /* Frameful -- return addr saved somewhere */
- else
- return 1; /* Frameless -- no saved return address */
-}
-
-void
-init_extra_frame_info (int fromleaf, struct frame_info *frame)
-{
- frame->fsr = 0; /* Not yet allocated */
- frame->args_pointer = 0; /* Unknown */
- frame->locals_pointer = 0; /* Unknown */
-}
-
-/* Examine an m88k function prologue, recording the addresses at which
- registers are saved explicitly by the prologue code, and returning
- the address of the first instruction after the prologue (but not
- after the instruction at address LIMIT, as explained below).
-
- LIMIT places an upper bound on addresses of the instructions to be
- examined. If the prologue code scan reaches LIMIT, the scan is
- aborted and LIMIT is returned. This is used, when examining the
- prologue for the current frame, to keep examine_prologue () from
- claiming that a given register has been saved when in fact the
- instruction that saves it has not yet been executed. LIMIT is used
- at other times to stop the scan when we hit code after the true
- function prologue (e.g. for the first source line) which might
- otherwise be mistaken for function prologue.
-
- The format of the function prologue matched by this routine is
- derived from examination of the source to gcc 1.95, particularly
- the routine output_prologue () in config/out-m88k.c.
-
- subu r31,r31,n # stack pointer update
-
- (st rn,r31,offset)? # save incoming regs
- (st.d rn,r31,offset)?
-
- (addu r30,r31,n)? # frame pointer update
-
- (pic sequence)? # PIC code prologue
-
- (or rn,rm,0)? # Move parameters to other regs
- */
-
-/* Macros for extracting fields from instructions. */
-
-#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
-#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
-#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
-#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
-#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
-#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
-
-/*
- * prologue_insn_tbl is a table of instructions which may comprise a
- * function prologue. Associated with each table entry (corresponding
- * to a single instruction or group of instructions), is an action.
- * This action is used by examine_prologue (below) to determine
- * the state of certain machine registers and where the stack frame lives.
- */
-
-enum prologue_insn_action
-{
- PIA_SKIP, /* don't care what the instruction does */
- PIA_NOTE_ST, /* note register stored and where */
- PIA_NOTE_STD, /* note pair of registers stored and where */
- PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
- PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
- PIA_NOTE_PROLOGUE_END, /* no more prologue */
-};
-
-struct prologue_insns
- {
- unsigned long insn;
- unsigned long mask;
- enum prologue_insn_action action;
- };
-
-struct prologue_insns prologue_insn_tbl[] =
-{
- /* Various register move instructions */
- {0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */
- {0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */
- {0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */
-
- /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
- {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
-
- /* Frame pointer assignment: "addu r30, r31, n" */
- {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
-
- /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
- {0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */
- {0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */
-
- /* Instructions needed for setting up r25 for pic code. */
- {0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */
- {0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */
- {0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */
- {0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */
-
- /* Various branch or jump instructions which have a delay slot -- these
- do not form part of the prologue, but the instruction in the delay
- slot might be a store instruction which should be noted. */
- {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
- /* br.n, bsr.n, bb0.n, or bb1.n */
- {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */
- {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */
-
-};
-
-
-/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
- is not the address of a valid instruction, the address of the next
- instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction. */
-
-#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
- (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
-
-/* Read the m88k instruction at 'memaddr' and return the address of
- the next instruction after that, or 0 if 'memaddr' is not the
- address of a valid instruction. The instruction
- is stored at 'pword1'. */
-
-CORE_ADDR
-next_insn (CORE_ADDR memaddr, unsigned long *pword1)
-{
- *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
- return memaddr + BYTES_PER_88K_INSN;
-}
-
-/* Read a register from frames called by us (or from the hardware regs). */
-
-static int
-read_next_frame_reg (struct frame_info *frame, int regno)
-{
- for (; frame; frame = frame->next)
- {
- if (regno == SP_REGNUM)
- return FRAME_FP (frame);
- else if (frame->fsr->regs[regno])
- return read_memory_integer (frame->fsr->regs[regno], 4);
- }
- return read_register (regno);
-}
-
-/* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
-
-static CORE_ADDR
-examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
- CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
- struct frame_info *fi)
-{
- register CORE_ADDR next_ip;
- register int src;
- unsigned long insn;
- int size, offset;
- char must_adjust[32]; /* If set, must adjust offsets in fsr */
- int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
- int fp_offset = -1; /* -1 means not set */
- CORE_ADDR frame_fp;
- CORE_ADDR prologue_end = 0;
-
- memset (must_adjust, '\0', sizeof (must_adjust));
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
-
- while (next_ip)
- {
- struct prologue_insns *pip;
-
- for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
- if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
- goto end_of_prologue_found; /* not a prologue insn */
-
- switch (pip->action)
- {
- case PIA_NOTE_ST:
- case PIA_NOTE_STD:
- if (sp_offset != -1)
- {
- src = ST_SRC (insn);
- offset = ST_OFFSET (insn);
- must_adjust[src] = 1;
- fsr->regs[src++] = offset; /* Will be adjusted later */
- if (pip->action == PIA_NOTE_STD && src < 32)
- {
- offset += 4;
- must_adjust[src] = 1;
- fsr->regs[src++] = offset;
- }
- }
- else
- goto end_of_prologue_found;
- break;
- case PIA_NOTE_SP_ADJUSTMENT:
- if (sp_offset == -1)
- sp_offset = -SUBU_OFFSET (insn);
- else
- goto end_of_prologue_found;
- break;
- case PIA_NOTE_FP_ASSIGNMENT:
- if (fp_offset == -1)
- fp_offset = ADDU_OFFSET (insn);
- else
- goto end_of_prologue_found;
- break;
- case PIA_NOTE_PROLOGUE_END:
- if (!prologue_end)
- prologue_end = ip;
- break;
- case PIA_SKIP:
- default:
- /* Do nothing */
- break;
- }
-
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
- }
-
-end_of_prologue_found:
-
- if (prologue_end)
- ip = prologue_end;
-
- /* We're done with the prologue. If we don't care about the stack
- frame itself, just return. (Note that fsr->regs has been trashed,
- but the one caller who calls with fi==0 passes a dummy there.) */
-
- if (fi == 0)
- return ip;
-
- /*
- OK, now we have:
-
- sp_offset original (before any alloca calls) displacement of SP
- (will be negative).
-
- fp_offset displacement from original SP to the FP for this frame
- or -1.
-
- fsr->regs[0..31] displacement from original SP to the stack
- location where reg[0..31] is stored.
-
- must_adjust[0..31] set if corresponding offset was set.
-
- If alloca has been called between the function prologue and the current
- IP, then the current SP (frame_sp) will not be the original SP as set by
- the function prologue. If the current SP is not the original SP, then the
- compiler will have allocated an FP for this frame, fp_offset will be set,
- and we can use it to calculate the original SP.
-
- Then, we figure out where the arguments and locals are, and relocate the
- offsets in fsr->regs to absolute addresses. */
-
- if (fp_offset != -1)
- {
- /* We have a frame pointer, so get it, and base our calc's on it. */
- frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
- frame_sp = frame_fp - fp_offset;
- }
- else
- {
- /* We have no frame pointer, therefore frame_sp is still the same value
- as set by prologue. But where is the frame itself? */
- if (must_adjust[SRP_REGNUM])
- {
- /* Function header saved SRP (r1), the return address. Frame starts
- 4 bytes down from where it was saved. */
- frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
- fi->locals_pointer = frame_fp;
- }
- else
- {
- /* Function header didn't save SRP (r1), so we are in a leaf fn or
- are otherwise confused. */
- frame_fp = -1;
- }
- }
-
- /* The locals are relative to the FP (whether it exists as an allocated
- register, or just as an assumed offset from the SP) */
- fi->locals_pointer = frame_fp;
-
- /* The arguments are just above the SP as it was before we adjusted it
- on entry. */
- fi->args_pointer = frame_sp - sp_offset;
-
- /* Now that we know the SP value used by the prologue, we know where
- it saved all the registers. */
- for (src = 0; src < 32; src++)
- if (must_adjust[src])
- fsr->regs[src] += frame_sp;
-
- /* The saved value of the SP is always known. */
- /* (we hope...) */
- if (fsr->regs[SP_REGNUM] != 0
- && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
- fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
- fsr->regs[SP_REGNUM],
- frame_sp - sp_offset, sp_offset);
-
- fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
-
- return (ip);
-}
-
-/* Given an ip value corresponding to the start of a function,
- return the ip of the first instruction after the function
- prologue. */
-
-CORE_ADDR
-m88k_skip_prologue (CORE_ADDR ip)
-{
- struct frame_saved_regs saved_regs_dummy;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- sal = find_pc_line (ip, 0);
- limit = (sal.end) ? sal.end : 0xffffffff;
-
- return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
- (struct frame_info *) 0));
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- We cache the result of doing this in the frame_obstack, since it is
- fairly expensive. */
-
-void
-frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
-{
- register struct frame_saved_regs *cache_fsr;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- frame_obstack_alloc (sizeof (struct frame_saved_regs));
- memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
- fi->fsr = cache_fsr;
-
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. In the case where the PC is not in
- the function prologue, we set limit to two instructions beyond
- where the prologue ends in case if any of the prologue instructions
- were moved into a delay slot of a branch instruction. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
- : fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
-#ifdef SIGTRAMP_FRAME_FIXUP
- if (fi->signal_handler_caller)
- SIGTRAMP_FRAME_FIXUP (fi->frame);
-#endif
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
-#ifdef SIGTRAMP_SP_FIXUP
- if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
- SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
-#endif
- }
-
- if (fsr)
- *fsr = *fi->fsr;
-}
-
-/* Return the address of the locals block for the frame
- described by FI. Returns 0 if the address is unknown.
- NOTE! Frame locals are referred to by negative offsets from the
- argument pointer, so this is the same as frame_args_address(). */
-
-CORE_ADDR
-frame_locals_address (struct frame_info *fi)
-{
- struct frame_saved_regs fsr;
-
- if (fi->args_pointer) /* Cached value is likely there. */
- return fi->args_pointer;
-
- /* Nope, generate it. */
-
- get_frame_saved_regs (fi, &fsr);
-
- return fi->args_pointer;
-}
-
-/* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
-
-CORE_ADDR
-frame_args_address (struct frame_info *fi)
-{
- struct frame_saved_regs fsr;
-
- if (fi->args_pointer) /* Cached value is likely there. */
- return fi->args_pointer;
-
- /* Nope, generate it. */
-
- get_frame_saved_regs (fi, &fsr);
-
- return fi->args_pointer;
-}
-
-/* Return the saved PC from this frame.
-
- If the frame has a memory copy of SRP_REGNUM, use that. If not,
- just use the register SRP_REGNUM itself. */
-
-CORE_ADDR
-frame_saved_pc (struct frame_info *frame)
-{
- return read_next_frame_reg (frame, SRP_REGNUM);
-}
-
-
-#define DUMMY_FRAME_SIZE 192
-
-static void
-write_word (CORE_ADDR sp, ULONGEST word)
-{
- register int len = REGISTER_SIZE;
- char buffer[MAX_REGISTER_RAW_SIZE];
-
- store_unsigned_integer (buffer, len, word);
- write_memory (sp, buffer, len);
-}
-
-void
-m88k_push_dummy_frame (void)
-{
- register CORE_ADDR sp = read_register (SP_REGNUM);
- register int rn;
- int offset;
-
- sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
-
- for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
- write_word (sp + offset, read_register (rn));
-
- write_word (sp + offset, read_register (SXIP_REGNUM));
- offset += 4;
-
- write_word (sp + offset, read_register (SNIP_REGNUM));
- offset += 4;
-
- write_word (sp + offset, read_register (SFIP_REGNUM));
- offset += 4;
-
- write_word (sp + offset, read_register (PSR_REGNUM));
- offset += 4;
-
- write_word (sp + offset, read_register (FPSR_REGNUM));
- offset += 4;
-
- write_word (sp + offset, read_register (FPCR_REGNUM));
- offset += 4;
-
- write_register (SP_REGNUM, sp);
- write_register (ACTUAL_FP_REGNUM, sp);
-}
-
-void
-pop_frame (void)
-{
- register struct frame_info *frame = get_current_frame ();
- register int regnum;
- struct frame_saved_regs fsr;
-
- get_frame_saved_regs (frame, &fsr);
-
- if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
- {
- /* FIXME: I think get_frame_saved_regs should be handling this so
- that we can deal with the saved registers properly (e.g. frame
- 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
- register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
- int offset;
-
- for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
- (void) write_register (regnum, read_memory_integer (sp + offset, 4));
-
- write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
- offset += 4;
-
- write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
- offset += 4;
-
- write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
- offset += 4;
-
- write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
- offset += 4;
-
- write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
- offset += 4;
-
- write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
- offset += 4;
-
- }
- else
- {
- for (regnum = FP_REGNUM; regnum > 0; regnum--)
- if (fsr.regs[regnum])
- write_register (regnum,
- read_memory_integer (fsr.regs[regnum], 4));
- write_pc (frame_saved_pc (frame));
- }
- reinit_frame_cache ();
-}
-
-void
-_initialize_m88k_tdep (void)
-{
- tm_print_insn = print_insn_m88k;
-}
+// OBSOLETE /* Target-machine dependent code for Motorola 88000 series, for GDB.
+// OBSOLETE
+// OBSOLETE Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
+// OBSOLETE 2000, 2001, 2002 Free Software Foundation, Inc.
+// OBSOLETE
+// OBSOLETE This file is part of GDB.
+// OBSOLETE
+// OBSOLETE This program is free software; you can redistribute it and/or modify
+// OBSOLETE it under the terms of the GNU General Public License as published by
+// OBSOLETE the Free Software Foundation; either version 2 of the License, or
+// OBSOLETE (at your option) any later version.
+// OBSOLETE
+// OBSOLETE This program is distributed in the hope that it will be useful,
+// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
+// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// OBSOLETE GNU General Public License for more details.
+// OBSOLETE
+// OBSOLETE You should have received a copy of the GNU General Public License
+// OBSOLETE along with this program; if not, write to the Free Software
+// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
+// OBSOLETE Boston, MA 02111-1307, USA. */
+// OBSOLETE
+// OBSOLETE #include "defs.h"
+// OBSOLETE #include "frame.h"
+// OBSOLETE #include "inferior.h"
+// OBSOLETE #include "value.h"
+// OBSOLETE #include "gdbcore.h"
+// OBSOLETE #include "symtab.h"
+// OBSOLETE #include "setjmp.h"
+// OBSOLETE #include "value.h"
+// OBSOLETE #include "regcache.h"
+// OBSOLETE
+// OBSOLETE /* Size of an instruction */
+// OBSOLETE #define BYTES_PER_88K_INSN 4
+// OBSOLETE
+// OBSOLETE void frame_find_saved_regs ();
+// OBSOLETE
+// OBSOLETE /* Is this target an m88110? Otherwise assume m88100. This has
+// OBSOLETE relevance for the ways in which we screw with instruction pointers. */
+// OBSOLETE
+// OBSOLETE int target_is_m88110 = 0;
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m88k_target_write_pc (CORE_ADDR pc, ptid_t ptid)
+// OBSOLETE {
+// OBSOLETE /* According to the MC88100 RISC Microprocessor User's Manual,
+// OBSOLETE section 6.4.3.1.2:
+// OBSOLETE
+// OBSOLETE ... can be made to return to a particular instruction by placing
+// OBSOLETE a valid instruction address in the SNIP and the next sequential
+// OBSOLETE instruction address in the SFIP (with V bits set and E bits
+// OBSOLETE clear). The rte resumes execution at the instruction pointed to
+// OBSOLETE by the SNIP, then the SFIP.
+// OBSOLETE
+// OBSOLETE The E bit is the least significant bit (bit 0). The V (valid)
+// OBSOLETE bit is bit 1. This is why we logical or 2 into the values we are
+// OBSOLETE writing below. It turns out that SXIP plays no role when
+// OBSOLETE returning from an exception so nothing special has to be done
+// OBSOLETE with it. We could even (presumably) give it a totally bogus
+// OBSOLETE value.
+// OBSOLETE
+// OBSOLETE -- Kevin Buettner */
+// OBSOLETE
+// OBSOLETE write_register_pid (SXIP_REGNUM, pc, ptid);
+// OBSOLETE write_register_pid (SNIP_REGNUM, (pc | 2), ptid);
+// OBSOLETE write_register_pid (SFIP_REGNUM, (pc | 2) + 4, ptid);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* The type of a register. */
+// OBSOLETE struct type *
+// OBSOLETE m88k_register_type (int regnum)
+// OBSOLETE {
+// OBSOLETE if (regnum >= XFP_REGNUM)
+// OBSOLETE return builtin_type_m88110_ext;
+// OBSOLETE else if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
+// OBSOLETE return builtin_type_void_func_ptr;
+// OBSOLETE else
+// OBSOLETE return builtin_type_int32;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* The m88k kernel aligns all instructions on 4-byte boundaries. The
+// OBSOLETE kernel also uses the least significant two bits for its own hocus
+// OBSOLETE pocus. When gdb receives an address from the kernel, it needs to
+// OBSOLETE preserve those right-most two bits, but gdb also needs to be careful
+// OBSOLETE to realize that those two bits are not really a part of the address
+// OBSOLETE of an instruction. Shrug. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m88k_addr_bits_remove (CORE_ADDR addr)
+// OBSOLETE {
+// OBSOLETE return ((addr) & ~3);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* Given a GDB frame, determine the address of the calling function's frame.
+// OBSOLETE This will be used to create a new GDB frame struct, and then
+// OBSOLETE INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+// OBSOLETE
+// OBSOLETE For us, the frame address is its stack pointer value, so we look up
+// OBSOLETE the function prologue to determine the caller's sp value, and return it. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE frame_chain (struct frame_info *thisframe)
+// OBSOLETE {
+// OBSOLETE
+// OBSOLETE frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
+// OBSOLETE /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
+// OBSOLETE the ADDRESS, of SP_REGNUM. It also depends on the cache of
+// OBSOLETE frame_find_saved_regs results. */
+// OBSOLETE if (thisframe->fsr->regs[SP_REGNUM])
+// OBSOLETE return thisframe->fsr->regs[SP_REGNUM];
+// OBSOLETE else
+// OBSOLETE return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE int
+// OBSOLETE frameless_function_invocation (struct frame_info *frame)
+// OBSOLETE {
+// OBSOLETE
+// OBSOLETE frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
+// OBSOLETE /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
+// OBSOLETE the ADDRESS, of SP_REGNUM. It also depends on the cache of
+// OBSOLETE frame_find_saved_regs results. */
+// OBSOLETE if (frame->fsr->regs[SP_REGNUM])
+// OBSOLETE return 0; /* Frameful -- return addr saved somewhere */
+// OBSOLETE else
+// OBSOLETE return 1; /* Frameless -- no saved return address */
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE init_extra_frame_info (int fromleaf, struct frame_info *frame)
+// OBSOLETE {
+// OBSOLETE frame->fsr = 0; /* Not yet allocated */
+// OBSOLETE frame->args_pointer = 0; /* Unknown */
+// OBSOLETE frame->locals_pointer = 0; /* Unknown */
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Examine an m88k function prologue, recording the addresses at which
+// OBSOLETE registers are saved explicitly by the prologue code, and returning
+// OBSOLETE the address of the first instruction after the prologue (but not
+// OBSOLETE after the instruction at address LIMIT, as explained below).
+// OBSOLETE
+// OBSOLETE LIMIT places an upper bound on addresses of the instructions to be
+// OBSOLETE examined. If the prologue code scan reaches LIMIT, the scan is
+// OBSOLETE aborted and LIMIT is returned. This is used, when examining the
+// OBSOLETE prologue for the current frame, to keep examine_prologue () from
+// OBSOLETE claiming that a given register has been saved when in fact the
+// OBSOLETE instruction that saves it has not yet been executed. LIMIT is used
+// OBSOLETE at other times to stop the scan when we hit code after the true
+// OBSOLETE function prologue (e.g. for the first source line) which might
+// OBSOLETE otherwise be mistaken for function prologue.
+// OBSOLETE
+// OBSOLETE The format of the function prologue matched by this routine is
+// OBSOLETE derived from examination of the source to gcc 1.95, particularly
+// OBSOLETE the routine output_prologue () in config/out-m88k.c.
+// OBSOLETE
+// OBSOLETE subu r31,r31,n # stack pointer update
+// OBSOLETE
+// OBSOLETE (st rn,r31,offset)? # save incoming regs
+// OBSOLETE (st.d rn,r31,offset)?
+// OBSOLETE
+// OBSOLETE (addu r30,r31,n)? # frame pointer update
+// OBSOLETE
+// OBSOLETE (pic sequence)? # PIC code prologue
+// OBSOLETE
+// OBSOLETE (or rn,rm,0)? # Move parameters to other regs
+// OBSOLETE */
+// OBSOLETE
+// OBSOLETE /* Macros for extracting fields from instructions. */
+// OBSOLETE
+// OBSOLETE #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
+// OBSOLETE #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
+// OBSOLETE #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
+// OBSOLETE #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
+// OBSOLETE #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
+// OBSOLETE #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
+// OBSOLETE
+// OBSOLETE /*
+// OBSOLETE * prologue_insn_tbl is a table of instructions which may comprise a
+// OBSOLETE * function prologue. Associated with each table entry (corresponding
+// OBSOLETE * to a single instruction or group of instructions), is an action.
+// OBSOLETE * This action is used by examine_prologue (below) to determine
+// OBSOLETE * the state of certain machine registers and where the stack frame lives.
+// OBSOLETE */
+// OBSOLETE
+// OBSOLETE enum prologue_insn_action
+// OBSOLETE {
+// OBSOLETE PIA_SKIP, /* don't care what the instruction does */
+// OBSOLETE PIA_NOTE_ST, /* note register stored and where */
+// OBSOLETE PIA_NOTE_STD, /* note pair of registers stored and where */
+// OBSOLETE PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
+// OBSOLETE PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
+// OBSOLETE PIA_NOTE_PROLOGUE_END, /* no more prologue */
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE struct prologue_insns
+// OBSOLETE {
+// OBSOLETE unsigned long insn;
+// OBSOLETE unsigned long mask;
+// OBSOLETE enum prologue_insn_action action;
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE struct prologue_insns prologue_insn_tbl[] =
+// OBSOLETE {
+// OBSOLETE /* Various register move instructions */
+// OBSOLETE {0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */
+// OBSOLETE {0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */
+// OBSOLETE {0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */
+// OBSOLETE
+// OBSOLETE /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
+// OBSOLETE {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
+// OBSOLETE
+// OBSOLETE /* Frame pointer assignment: "addu r30, r31, n" */
+// OBSOLETE {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
+// OBSOLETE
+// OBSOLETE /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
+// OBSOLETE {0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */
+// OBSOLETE {0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */
+// OBSOLETE
+// OBSOLETE /* Instructions needed for setting up r25 for pic code. */
+// OBSOLETE {0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */
+// OBSOLETE {0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */
+// OBSOLETE {0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */
+// OBSOLETE {0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */
+// OBSOLETE
+// OBSOLETE /* Various branch or jump instructions which have a delay slot -- these
+// OBSOLETE do not form part of the prologue, but the instruction in the delay
+// OBSOLETE slot might be a store instruction which should be noted. */
+// OBSOLETE {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
+// OBSOLETE /* br.n, bsr.n, bb0.n, or bb1.n */
+// OBSOLETE {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */
+// OBSOLETE {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */
+// OBSOLETE
+// OBSOLETE };
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
+// OBSOLETE is not the address of a valid instruction, the address of the next
+// OBSOLETE instruction beyond ADDR otherwise. *PWORD1 receives the first word
+// OBSOLETE of the instruction. */
+// OBSOLETE
+// OBSOLETE #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
+// OBSOLETE (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
+// OBSOLETE
+// OBSOLETE /* Read the m88k instruction at 'memaddr' and return the address of
+// OBSOLETE the next instruction after that, or 0 if 'memaddr' is not the
+// OBSOLETE address of a valid instruction. The instruction
+// OBSOLETE is stored at 'pword1'. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE next_insn (CORE_ADDR memaddr, unsigned long *pword1)
+// OBSOLETE {
+// OBSOLETE *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
+// OBSOLETE return memaddr + BYTES_PER_88K_INSN;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Read a register from frames called by us (or from the hardware regs). */
+// OBSOLETE
+// OBSOLETE static int
+// OBSOLETE read_next_frame_reg (struct frame_info *frame, int regno)
+// OBSOLETE {
+// OBSOLETE for (; frame; frame = frame->next)
+// OBSOLETE {
+// OBSOLETE if (regno == SP_REGNUM)
+// OBSOLETE return FRAME_FP (frame);
+// OBSOLETE else if (frame->fsr->regs[regno])
+// OBSOLETE return read_memory_integer (frame->fsr->regs[regno], 4);
+// OBSOLETE }
+// OBSOLETE return read_register (regno);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Examine the prologue of a function. `ip' points to the first instruction.
+// OBSOLETE `limit' is the limit of the prologue (e.g. the addr of the first
+// OBSOLETE linenumber, or perhaps the program counter if we're stepping through).
+// OBSOLETE `frame_sp' is the stack pointer value in use in this frame.
+// OBSOLETE `fsr' is a pointer to a frame_saved_regs structure into which we put
+// OBSOLETE info about the registers saved by this frame.
+// OBSOLETE `fi' is a struct frame_info pointer; we fill in various fields in it
+// OBSOLETE to reflect the offsets of the arg pointer and the locals pointer. */
+// OBSOLETE
+// OBSOLETE static CORE_ADDR
+// OBSOLETE examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
+// OBSOLETE CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
+// OBSOLETE struct frame_info *fi)
+// OBSOLETE {
+// OBSOLETE register CORE_ADDR next_ip;
+// OBSOLETE register int src;
+// OBSOLETE unsigned long insn;
+// OBSOLETE int size, offset;
+// OBSOLETE char must_adjust[32]; /* If set, must adjust offsets in fsr */
+// OBSOLETE int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
+// OBSOLETE int fp_offset = -1; /* -1 means not set */
+// OBSOLETE CORE_ADDR frame_fp;
+// OBSOLETE CORE_ADDR prologue_end = 0;
+// OBSOLETE
+// OBSOLETE memset (must_adjust, '\0', sizeof (must_adjust));
+// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
+// OBSOLETE
+// OBSOLETE while (next_ip)
+// OBSOLETE {
+// OBSOLETE struct prologue_insns *pip;
+// OBSOLETE
+// OBSOLETE for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
+// OBSOLETE if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
+// OBSOLETE goto end_of_prologue_found; /* not a prologue insn */
+// OBSOLETE
+// OBSOLETE switch (pip->action)
+// OBSOLETE {
+// OBSOLETE case PIA_NOTE_ST:
+// OBSOLETE case PIA_NOTE_STD:
+// OBSOLETE if (sp_offset != -1)
+// OBSOLETE {
+// OBSOLETE src = ST_SRC (insn);
+// OBSOLETE offset = ST_OFFSET (insn);
+// OBSOLETE must_adjust[src] = 1;
+// OBSOLETE fsr->regs[src++] = offset; /* Will be adjusted later */
+// OBSOLETE if (pip->action == PIA_NOTE_STD && src < 32)
+// OBSOLETE {
+// OBSOLETE offset += 4;
+// OBSOLETE must_adjust[src] = 1;
+// OBSOLETE fsr->regs[src++] = offset;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE goto end_of_prologue_found;
+// OBSOLETE break;
+// OBSOLETE case PIA_NOTE_SP_ADJUSTMENT:
+// OBSOLETE if (sp_offset == -1)
+// OBSOLETE sp_offset = -SUBU_OFFSET (insn);
+// OBSOLETE else
+// OBSOLETE goto end_of_prologue_found;
+// OBSOLETE break;
+// OBSOLETE case PIA_NOTE_FP_ASSIGNMENT:
+// OBSOLETE if (fp_offset == -1)
+// OBSOLETE fp_offset = ADDU_OFFSET (insn);
+// OBSOLETE else
+// OBSOLETE goto end_of_prologue_found;
+// OBSOLETE break;
+// OBSOLETE case PIA_NOTE_PROLOGUE_END:
+// OBSOLETE if (!prologue_end)
+// OBSOLETE prologue_end = ip;
+// OBSOLETE break;
+// OBSOLETE case PIA_SKIP:
+// OBSOLETE default:
+// OBSOLETE /* Do nothing */
+// OBSOLETE break;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE ip = next_ip;
+// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE end_of_prologue_found:
+// OBSOLETE
+// OBSOLETE if (prologue_end)
+// OBSOLETE ip = prologue_end;
+// OBSOLETE
+// OBSOLETE /* We're done with the prologue. If we don't care about the stack
+// OBSOLETE frame itself, just return. (Note that fsr->regs has been trashed,
+// OBSOLETE but the one caller who calls with fi==0 passes a dummy there.) */
+// OBSOLETE
+// OBSOLETE if (fi == 0)
+// OBSOLETE return ip;
+// OBSOLETE
+// OBSOLETE /*
+// OBSOLETE OK, now we have:
+// OBSOLETE
+// OBSOLETE sp_offset original (before any alloca calls) displacement of SP
+// OBSOLETE (will be negative).
+// OBSOLETE
+// OBSOLETE fp_offset displacement from original SP to the FP for this frame
+// OBSOLETE or -1.
+// OBSOLETE
+// OBSOLETE fsr->regs[0..31] displacement from original SP to the stack
+// OBSOLETE location where reg[0..31] is stored.
+// OBSOLETE
+// OBSOLETE must_adjust[0..31] set if corresponding offset was set.
+// OBSOLETE
+// OBSOLETE If alloca has been called between the function prologue and the current
+// OBSOLETE IP, then the current SP (frame_sp) will not be the original SP as set by
+// OBSOLETE the function prologue. If the current SP is not the original SP, then the
+// OBSOLETE compiler will have allocated an FP for this frame, fp_offset will be set,
+// OBSOLETE and we can use it to calculate the original SP.
+// OBSOLETE
+// OBSOLETE Then, we figure out where the arguments and locals are, and relocate the
+// OBSOLETE offsets in fsr->regs to absolute addresses. */
+// OBSOLETE
+// OBSOLETE if (fp_offset != -1)
+// OBSOLETE {
+// OBSOLETE /* We have a frame pointer, so get it, and base our calc's on it. */
+// OBSOLETE frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
+// OBSOLETE frame_sp = frame_fp - fp_offset;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* We have no frame pointer, therefore frame_sp is still the same value
+// OBSOLETE as set by prologue. But where is the frame itself? */
+// OBSOLETE if (must_adjust[SRP_REGNUM])
+// OBSOLETE {
+// OBSOLETE /* Function header saved SRP (r1), the return address. Frame starts
+// OBSOLETE 4 bytes down from where it was saved. */
+// OBSOLETE frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
+// OBSOLETE fi->locals_pointer = frame_fp;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE /* Function header didn't save SRP (r1), so we are in a leaf fn or
+// OBSOLETE are otherwise confused. */
+// OBSOLETE frame_fp = -1;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* The locals are relative to the FP (whether it exists as an allocated
+// OBSOLETE register, or just as an assumed offset from the SP) */
+// OBSOLETE fi->locals_pointer = frame_fp;
+// OBSOLETE
+// OBSOLETE /* The arguments are just above the SP as it was before we adjusted it
+// OBSOLETE on entry. */
+// OBSOLETE fi->args_pointer = frame_sp - sp_offset;
+// OBSOLETE
+// OBSOLETE /* Now that we know the SP value used by the prologue, we know where
+// OBSOLETE it saved all the registers. */
+// OBSOLETE for (src = 0; src < 32; src++)
+// OBSOLETE if (must_adjust[src])
+// OBSOLETE fsr->regs[src] += frame_sp;
+// OBSOLETE
+// OBSOLETE /* The saved value of the SP is always known. */
+// OBSOLETE /* (we hope...) */
+// OBSOLETE if (fsr->regs[SP_REGNUM] != 0
+// OBSOLETE && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
+// OBSOLETE fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
+// OBSOLETE fsr->regs[SP_REGNUM],
+// OBSOLETE frame_sp - sp_offset, sp_offset);
+// OBSOLETE
+// OBSOLETE fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
+// OBSOLETE
+// OBSOLETE return (ip);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Given an ip value corresponding to the start of a function,
+// OBSOLETE return the ip of the first instruction after the function
+// OBSOLETE prologue. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m88k_skip_prologue (CORE_ADDR ip)
+// OBSOLETE {
+// OBSOLETE struct frame_saved_regs saved_regs_dummy;
+// OBSOLETE struct symtab_and_line sal;
+// OBSOLETE CORE_ADDR limit;
+// OBSOLETE
+// OBSOLETE sal = find_pc_line (ip, 0);
+// OBSOLETE limit = (sal.end) ? sal.end : 0xffffffff;
+// OBSOLETE
+// OBSOLETE return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
+// OBSOLETE (struct frame_info *) 0));
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Put here the code to store, into a struct frame_saved_regs,
+// OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO.
+// OBSOLETE This includes special registers such as pc and fp saved in special
+// OBSOLETE ways in the stack frame. sp is even more special:
+// OBSOLETE the address we return for it IS the sp for the next frame.
+// OBSOLETE
+// OBSOLETE We cache the result of doing this in the frame_obstack, since it is
+// OBSOLETE fairly expensive. */
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
+// OBSOLETE {
+// OBSOLETE register struct frame_saved_regs *cache_fsr;
+// OBSOLETE CORE_ADDR ip;
+// OBSOLETE struct symtab_and_line sal;
+// OBSOLETE CORE_ADDR limit;
+// OBSOLETE
+// OBSOLETE if (!fi->fsr)
+// OBSOLETE {
+// OBSOLETE cache_fsr = (struct frame_saved_regs *)
+// OBSOLETE frame_obstack_alloc (sizeof (struct frame_saved_regs));
+// OBSOLETE memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
+// OBSOLETE fi->fsr = cache_fsr;
+// OBSOLETE
+// OBSOLETE /* Find the start and end of the function prologue. If the PC
+// OBSOLETE is in the function prologue, we only consider the part that
+// OBSOLETE has executed already. In the case where the PC is not in
+// OBSOLETE the function prologue, we set limit to two instructions beyond
+// OBSOLETE where the prologue ends in case if any of the prologue instructions
+// OBSOLETE were moved into a delay slot of a branch instruction. */
+// OBSOLETE
+// OBSOLETE ip = get_pc_function_start (fi->pc);
+// OBSOLETE sal = find_pc_line (ip, 0);
+// OBSOLETE limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
+// OBSOLETE : fi->pc;
+// OBSOLETE
+// OBSOLETE /* This will fill in fields in *fi as well as in cache_fsr. */
+// OBSOLETE #ifdef SIGTRAMP_FRAME_FIXUP
+// OBSOLETE if (fi->signal_handler_caller)
+// OBSOLETE SIGTRAMP_FRAME_FIXUP (fi->frame);
+// OBSOLETE #endif
+// OBSOLETE examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
+// OBSOLETE #ifdef SIGTRAMP_SP_FIXUP
+// OBSOLETE if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
+// OBSOLETE SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
+// OBSOLETE #endif
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE if (fsr)
+// OBSOLETE *fsr = *fi->fsr;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Return the address of the locals block for the frame
+// OBSOLETE described by FI. Returns 0 if the address is unknown.
+// OBSOLETE NOTE! Frame locals are referred to by negative offsets from the
+// OBSOLETE argument pointer, so this is the same as frame_args_address(). */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE frame_locals_address (struct frame_info *fi)
+// OBSOLETE {
+// OBSOLETE struct frame_saved_regs fsr;
+// OBSOLETE
+// OBSOLETE if (fi->args_pointer) /* Cached value is likely there. */
+// OBSOLETE return fi->args_pointer;
+// OBSOLETE
+// OBSOLETE /* Nope, generate it. */
+// OBSOLETE
+// OBSOLETE get_frame_saved_regs (fi, &fsr);
+// OBSOLETE
+// OBSOLETE return fi->args_pointer;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Return the address of the argument block for the frame
+// OBSOLETE described by FI. Returns 0 if the address is unknown. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE frame_args_address (struct frame_info *fi)
+// OBSOLETE {
+// OBSOLETE struct frame_saved_regs fsr;
+// OBSOLETE
+// OBSOLETE if (fi->args_pointer) /* Cached value is likely there. */
+// OBSOLETE return fi->args_pointer;
+// OBSOLETE
+// OBSOLETE /* Nope, generate it. */
+// OBSOLETE
+// OBSOLETE get_frame_saved_regs (fi, &fsr);
+// OBSOLETE
+// OBSOLETE return fi->args_pointer;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Return the saved PC from this frame.
+// OBSOLETE
+// OBSOLETE If the frame has a memory copy of SRP_REGNUM, use that. If not,
+// OBSOLETE just use the register SRP_REGNUM itself. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE frame_saved_pc (struct frame_info *frame)
+// OBSOLETE {
+// OBSOLETE return read_next_frame_reg (frame, SRP_REGNUM);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE #define DUMMY_FRAME_SIZE 192
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE write_word (CORE_ADDR sp, ULONGEST word)
+// OBSOLETE {
+// OBSOLETE register int len = REGISTER_SIZE;
+// OBSOLETE char buffer[MAX_REGISTER_RAW_SIZE];
+// OBSOLETE
+// OBSOLETE store_unsigned_integer (buffer, len, word);
+// OBSOLETE write_memory (sp, buffer, len);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m88k_push_dummy_frame (void)
+// OBSOLETE {
+// OBSOLETE register CORE_ADDR sp = read_register (SP_REGNUM);
+// OBSOLETE register int rn;
+// OBSOLETE int offset;
+// OBSOLETE
+// OBSOLETE sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
+// OBSOLETE
+// OBSOLETE for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
+// OBSOLETE write_word (sp + offset, read_register (rn));
+// OBSOLETE
+// OBSOLETE write_word (sp + offset, read_register (SXIP_REGNUM));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_word (sp + offset, read_register (SNIP_REGNUM));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_word (sp + offset, read_register (SFIP_REGNUM));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_word (sp + offset, read_register (PSR_REGNUM));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_word (sp + offset, read_register (FPSR_REGNUM));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_word (sp + offset, read_register (FPCR_REGNUM));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_register (SP_REGNUM, sp);
+// OBSOLETE write_register (ACTUAL_FP_REGNUM, sp);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE pop_frame (void)
+// OBSOLETE {
+// OBSOLETE register struct frame_info *frame = get_current_frame ();
+// OBSOLETE register int regnum;
+// OBSOLETE struct frame_saved_regs fsr;
+// OBSOLETE
+// OBSOLETE get_frame_saved_regs (frame, &fsr);
+// OBSOLETE
+// OBSOLETE if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
+// OBSOLETE {
+// OBSOLETE /* FIXME: I think get_frame_saved_regs should be handling this so
+// OBSOLETE that we can deal with the saved registers properly (e.g. frame
+// OBSOLETE 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
+// OBSOLETE register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
+// OBSOLETE int offset;
+// OBSOLETE
+// OBSOLETE for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
+// OBSOLETE (void) write_register (regnum, read_memory_integer (sp + offset, 4));
+// OBSOLETE
+// OBSOLETE write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
+// OBSOLETE offset += 4;
+// OBSOLETE
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE for (regnum = FP_REGNUM; regnum > 0; regnum--)
+// OBSOLETE if (fsr.regs[regnum])
+// OBSOLETE write_register (regnum,
+// OBSOLETE read_memory_integer (fsr.regs[regnum], 4));
+// OBSOLETE write_pc (frame_saved_pc (frame));
+// OBSOLETE }
+// OBSOLETE reinit_frame_cache ();
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE _initialize_m88k_tdep (void)
+// OBSOLETE {
+// OBSOLETE tm_print_insn = print_insn_m88k;
+// OBSOLETE }