summaryrefslogtreecommitdiff
path: root/gdb/gnu-v3-abi.c
blob: b0567676847729250951436bac674e4287a57508 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/* Abstraction of GNU v3 abi.
   Contributed by Jim Blandy <jimb@redhat.com>

   Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "value.h"
#include "cp-abi.h"
#include "cp-support.h"
#include "demangle.h"
#include "objfiles.h"
#include "valprint.h"

#include "gdb_assert.h"
#include "gdb_string.h"

static struct cp_abi_ops gnu_v3_abi_ops;

static int
gnuv3_is_vtable_name (const char *name)
{
  return strncmp (name, "_ZTV", 4) == 0;
}

static int
gnuv3_is_operator_name (const char *name)
{
  return strncmp (name, "operator", 8) == 0;
}


/* To help us find the components of a vtable, we build ourselves a
   GDB type object representing the vtable structure.  Following the
   V3 ABI, it goes something like this:

   struct gdb_gnu_v3_abi_vtable {

     / * An array of virtual call and virtual base offsets.  The real
         length of this array depends on the class hierarchy; we use
         negative subscripts to access the elements.  Yucky, but
         better than the alternatives.  * /
     ptrdiff_t vcall_and_vbase_offsets[0];

     / * The offset from a virtual pointer referring to this table
         to the top of the complete object.  * /
     ptrdiff_t offset_to_top;

     / * The type_info pointer for this class.  This is really a
         std::type_info *, but GDB doesn't really look at the
         type_info object itself, so we don't bother to get the type
         exactly right.  * /
     void *type_info;

     / * Virtual table pointers in objects point here.  * /

     / * Virtual function pointers.  Like the vcall/vbase array, the
         real length of this table depends on the class hierarchy.  * /
     void (*virtual_functions[0]) ();

   };

   The catch, of course, is that the exact layout of this table
   depends on the ABI --- word size, endianness, alignment, etc.  So
   the GDB type object is actually a per-architecture kind of thing.

   vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
   which refers to the struct type * for this structure, laid out
   appropriately for the architecture.  */
static struct gdbarch_data *vtable_type_gdbarch_data;


/* Human-readable names for the numbers of the fields above.  */
enum {
  vtable_field_vcall_and_vbase_offsets,
  vtable_field_offset_to_top,
  vtable_field_type_info,
  vtable_field_virtual_functions
};


/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
   described above, laid out appropriately for ARCH.

   We use this function as the gdbarch per-architecture data
   initialization function.  */
static void *
build_gdb_vtable_type (struct gdbarch *arch)
{
  struct type *t;
  struct field *field_list, *field;
  int offset;

  struct type *void_ptr_type
    = builtin_type (arch)->builtin_data_ptr;
  struct type *ptr_to_void_fn_type
    = builtin_type (arch)->builtin_func_ptr;

  /* ARCH can't give us the true ptrdiff_t type, so we guess.  */
  struct type *ptrdiff_type
    = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");

  /* We assume no padding is necessary, since GDB doesn't know
     anything about alignment at the moment.  If this assumption bites
     us, we should add a gdbarch method which, given a type, returns
     the alignment that type requires, and then use that here.  */

  /* Build the field list.  */
  field_list = xmalloc (sizeof (struct field [4]));
  memset (field_list, 0, sizeof (struct field [4]));
  field = &field_list[0];
  offset = 0;

  /* ptrdiff_t vcall_and_vbase_offsets[0]; */
  FIELD_NAME (*field) = "vcall_and_vbase_offsets";
  FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
  field++;

  /* ptrdiff_t offset_to_top; */
  FIELD_NAME (*field) = "offset_to_top";
  FIELD_TYPE (*field) = ptrdiff_type;
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
  field++;

  /* void *type_info; */
  FIELD_NAME (*field) = "type_info";
  FIELD_TYPE (*field) = void_ptr_type;
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
  field++;

  /* void (*virtual_functions[0]) (); */
  FIELD_NAME (*field) = "virtual_functions";
  FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
  FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
  offset += TYPE_LENGTH (FIELD_TYPE (*field));
  field++;

  /* We assumed in the allocation above that there were four fields.  */
  gdb_assert (field == (field_list + 4));

  t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
  TYPE_NFIELDS (t) = field - field_list;
  TYPE_FIELDS (t) = field_list;
  TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
  INIT_CPLUS_SPECIFIC (t);

  return t;
}


/* Return the ptrdiff_t type used in the vtable type.  */
static struct type *
vtable_ptrdiff_type (struct gdbarch *gdbarch)
{
  struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);

  /* The "offset_to_top" field has the appropriate (ptrdiff_t) type.  */
  return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
}

/* Return the offset from the start of the imaginary `struct
   gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
   (i.e., where objects' virtual table pointers point).  */
static int
vtable_address_point_offset (struct gdbarch *gdbarch)
{
  struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);

  return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
          / TARGET_CHAR_BIT);
}


static struct type *
gnuv3_rtti_type (struct value *value,
                 int *full_p, int *top_p, int *using_enc_p)
{
  struct gdbarch *gdbarch;
  struct type *vtable_type;
  struct type *values_type = check_typedef (value_type (value));
  CORE_ADDR vtable_address;
  struct value *vtable;
  struct minimal_symbol *vtable_symbol;
  const char *vtable_symbol_name;
  const char *class_name;
  struct type *run_time_type;
  struct type *base_type;
  LONGEST offset_to_top;
  struct type *values_type_vptr_basetype;
  int values_type_vptr_fieldno;

  /* We only have RTTI for class objects.  */
  if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
    return NULL;

  /* Determine architecture.  */
  gdbarch = get_type_arch (values_type);
  vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);

  /* If we can't find the virtual table pointer for values_type, we
     can't find the RTTI.  */
  values_type_vptr_fieldno = get_vptr_fieldno (values_type,
					       &values_type_vptr_basetype);
  if (values_type_vptr_fieldno == -1)
    return NULL;

  if (using_enc_p)
    *using_enc_p = 0;

  /* Fetch VALUE's virtual table pointer, and tweak it to point at
     an instance of our imaginary gdb_gnu_v3_abi_vtable structure.  */
  base_type = check_typedef (values_type_vptr_basetype);
  if (values_type != base_type)
    {
      value = value_cast (base_type, value);
      if (using_enc_p)
	*using_enc_p = 1;
    }
  vtable_address
    = value_as_address (value_field (value, values_type_vptr_fieldno));
  vtable
    = value_at_lazy (vtable_type,
		     vtable_address - vtable_address_point_offset (gdbarch));
  
  /* Find the linker symbol for this vtable.  */
  vtable_symbol
    = lookup_minimal_symbol_by_pc (value_address (vtable)
                                   + value_embedded_offset (vtable));
  if (! vtable_symbol)
    return NULL;
  
  /* The symbol's demangled name should be something like "vtable for
     CLASS", where CLASS is the name of the run-time type of VALUE.
     If we didn't like this approach, we could instead look in the
     type_info object itself to get the class name.  But this way
     should work just as well, and doesn't read target memory.  */
  vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
  if (vtable_symbol_name == NULL
      || strncmp (vtable_symbol_name, "vtable for ", 11))
    {
      warning (_("can't find linker symbol for virtual table for `%s' value"),
	       TYPE_NAME (values_type));
      if (vtable_symbol_name)
	warning (_("  found `%s' instead"), vtable_symbol_name);
      return NULL;
    }
  class_name = vtable_symbol_name + 11;

  /* Try to look up the class name as a type name.  */
  /* FIXME: chastain/2003-11-26: block=NULL is bogus.  See pr gdb/1465. */
  run_time_type = cp_lookup_rtti_type (class_name, NULL);
  if (run_time_type == NULL)
    return NULL;

  /* Get the offset from VALUE to the top of the complete object.
     NOTE: this is the reverse of the meaning of *TOP_P.  */
  offset_to_top
    = value_as_long (value_field (vtable, vtable_field_offset_to_top));

  if (full_p)
    *full_p = (- offset_to_top == value_embedded_offset (value)
               && (TYPE_LENGTH (value_enclosing_type (value))
                   >= TYPE_LENGTH (run_time_type)));
  if (top_p)
    *top_p = - offset_to_top;

  return run_time_type;
}

/* Find the vtable for CONTAINER and return a value of the correct
   vtable type for this architecture.  */

static struct value *
gnuv3_get_vtable (struct gdbarch *gdbarch, struct value *container)
{
  struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
  struct type *vtable_pointer_type;
  struct value *vtable_pointer;
  CORE_ADDR vtable_pointer_address, vtable_address;

  /* We do not consult the debug information to find the virtual table.
     The ABI specifies that it is always at offset zero in any class,
     and debug information may not represent it.  We won't issue an
     error if there's a class with virtual functions but no virtual table
     pointer, but something's already gone seriously wrong if that
     happens.

     We avoid using value_contents on principle, because the object might
     be large.  */

  /* Find the type "pointer to virtual table".  */
  vtable_pointer_type = lookup_pointer_type (vtable_type);

  /* Load it from the start of the class.  */
  vtable_pointer_address = value_as_address (value_addr (container));
  vtable_pointer = value_at (vtable_pointer_type, vtable_pointer_address);
  vtable_address = value_as_address (vtable_pointer);

  /* Correct it to point at the start of the virtual table, rather
     than the address point.  */
  return value_at_lazy (vtable_type,
			vtable_address - vtable_address_point_offset (gdbarch));
}

/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
   function, of type FNTYPE.  */

static struct value *
gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
		      struct type *fntype, int vtable_index)
{
  struct value *vtable = gnuv3_get_vtable (gdbarch, container);
  struct value *vfn;

  /* Fetch the appropriate function pointer from the vtable.  */
  vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
                         vtable_index);

  /* If this architecture uses function descriptors directly in the vtable,
     then the address of the vtable entry is actually a "function pointer"
     (i.e. points to the descriptor).  We don't need to scale the index
     by the size of a function descriptor; GCC does that before outputing
     debug information.  */
  if (gdbarch_vtable_function_descriptors (gdbarch))
    vfn = value_addr (vfn);

  /* Cast the function pointer to the appropriate type.  */
  vfn = value_cast (lookup_pointer_type (fntype), vfn);

  return vfn;
}

/* GNU v3 implementation of value_virtual_fn_field.  See cp-abi.h
   for a description of the arguments.  */

static struct value *
gnuv3_virtual_fn_field (struct value **value_p,
                        struct fn_field *f, int j,
			struct type *vfn_base, int offset)
{
  struct type *values_type = check_typedef (value_type (*value_p));
  struct gdbarch *gdbarch;

  /* Some simple sanity checks.  */
  if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
    error (_("Only classes can have virtual functions."));

  /* Determine architecture.  */
  gdbarch = get_type_arch (values_type);

  /* Cast our value to the base class which defines this virtual
     function.  This takes care of any necessary `this'
     adjustments.  */
  if (vfn_base != values_type)
    *value_p = value_cast (vfn_base, *value_p);

  return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
			       TYPE_FN_FIELD_VOFFSET (f, j));
}

/* Compute the offset of the baseclass which is
   the INDEXth baseclass of class TYPE,
   for value at VALADDR (in host) at ADDRESS (in target).
   The result is the offset of the baseclass value relative
   to (the address of)(ARG) + OFFSET.

   -1 is returned on error. */
static int
gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr,
			CORE_ADDR address)
{
  struct gdbarch *gdbarch;
  struct type *vtable_type;
  struct type *ptr_type;
  struct value *vtable;
  struct type *vbasetype;
  struct value *vbase_array;
  CORE_ADDR vtable_address;
  long int cur_base_offset, base_offset;
  int vbasetype_vptr_fieldno;

  /* Determine architecture.  */
  gdbarch = get_type_arch (type);
  vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
  ptr_type = builtin_type (gdbarch)->builtin_data_ptr;

  /* If it isn't a virtual base, this is easy.  The offset is in the
     type definition.  */
  if (!BASETYPE_VIA_VIRTUAL (type, index))
    return TYPE_BASECLASS_BITPOS (type, index) / 8;

  /* To access a virtual base, we need to use the vbase offset stored in
     our vtable.  Recent GCC versions provide this information.  If it isn't
     available, we could get what we needed from RTTI, or from drawing the
     complete inheritance graph based on the debug info.  Neither is
     worthwhile.  */
  cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
  if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
    error (_("Expected a negative vbase offset (old compiler?)"));

  cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
  if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
    error (_("Misaligned vbase offset."));
  cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));

  /* We're now looking for the cur_base_offset'th entry (negative index)
     in the vcall_and_vbase_offsets array.  We used to cast the object to
     its TYPE_VPTR_BASETYPE, and reference the vtable as TYPE_VPTR_FIELDNO;
     however, that cast can not be done without calling baseclass_offset again
     if the TYPE_VPTR_BASETYPE is a virtual base class, as described in the
     v3 C++ ABI Section 2.4.I.2.b.  Fortunately the ABI guarantees that the
     vtable pointer will be located at the beginning of the object, so we can
     bypass the casting.  Verify that the TYPE_VPTR_FIELDNO is in fact at the
     start of whichever baseclass it resides in, as a sanity measure - iff
     we have debugging information for that baseclass.  */

  vbasetype = check_typedef (TYPE_VPTR_BASETYPE (type));
  vbasetype_vptr_fieldno = get_vptr_fieldno (vbasetype, NULL);

  if (vbasetype_vptr_fieldno >= 0
      && TYPE_FIELD_BITPOS (vbasetype, vbasetype_vptr_fieldno) != 0)
    error (_("Illegal vptr offset in class %s"),
	   TYPE_NAME (vbasetype) ? TYPE_NAME (vbasetype) : "<unknown>");

  vtable_address = value_as_address (value_at_lazy (ptr_type, address));
  vtable
    = value_at_lazy (vtable_type,
		     vtable_address - vtable_address_point_offset (gdbarch));
  vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
  base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
  return base_offset;
}

/* Locate a virtual method in DOMAIN or its non-virtual base classes
   which has virtual table index VOFFSET.  The method has an associated
   "this" adjustment of ADJUSTMENT bytes.  */

static const char *
gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
		      LONGEST adjustment)
{
  int i;
  const char *physname;

  /* Search this class first.  */
  physname = NULL;
  if (adjustment == 0)
    {
      int len;

      len = TYPE_NFN_FIELDS (domain);
      for (i = 0; i < len; i++)
	{
	  int len2, j;
	  struct fn_field *f;

	  f = TYPE_FN_FIELDLIST1 (domain, i);
	  len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);

	  check_stub_method_group (domain, i);
	  for (j = 0; j < len2; j++)
	    if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
	      return TYPE_FN_FIELD_PHYSNAME (f, j);
	}
    }

  /* Next search non-virtual bases.  If it's in a virtual base,
     we're out of luck.  */
  for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
    {
      int pos;
      struct type *basetype;

      if (BASETYPE_VIA_VIRTUAL (domain, i))
	continue;

      pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
      basetype = TYPE_FIELD_TYPE (domain, i);
      /* Recurse with a modified adjustment.  We don't need to adjust
	 voffset.  */
      if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
	return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
    }

  return NULL;
}

/* Decode GNU v3 method pointer.  */

static int
gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
			 const gdb_byte *contents,
			 CORE_ADDR *value_p,
			 LONGEST *adjustment_p)
{
  struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
  struct type *offset_type = vtable_ptrdiff_type (gdbarch);
  CORE_ADDR ptr_value;
  LONGEST voffset, adjustment;
  int vbit;

  /* Extract the pointer to member.  The first element is either a pointer
     or a vtable offset.  For pointers, we need to use extract_typed_address
     to allow the back-end to convert the pointer to a GDB address -- but
     vtable offsets we must handle as integers.  At this point, we do not
     yet know which case we have, so we extract the value under both
     interpretations and choose the right one later on.  */
  ptr_value = extract_typed_address (contents, funcptr_type);
  voffset = extract_signed_integer (contents, TYPE_LENGTH (funcptr_type));
  contents += TYPE_LENGTH (funcptr_type);
  adjustment = extract_signed_integer (contents, TYPE_LENGTH (offset_type));

  if (!gdbarch_vbit_in_delta (gdbarch))
    {
      vbit = voffset & 1;
      voffset = voffset ^ vbit;
    }
  else
    {
      vbit = adjustment & 1;
      adjustment = adjustment >> 1;
    }

  *value_p = vbit? voffset : ptr_value;
  *adjustment_p = adjustment;
  return vbit;
}

/* GNU v3 implementation of cplus_print_method_ptr.  */

static void
gnuv3_print_method_ptr (const gdb_byte *contents,
			struct type *type,
			struct ui_file *stream)
{
  struct type *domain = TYPE_DOMAIN_TYPE (type);
  struct gdbarch *gdbarch = get_type_arch (domain);
  CORE_ADDR ptr_value;
  LONGEST adjustment;
  int vbit;

  /* Extract the pointer to member.  */
  vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);

  /* Check for NULL.  */
  if (ptr_value == 0 && vbit == 0)
    {
      fprintf_filtered (stream, "NULL");
      return;
    }

  /* Search for a virtual method.  */
  if (vbit)
    {
      CORE_ADDR voffset;
      const char *physname;

      /* It's a virtual table offset, maybe in this class.  Search
	 for a field with the correct vtable offset.  First convert it
	 to an index, as used in TYPE_FN_FIELD_VOFFSET.  */
      voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));

      physname = gnuv3_find_method_in (domain, voffset, adjustment);

      /* If we found a method, print that.  We don't bother to disambiguate
	 possible paths to the method based on the adjustment.  */
      if (physname)
	{
	  char *demangled_name = cplus_demangle (physname,
						 DMGL_ANSI | DMGL_PARAMS);
	  if (demangled_name != NULL)
	    {
	      fprintf_filtered (stream, "&virtual ");
	      fputs_filtered (demangled_name, stream);
	      xfree (demangled_name);
	      return;
	    }
	}
    }

  /* We didn't find it; print the raw data.  */
  if (vbit)
    {
      fprintf_filtered (stream, "&virtual table offset ");
      print_longest (stream, 'd', 1, ptr_value);
    }
  else
    print_address_demangle (gdbarch, ptr_value, stream, demangle);

  if (adjustment)
    {
      fprintf_filtered (stream, ", this adjustment ");
      print_longest (stream, 'd', 1, adjustment);
    }
}

/* GNU v3 implementation of cplus_method_ptr_size.  */

static int
gnuv3_method_ptr_size (struct type *type)
{
  struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type));
  struct gdbarch *gdbarch = get_type_arch (domain_type);
  return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
}

/* GNU v3 implementation of cplus_make_method_ptr.  */

static void
gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
		       CORE_ADDR value, int is_virtual)
{
  struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type));
  struct gdbarch *gdbarch = get_type_arch (domain_type);
  int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);

  /* FIXME drow/2006-12-24: The adjustment of "this" is currently
     always zero, since the method pointer is of the correct type.
     But if the method pointer came from a base class, this is
     incorrect - it should be the offset to the base.  The best
     fix might be to create the pointer to member pointing at the
     base class and cast it to the derived class, but that requires
     support for adjusting pointers to members when casting them -
     not currently supported by GDB.  */

  if (!gdbarch_vbit_in_delta (gdbarch))
    {
      store_unsigned_integer (contents, size, value | is_virtual);
      store_unsigned_integer (contents + size, size, 0);
    }
  else
    {
      store_unsigned_integer (contents, size, value);
      store_unsigned_integer (contents + size, size, is_virtual);
    }
}

/* GNU v3 implementation of cplus_method_ptr_to_value.  */

static struct value *
gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
{
  struct gdbarch *gdbarch;
  const gdb_byte *contents = value_contents (method_ptr);
  CORE_ADDR ptr_value;
  struct type *domain_type, *final_type, *method_type;
  LONGEST adjustment;
  int vbit;

  domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
  final_type = lookup_pointer_type (domain_type);

  method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));

  /* Extract the pointer to member.  */
  gdbarch = get_type_arch (domain_type);
  vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);

  /* First convert THIS to match the containing type of the pointer to
     member.  This cast may adjust the value of THIS.  */
  *this_p = value_cast (final_type, *this_p);

  /* Then apply whatever adjustment is necessary.  This creates a somewhat
     strange pointer: it claims to have type FINAL_TYPE, but in fact it
     might not be a valid FINAL_TYPE.  For instance, it might be a
     base class of FINAL_TYPE.  And if it's not the primary base class,
     then printing it out as a FINAL_TYPE object would produce some pretty
     garbage.

     But we don't really know the type of the first argument in
     METHOD_TYPE either, which is why this happens.  We can't
     dereference this later as a FINAL_TYPE, but once we arrive in the
     called method we'll have debugging information for the type of
     "this" - and that'll match the value we produce here.

     You can provoke this case by casting a Base::* to a Derived::*, for
     instance.  */
  *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
  *this_p = value_ptradd (*this_p, adjustment);
  *this_p = value_cast (final_type, *this_p);

  if (vbit)
    {
      LONGEST voffset;
      voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
      return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
				   method_type, voffset);
    }
  else
    return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
}

/* Determine if we are currently in a C++ thunk.  If so, get the address
   of the routine we are thunking to and continue to there instead.  */

static CORE_ADDR 
gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
{
  CORE_ADDR real_stop_pc, method_stop_pc;
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct minimal_symbol *thunk_sym, *fn_sym;
  struct obj_section *section;
  char *thunk_name, *fn_name;
  
  real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
  if (real_stop_pc == 0)
    real_stop_pc = stop_pc;

  /* Find the linker symbol for this potential thunk.  */
  thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
  section = find_pc_section (real_stop_pc);
  if (thunk_sym == NULL || section == NULL)
    return 0;

  /* The symbol's demangled name should be something like "virtual
     thunk to FUNCTION", where FUNCTION is the name of the function
     being thunked to.  */
  thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
  if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
    return 0;

  fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
  fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
  if (fn_sym == NULL)
    return 0;

  method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
  real_stop_pc = gdbarch_skip_trampoline_code
		   (gdbarch, frame, method_stop_pc);
  if (real_stop_pc == 0)
    real_stop_pc = method_stop_pc;

  return real_stop_pc;
}

/* Return nonzero if a type should be passed by reference.

   The rule in the v3 ABI document comes from section 3.1.1.  If the
   type has a non-trivial copy constructor or destructor, then the
   caller must make a copy (by calling the copy constructor if there
   is one or perform the copy itself otherwise), pass the address of
   the copy, and then destroy the temporary (if necessary).

   For return values with non-trivial copy constructors or
   destructors, space will be allocated in the caller, and a pointer
   will be passed as the first argument (preceding "this").

   We don't have a bulletproof mechanism for determining whether a
   constructor or destructor is trivial.  For GCC and DWARF2 debug
   information, we can check the artificial flag.

   We don't do anything with the constructors or destructors,
   but we have to get the argument passing right anyway.  */
static int
gnuv3_pass_by_reference (struct type *type)
{
  int fieldnum, fieldelem;

  CHECK_TYPEDEF (type);

  /* We're only interested in things that can have methods.  */
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
      && TYPE_CODE (type) != TYPE_CODE_CLASS
      && TYPE_CODE (type) != TYPE_CODE_UNION)
    return 0;

  for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
    for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
	 fieldelem++)
      {
	struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
	char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
	struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);

	/* If this function is marked as artificial, it is compiler-generated,
	   and we assume it is trivial.  */
	if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
	  continue;

	/* If we've found a destructor, we must pass this by reference.  */
	if (name[0] == '~')
	  return 1;

	/* If the mangled name of this method doesn't indicate that it
	   is a constructor, we're not interested.

	   FIXME drow/2007-09-23: We could do this using the name of
	   the method and the name of the class instead of dealing
	   with the mangled name.  We don't have a convenient function
	   to strip off both leading scope qualifiers and trailing
	   template arguments yet.  */
	if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
	  continue;

	/* If this method takes two arguments, and the second argument is
	   a reference to this class, then it is a copy constructor.  */
	if (TYPE_NFIELDS (fieldtype) == 2
	    && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
	    && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype, 1))) == type)
	  return 1;
      }

  /* Even if all the constructors and destructors were artificial, one
     of them may have invoked a non-artificial constructor or
     destructor in a base class.  If any base class needs to be passed
     by reference, so does this class.  Similarly for members, which
     are constructed whenever this class is.  We do not need to worry
     about recursive loops here, since we are only looking at members
     of complete class type.  */
  for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
    if (gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
      return 1;

  return 0;
}

static void
init_gnuv3_ops (void)
{
  vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type);

  gnu_v3_abi_ops.shortname = "gnu-v3";
  gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
  gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
  gnu_v3_abi_ops.is_destructor_name =
    (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
  gnu_v3_abi_ops.is_constructor_name =
    (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
  gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
  gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
  gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
  gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
  gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
  gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
  gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
  gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
  gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
  gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
  gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
}

extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */

void
_initialize_gnu_v3_abi (void)
{
  init_gnuv3_ops ();

  register_cp_abi (&gnu_v3_abi_ops);
}