diff options
Diffstat (limited to 'sim/common/sim-fpu.h')
-rw-r--r-- | sim/common/sim-fpu.h | 417 |
1 files changed, 417 insertions, 0 deletions
diff --git a/sim/common/sim-fpu.h b/sim/common/sim-fpu.h new file mode 100644 index 00000000000..05d53c250db --- /dev/null +++ b/sim/common/sim-fpu.h @@ -0,0 +1,417 @@ +/* Simulator Floating-point support. + Copyright (C) 1997-1998 Free Software Foundation, Inc. + Contributed by Cygnus Support. + +This file is part of GDB, the GNU debugger. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License along +with this program; if not, write to the Free Software Foundation, Inc., +59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + + + +#ifndef SIM_FPU_H +#define SIM_FPU_H + + + +/* The FPU intermediate type - this object, passed by reference, + should be treated as opaque. + + + Pragmatics - pass struct by ref: + + The alternatives for this object/interface that were considered + were: a packed 64 bit value; an unpacked structure passed by value; + and an unpacked structure passed by reference. + + The packed 64 bit value was rejected because: it limited the + precision of intermediate values; reasonable performance would only + be achieved when the sim_fpu package was in-lined allowing repeated + unpacking operations to be eliminated. + + For unpacked structures (passed by value and reference), the code + quality of GCC-2.7 (on x86) for each alternative was compared. + Needless to say the results, while better then for a packed 64 bit + object, were still poor (GCC had only limited support for the + optimization of references to structure members). Regardless, the + struct-by-ref alternative achieved better results when compiled + with (better speed) and without (better code density) in-lining. + Here's looking forward to an improved GCC optimizer. + + + Pragmatics - avoid host FP hardware: + + FP operations can be implemented by either: the host's floating + point hardware; or by emulating the FP operations using integer + only routines. This is direct tradeoff between speed, portability + and correctness. + + The two principal reasons for selecting portability and correctness + over speed are: + + 1 - Correctness. The assumption that FP correctness wasn't an + issue for code being run on simulators was wrong. Instead of + running FP tolerant (?) code, simulator users instead typically run + very aggressive FP code sequences. The sole purpose of those + sequences being to test the target ISA's FP implementation. + + 2 - Portability. The host FP implementation is not predictable. A + simulator modeling aggressive FP code sequences using the hosts FPU + relies heavily on the correctness of the hosts FP implementation. + It turns out that such trust can be misplaced. The behavior of + host FP implementations when handling edge conditions such as SNaNs + and exceptions varied widely. + + + */ + + +typedef enum +{ + sim_fpu_class_zero, + sim_fpu_class_snan, + sim_fpu_class_qnan, + sim_fpu_class_number, + sim_fpu_class_denorm, + sim_fpu_class_infinity, +} sim_fpu_class; + +typedef struct _sim_fpu { + sim_fpu_class class; + int sign; + unsigned64 fraction; + int normal_exp; +} sim_fpu; + + + +/* Rounding options. + + The value zero (sim_fpu_round_default) for ALU operations indicates + that, when possible, rounding should be avoided. */ + +typedef enum +{ + sim_fpu_round_default = 0, + sim_fpu_round_near = 1, + sim_fpu_round_zero = 2, + sim_fpu_round_up = 3, + sim_fpu_round_down = 4, +} sim_fpu_round; + + +/* Options when handling denormalized numbers. */ + +typedef enum +{ + sim_fpu_denorm_default = 0, + sim_fpu_denorm_underflow_inexact = 1, + sim_fpu_denorm_zero = 2, +} sim_fpu_denorm; + + + +/* Status values returned by FPU operators. + + When checking the result of an FP sequence (ex 32to, add, single, + to32) the caller may either: check the return value of each FP + operator; or form the union (OR) of the returned values and examine + them once at the end. + + FIXME: This facility is still being developed. The choice of + status values returned and their exact meaning may changed in the + future. */ + +typedef enum +{ + sim_fpu_status_invalid_snan = 1, + sim_fpu_status_invalid_qnan = 2, + sim_fpu_status_invalid_isi = 4, /* (inf - inf) */ + sim_fpu_status_invalid_idi = 8, /* (inf / inf) */ + sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */ + sim_fpu_status_invalid_imz = 32, /* (inf * 0) */ + sim_fpu_status_invalid_cvi = 64, /* convert to integer */ + sim_fpu_status_invalid_div0 = 128, /* (X / 0) */ + sim_fpu_status_invalid_cmp = 256, /* compare */ + sim_fpu_status_invalid_sqrt = 512, + sim_fpu_status_rounded = 1024, + sim_fpu_status_inexact = 2048, + sim_fpu_status_overflow = 4096, + sim_fpu_status_underflow = 8192, + sim_fpu_status_denorm = 16384, +} sim_fpu_status; + + + + +/* Directly map between a 32/64 bit register and the sim_fpu internal + type. + + When converting from the 32/64 bit packed format to the sim_fpu + internal type, the operation is exact. + + When converting from the sim_fpu internal type to 32/64 bit packed + format, the operation may result in a loss of precision. The + configuration macro WITH_FPU_CONVERSION controls this. By default, + silent round to nearest is performed. Alternativly, round up, + round down and round to zero can be performed. In a simulator + emulating exact FPU behavour, sim_fpu_round_{32,64} should be + called before packing the sim_fpu value. */ + +INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s); +INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l); +INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d); + +INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f); +INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f); +INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f); + + +/* Create a sim_fpu struct using raw information. (FRACTION & LSMASK + (PRECISION-1, 0)) is assumed to contain the fraction part of the + floating-point number. The leading bit LSBIT (PRECISION) is always + implied. The number created can be represented by: + + (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP> + + You can not specify zero using this function. */ + +INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision); + +/* Reverse operaton. If S is a non-zero number, discards the implied + leading one and returns PRECISION fraction bits. No rounding is + performed. */ +INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision); + + + +/* Rounding operators. + + Force an intermediate result to an exact 32/64 bit + representation. */ + +INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f, + sim_fpu_round round, + sim_fpu_denorm denorm); +INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f, + sim_fpu_round round, + sim_fpu_denorm denorm); + + + +/* Arrithmetic operators. + + FIXME: In the future, additional arguments ROUNDING and BITSIZE may + be added. */ + +typedef int (sim_fpu_op1) (sim_fpu *f, + const sim_fpu *l); +typedef int (sim_fpu_op2) (sim_fpu *f, + const sim_fpu *l, + const sim_fpu *r); + +INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f, + const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f, + const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f, + const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f, + const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f, + const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f, + const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f, + const sim_fpu *a); +INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f, + const sim_fpu *a); +INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f, + const sim_fpu *a); +INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f, + const sim_fpu *sqr); + + + +/* Conversion of integer <-> floating point. */ + +INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i, + sim_fpu_round round); +INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u, + sim_fpu_round round); +INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i, + sim_fpu_round round); +INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u, + sim_fpu_round round); +#if 0 +INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l, + sim_fpu_round round); +#endif +#if 0 +INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l, + sim_fpu_round round); +#endif + +INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f, + sim_fpu_round round); +INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f, + sim_fpu_round round); +INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f, + sim_fpu_round round); +INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f, + sim_fpu_round round); +#if 0 +INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f, + sim_fpu_round round); +#endif +#if 0 +INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f, + sim_fpu_round round); +#endif + + +/* Conversion of internal sim_fpu type to host double format. + + For debuging/tracing only. A SNaN is never returned. */ + +/* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */ +INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d); + +/* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */ +INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d); + + + +/* Specific number classes. + + NB: When either, a 32/64 bit floating points is converted to + internal format, or an internal format number is rounded to 32/64 + bit precision, a special marker is retained that indicates that the + value was normalized. For such numbers both is_number and + is_denorm return true. */ + +INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */ +INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */ +INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */ + +INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s); +INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s); +INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */ +INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */ + + + +/* Floating point fields */ + +INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s); +INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s); + + + +/* Specific comparison operators + + For NaNs et.al., the comparison operators will set IS to zero and + return a nonzero result. */ + +INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r); + +INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r); +INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r); + + + +/* General number class and comparison operators. + + The result of the comparison is indicated by returning one of the + values below. Efficient emulation of a target FP compare + instruction can be achieved by redefining the values below to match + corresponding target FP status bits. + + For instance. SIM_FPU_QNAN may be redefined to be the bit + `INVALID' while SIM_FPU_NINF might be redefined as the bits + `NEGATIVE | INFINITY | VALID'. */ + +#ifndef SIM_FPU_IS_SNAN +enum { + SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */ + SIM_FPU_IS_QNAN = 2, /* Quite not-a-number */ + SIM_FPU_IS_NINF = 3, /* -infinity */ + SIM_FPU_IS_PINF = 4, /* +infinity */ + SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */ + SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */ + SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */ + SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */ + SIM_FPU_IS_NZERO = 9, /* -0 */ + SIM_FPU_IS_PZERO = 10, /* +0 */ +}; +#endif + +INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l); +INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r); + + + +/* A constant of useful numbers */ + +extern const sim_fpu sim_fpu_zero; +extern const sim_fpu sim_fpu_one; +extern const sim_fpu sim_fpu_two; +extern const sim_fpu sim_fpu_qnan; +extern const sim_fpu sim_fpu_max32; +extern const sim_fpu sim_fpu_max64; + + +/* Select the applicable functions for the fp_word type */ + +#if WITH_TARGET_FLOATING_POINT_BITSIZE == 32 +#define sim_fpu_tofp sim_fpu_to32 +#define sim_fpu_fpto sim_fpu_32to +#define sim_fpu_round_fp sim_fpu_round_32 +#define sim_fpu_maxfp sim_fpu_max32 +#endif +#if WITH_TARGET_FLOATING_POINT_BITSIZE == 64 +#define sim_fpu_tofp sim_fpu_to64 +#define sim_fpu_fpto sim_fpu_64to +#define sim_fpu_round_fp sim_fpu_round_64 +#define sim_fpu_maxfp sim_fpu_max64 +#endif + + + +/* For debugging */ + +typedef void sim_fpu_print_func (void *, char *, ...); + +INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f, + sim_fpu_print_func *print, + void *arg); + +INLINE_SIM_FPU (void) sim_fpu_print_status (int status, + sim_fpu_print_func *print, + void *arg); + +#if H_REVEALS_MODULE_P (SIM_FPU_INLINE) +#include "sim-fpu.c" +#endif + +#endif |