diff options
Diffstat (limited to 'newlib/libm/mathfp/w_jn.c')
-rw-r--r-- | newlib/libm/mathfp/w_jn.c | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/newlib/libm/mathfp/w_jn.c b/newlib/libm/mathfp/w_jn.c new file mode 100644 index 00000000000..6806f01d998 --- /dev/null +++ b/newlib/libm/mathfp/w_jn.c @@ -0,0 +1,248 @@ + +/* @(#)w_jn.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +FUNCTION +<<jN>>,<<jNf>>,<<yN>>,<<yNf>>---Bessel functions + +INDEX +j0 +INDEX +j0f +INDEX +j1 +INDEX +j1f +INDEX +jn +INDEX +jnf +INDEX +y0 +INDEX +y0f +INDEX +y1 +INDEX +y1f +INDEX +yn +INDEX +ynf + +ANSI_SYNOPSIS +#include <math.h> +double j0(double <[x]>); +float j0f(float <[x]>); +double j1(double <[x]>); +float j1f(float <[x]>); +double jn(int <[n]>, double <[x]>); +float jnf(int <[n]>, float <[x]>); +double y0(double <[x]>); +float y0f(float <[x]>); +double y1(double <[x]>); +float y1f(float <[x]>); +double yn(int <[n]>, double <[x]>); +float ynf(int <[n]>, float <[x]>); + +TRAD_SYNOPSIS +#include <math.h> + +double j0(<[x]>) +double <[x]>; +float j0f(<[x]>) +float <[x]>; +double j1(<[x]>) +double <[x]>; +float j1f(<[x]>) +float <[x]>; +double jn(<[n]>, <[x]>) +int <[n]>; +double <[x]>; +float jnf(<[n]>, <[x]>) +int <[n]>; +float <[x]>; + +double y0(<[x]>) +double <[x]>; +float y0f(<[x]>) +float <[x]>; +double y1(<[x]>) +double <[x]>; +float y1f(<[x]>) +float <[x]>; +double yn(<[n]>, <[x]>) +int <[n]>; +double <[x]>; +float ynf(<[n]>, <[x]>) +int <[n]>; +float <[x]>; + +DESCRIPTION +The Bessel functions are a family of functions that solve the +differential equation +@ifinfo +. 2 2 2 +. x y'' + xy' + (x - p )y = 0 +@end ifinfo +@tex +$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$ +@end tex +These functions have many applications in engineering and physics. + +<<jn>> calculates the Bessel function of the first kind of order +<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order +1 respectively. + +Similarly, <<yn>> calculates the Bessel function of the second kind of +order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and +1. + +<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the +same calculations, but on <<float>> rather than <<double>> values. + +RETURNS +The value of each Bessel function at <[x]> is returned. + +PORTABILITY +None of the Bessel functions are in ANSI C. +*/ + +/* + * wrapper jn(int n, double x), yn(int n, double x) + * floating point Bessel's function of the 1st and 2nd kind + * of order n + * + * Special cases: + * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; + * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. + * Note 2. About jn(n,x), yn(n,x) + * For n=0, j0(x) is called, + * for n=1, j1(x) is called, + * for n<x, forward recursion us used starting + * from values of j0(x) and j1(x). + * for n>x, a continued fraction approximation to + * j(n,x)/j(n-1,x) is evaluated and then backward + * recursion is used starting from a supposed value + * for j(n,x). The resulting value of j(0,x) is + * compared with the actual value to correct the + * supposed value of j(n,x). + * + * yn(n,x) is similar in all respects, except + * that forward recursion is used for all + * values of n>1. + * + */ + +#include "fdlibm.h" +#include <errno.h> + +#ifndef _DOUBLE_IS_32BITS + +#ifdef __STDC__ + double jn(int n, double x) /* wrapper jn */ +#else + double jn(n,x) /* wrapper jn */ + double x; int n; +#endif +{ +#ifdef _IEEE_LIBM + return jn(n,x); +#else + double z; + struct exception exc; + z = jn(n,x); + if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; + if(fabs(x)>X_TLOSS) { + /* jn(|x|>X_TLOSS) */ + exc.type = TLOSS; + exc.name = "jn"; + exc.err = 0; + exc.arg1 = n; + exc.arg2 = x; + exc.retval = 0.0; + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = ERANGE; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#ifdef __STDC__ + double yn(int n, double x) /* wrapper yn */ +#else + double yn(n,x) /* wrapper yn */ + double x; int n; +#endif +{ +#ifdef _IEEE_LIBM + return yn(n,x); +#else + double z; + struct exception exc; + z = yn(n,x); + if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; + if(x <= 0.0){ + /* yn(n,0) = -inf or yn(x<0) = NaN */ +#ifndef HUGE_VAL +#define HUGE_VAL inf + double inf = 0.0; + + SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ +#endif + exc.type = DOMAIN; /* should be SING for IEEE */ + exc.name = "yn"; + exc.err = 0; + exc.arg1 = n; + exc.arg2 = x; + if (_LIB_VERSION == _SVID_) + exc.retval = -HUGE; + else + exc.retval = -HUGE_VAL; + if (_LIB_VERSION == _POSIX_) + errno = EDOM; + else if (!matherr(&exc)) { + errno = EDOM; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } + if(x>X_TLOSS) { + /* yn(x>X_TLOSS) */ + exc.type = TLOSS; + exc.name = "yn"; + exc.err = 0; + exc.arg1 = n; + exc.arg2 = x; + exc.retval = 0.0; + if (_LIB_VERSION == _POSIX_) + errno = ERANGE; + else if (!matherr(&exc)) { + errno = ERANGE; + } + if (exc.err != 0) + errno = exc.err; + return exc.retval; + } else + return z; +#endif +} + +#endif /* defined(_DOUBLE_IS_32BITS) */ |