summaryrefslogtreecommitdiff
path: root/gdb/m32r-stub.c
blob: 4d54f72d60b81aa968d34fd20f4dcbe94641a75a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
/****************************************************************************

		THIS SOFTWARE IS NOT COPYRIGHTED

   HP offers the following for use in the public domain.  HP makes no
   warranty with regard to the software or it's performance and the
   user accepts the software "AS IS" with all faults.

   HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
   TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

****************************************************************************/

/****************************************************************************
 *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
 *
 *  Module name: remcom.c $
 *  Revision: 1.34 $
 *  Date: 91/03/09 12:29:49 $
 *  Contributor:     Lake Stevens Instrument Division$
 *
 *  Description:     low level support for gdb debugger. $
 *
 *  Considerations:  only works on target hardware $
 *
 *  Written by:      Glenn Engel $
 *  ModuleState:     Experimental $
 *
 *  NOTES:           See Below $
 *
 *  Modified for M32R by Michael Snyder, Cygnus Support.
 *
 *  To enable debugger support, two things need to happen.  One, a
 *  call to set_debug_traps() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().  Breakpoint()
 *  simulates a breakpoint by executing a trap #1.
 *
 *  The external function exceptionHandler() is
 *  used to attach a specific handler to a specific M32R vector number.
 *  It should use the same privilege level it runs at.  It should
 *  install it as an interrupt gate so that interrupts are masked
 *  while the handler runs.
 *
 *  Because gdb will sometimes write to the stack area to execute function
 *  calls, this program cannot rely on using the supervisor stack so it
 *  uses it's own stack area reserved in the int array remcomStack.
 *
 *************
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *    XAA..AA,LLLL: Write LLLL binary bytes at address     OK or ENN
 *                  AA..AA
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: <two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 ****************************************************************************/


/************************************************************************
 *
 * external low-level support routines
 */
extern void putDebugChar ();	/* write a single character      */
extern int getDebugChar ();	/* read and return a single char */
extern void exceptionHandler ();	/* assign an exception handler   */

/*****************************************************************************
 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
 * at least NUMREGBYTES*2 are needed for register packets 
 */
#define BUFMAX 400

static char initialized;	/* boolean flag. != 0 means we've been initialized */

int remote_debug;
/*  debug >  0 prints ill-formed commands in valid packets & checksum errors */

static const unsigned char hexchars[] = "0123456789abcdef";

#define NUMREGS 24

/* Number of bytes of registers.  */
#define NUMREGBYTES (NUMREGS * 4)
enum regnames
{ R0, R1, R2, R3, R4, R5, R6, R7,
  R8, R9, R10, R11, R12, R13, R14, R15,
  PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH
};

enum SYS_calls
{
  SYS_null,
  SYS_exit,
  SYS_open,
  SYS_close,
  SYS_read,
  SYS_write,
  SYS_lseek,
  SYS_unlink,
  SYS_getpid,
  SYS_kill,
  SYS_fstat,
  SYS_sbrk,
  SYS_fork,
  SYS_execve,
  SYS_wait4,
  SYS_link,
  SYS_chdir,
  SYS_stat,
  SYS_utime,
  SYS_chown,
  SYS_chmod,
  SYS_time,
  SYS_pipe
};

static int registers[NUMREGS];

#define STACKSIZE 8096
static unsigned char remcomInBuffer[BUFMAX];
static unsigned char remcomOutBuffer[BUFMAX];
static int remcomStack[STACKSIZE / sizeof (int)];
static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];

static unsigned int save_vectors[18];	/* previous exception vectors */

/* Indicate to caller of mem2hex or hex2mem that there has been an error. */
static volatile int mem_err = 0;

/* Store the vector number here (since GDB only gets the signal
   number through the usual means, and that's not very specific).  */
int gdb_m32r_vector = -1;

#if 0
#include "syscall.h"		/* for SYS_exit, SYS_write etc. */
#endif

/* Global entry points:
 */

extern void handle_exception (int);
extern void set_debug_traps (void);
extern void breakpoint (void);

/* Local functions:
 */

static int computeSignal (int);
static void putpacket (unsigned char *);
static unsigned char *getpacket (void);

static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int);
static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int);
static int hexToInt (unsigned char **, int *);
static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int);
static void stash_registers (void);
static void restore_registers (void);
static int prepare_to_step (int);
static int finish_from_step (void);
static unsigned long crc32 (unsigned char *, int, unsigned long);

static void gdb_error (char *, char *);
static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int);

static unsigned char *strcpy (unsigned char *, const unsigned char *);
static int strlen (const unsigned char *);

/*
 * This function does all command procesing for interfacing to gdb.
 */

void
handle_exception (int exceptionVector)
{
  int sigval, stepping;
  int addr, length, i;
  unsigned char *ptr;
  unsigned char buf[16];
  int binary;

  if (!finish_from_step ())
    return;			/* "false step": let the target continue */

  gdb_m32r_vector = exceptionVector;

  if (remote_debug)
    {
      mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0);
      gdb_error ("Handle exception %s, ", buf);
      mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
      gdb_error ("PC == 0x%s\n", buf);
    }

  /* reply to host that an exception has occurred */
  sigval = computeSignal (exceptionVector);

  ptr = remcomOutBuffer;

  *ptr++ = 'T';			/* notify gdb with signo, PC, FP and SP */
  *ptr++ = hexchars[sigval >> 4];
  *ptr++ = hexchars[sigval & 0xf];

  *ptr++ = hexchars[PC >> 4];
  *ptr++ = hexchars[PC & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0);	/* PC */
  *ptr++ = ';';

  *ptr++ = hexchars[R13 >> 4];
  *ptr++ = hexchars[R13 & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);	/* FP */
  *ptr++ = ';';

  *ptr++ = hexchars[R15 >> 4];
  *ptr++ = hexchars[R15 & 0xf];
  *ptr++ = ':';
  ptr = mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);	/* SP */
  *ptr++ = ';';
  *ptr++ = 0;

  if (exceptionVector == 0)	/* simulated SYS call stuff */
    {
      mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
      switch (registers[R0])
	{
	case SYS_exit:
	  gdb_error ("Target program has exited at %s\n", buf);
	  ptr = remcomOutBuffer;
	  *ptr++ = 'W';
	  sigval = registers[R1] & 0xff;
	  *ptr++ = hexchars[sigval >> 4];
	  *ptr++ = hexchars[sigval & 0xf];
	  *ptr++ = 0;
	  break;
	case SYS_open:
	  gdb_error ("Target attempts SYS_open call at %s\n", buf);
	  break;
	case SYS_close:
	  gdb_error ("Target attempts SYS_close call at %s\n", buf);
	  break;
	case SYS_read:
	  gdb_error ("Target attempts SYS_read call at %s\n", buf);
	  break;
	case SYS_write:
	  if (registers[R1] == 1 ||	/* write to stdout  */
	      registers[R1] == 2)	/* write to stderr  */
	    {			/* (we can do that) */
	      registers[R0] =
		gdb_write ((void *) registers[R2], registers[R3]);
	      return;
	    }
	  else
	    gdb_error ("Target attempts SYS_write call at %s\n", buf);
	  break;
	case SYS_lseek:
	  gdb_error ("Target attempts SYS_lseek call at %s\n", buf);
	  break;
	case SYS_unlink:
	  gdb_error ("Target attempts SYS_unlink call at %s\n", buf);
	  break;
	case SYS_getpid:
	  gdb_error ("Target attempts SYS_getpid call at %s\n", buf);
	  break;
	case SYS_kill:
	  gdb_error ("Target attempts SYS_kill call at %s\n", buf);
	  break;
	case SYS_fstat:
	  gdb_error ("Target attempts SYS_fstat call at %s\n", buf);
	  break;
	default:
	  gdb_error ("Target attempts unknown SYS call at %s\n", buf);
	  break;
	}
    }

  putpacket (remcomOutBuffer);

  stepping = 0;

  while (1 == 1)
    {
      remcomOutBuffer[0] = 0;
      ptr = getpacket ();
      binary = 0;
      switch (*ptr++)
	{
	default:		/* Unknown code.  Return an empty reply message. */
	  break;
	case 'R':
	  if (hexToInt (&ptr, &addr))
	    registers[PC] = addr;
	  strcpy (remcomOutBuffer, "OK");
	  break;
	case '!':
	  strcpy (remcomOutBuffer, "OK");
	  break;
	case 'X':		/* XAA..AA,LLLL:<binary data>#cs */
	  binary = 1;
	case 'M':		/* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
	  /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */
	  {
	    if (hexToInt (&ptr, &addr))
	      if (*(ptr++) == ',')
		if (hexToInt (&ptr, &length))
		  if (*(ptr++) == ':')
		    {
		      mem_err = 0;
		      if (binary)
			bin2mem (ptr, (unsigned char *) addr, length, 1);
		      else
			hex2mem (ptr, (unsigned char *) addr, length, 1);
		      if (mem_err)
			{
			  strcpy (remcomOutBuffer, "E03");
			  gdb_error ("memory fault", "");
			}
		      else
			{
			  strcpy (remcomOutBuffer, "OK");
			}
		      ptr = 0;
		    }
	    if (ptr)
	      {
		strcpy (remcomOutBuffer, "E02");
	      }
	  }
	  break;
	case 'm':		/* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
	  /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */
	  if (hexToInt (&ptr, &addr))
	    if (*(ptr++) == ',')
	      if (hexToInt (&ptr, &length))
		{
		  ptr = 0;
		  mem_err = 0;
		  mem2hex ((unsigned char *) addr, remcomOutBuffer, length,
			   1);
		  if (mem_err)
		    {
		      strcpy (remcomOutBuffer, "E03");
		      gdb_error ("memory fault", "");
		    }
		}
	  if (ptr)
	    {
	      strcpy (remcomOutBuffer, "E01");
	    }
	  break;
	case '?':
	  remcomOutBuffer[0] = 'S';
	  remcomOutBuffer[1] = hexchars[sigval >> 4];
	  remcomOutBuffer[2] = hexchars[sigval % 16];
	  remcomOutBuffer[3] = 0;
	  break;
	case 'd':
	  remote_debug = !(remote_debug);	/* toggle debug flag */
	  break;
	case 'g':		/* return the value of the CPU registers */
	  mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES,
		   0);
	  break;
	case 'P':		/* set the value of a single CPU register - return OK */
	  {
	    int regno;

	    if (hexToInt (&ptr, &regno) && *ptr++ == '=')
	      if (regno >= 0 && regno < NUMREGS)
		{
		  int stackmode;

		  hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
		  /*
		   * Since we just changed a single CPU register, let's
		   * make sure to keep the several stack pointers consistant.
		   */
		  stackmode = registers[PSW] & 0x80;
		  if (regno == R15)	/* stack pointer changed */
		    {		/* need to change SPI or SPU */
		      if (stackmode == 0)
			registers[SPI] = registers[R15];
		      else
			registers[SPU] = registers[R15];
		    }
		  else if (regno == SPU)	/* "user" stack pointer changed */
		    {
		      if (stackmode != 0)	/* stack in user mode: copy SP */
			registers[R15] = registers[SPU];
		    }
		  else if (regno == SPI)	/* "interrupt" stack pointer changed */
		    {
		      if (stackmode == 0)	/* stack in interrupt mode: copy SP */
			registers[R15] = registers[SPI];
		    }
		  else if (regno == PSW)	/* stack mode may have changed! */
		    {		/* force SP to either SPU or SPI */
		      if (stackmode == 0)	/* stack in user mode */
			registers[R15] = registers[SPI];
		      else	/* stack in interrupt mode */
			registers[R15] = registers[SPU];
		    }
		  strcpy (remcomOutBuffer, "OK");
		  break;
		}
	    strcpy (remcomOutBuffer, "E01");
	    break;
	  }
	case 'G':		/* set the value of the CPU registers - return OK */
	  hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0);
	  strcpy (remcomOutBuffer, "OK");
	  break;
	case 's':		/* sAA..AA      Step one instruction from AA..AA(optional) */
	  stepping = 1;
	case 'c':		/* cAA..AA      Continue from address AA..AA(optional) */
	  /* try to read optional parameter, pc unchanged if no parm */
	  if (hexToInt (&ptr, &addr))
	    registers[PC] = addr;

	  if (stepping)		/* single-stepping */
	    {
	      if (!prepare_to_step (0))	/* set up for single-step */
		{
		  /* prepare_to_step has already emulated the target insn:
		     Send SIGTRAP to gdb, don't resume the target at all.  */
		  ptr = remcomOutBuffer;
		  *ptr++ = 'T';	/* Simulate stopping with SIGTRAP */
		  *ptr++ = '0';
		  *ptr++ = '5';

		  *ptr++ = hexchars[PC >> 4];	/* send PC */
		  *ptr++ = hexchars[PC & 0xf];
		  *ptr++ = ':';
		  ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0);
		  *ptr++ = ';';

		  *ptr++ = hexchars[R13 >> 4];	/* send FP */
		  *ptr++ = hexchars[R13 & 0xf];
		  *ptr++ = ':';
		  ptr =
		    mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);
		  *ptr++ = ';';

		  *ptr++ = hexchars[R15 >> 4];	/* send SP */
		  *ptr++ = hexchars[R15 & 0xf];
		  *ptr++ = ':';
		  ptr =
		    mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);
		  *ptr++ = ';';
		  *ptr++ = 0;

		  break;
		}
	    }
	  else			/* continuing, not single-stepping */
	    {
	      /* OK, about to do a "continue".  First check to see if the 
	         target pc is on an odd boundary (second instruction in the 
	         word).  If so, we must do a single-step first, because 
	         ya can't jump or return back to an odd boundary!  */
	      if ((registers[PC] & 2) != 0)
		prepare_to_step (1);
	    }

	  return;

	case 'D':		/* Detach */
#if 0
	  /* I am interpreting this to mean, release the board from control 
	     by the remote stub.  To do this, I am restoring the original
	     (or at least previous) exception vectors.
	   */
	  for (i = 0; i < 18; i++)
	    exceptionHandler (i, save_vectors[i]);
	  putpacket ("OK");
	  return;		/* continue the inferior */
#else
	  strcpy (remcomOutBuffer, "OK");
	  break;
#endif
	case 'q':
	  if (*ptr++ == 'C' &&
	      *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':')
	    {
	      unsigned long start, len, our_crc;

	      if (hexToInt (&ptr, (int *) &start) &&
		  *ptr++ == ',' && hexToInt (&ptr, (int *) &len))
		{
		  remcomOutBuffer[0] = 'C';
		  our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
		  mem2hex ((char *) &our_crc,
			   &remcomOutBuffer[1], sizeof (long), 0);
		}		/* else do nothing */
	    }			/* else do nothing */
	  break;

	case 'k':		/* kill the program */
	  continue;
	}			/* switch */

      /* reply to the request */
      putpacket (remcomOutBuffer);
    }
}

/* qCRC support */

/* Table used by the crc32 function to calcuate the checksum. */
static unsigned long crc32_table[256] = { 0, 0 };

static unsigned long
crc32 (unsigned char *buf, int len, unsigned long crc)
{
  if (!crc32_table[1])
    {
      /* Initialize the CRC table and the decoding table. */
      int i, j;
      unsigned long c;

      for (i = 0; i < 256; i++)
	{
	  for (c = i << 24, j = 8; j > 0; --j)
	    c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
	  crc32_table[i] = c;
	}
    }

  while (len--)
    {
      crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
      buf++;
    }
  return crc;
}

static int
hex (unsigned char ch)
{
  if ((ch >= 'a') && (ch <= 'f'))
    return (ch - 'a' + 10);
  if ((ch >= '0') && (ch <= '9'))
    return (ch - '0');
  if ((ch >= 'A') && (ch <= 'F'))
    return (ch - 'A' + 10);
  return (-1);
}

/* scan for the sequence $<data>#<checksum>     */

unsigned char *
getpacket (void)
{
  unsigned char *buffer = &remcomInBuffer[0];
  unsigned char checksum;
  unsigned char xmitcsum;
  int count;
  char ch;

  while (1)
    {
      /* wait around for the start character, ignore all other characters */
      while ((ch = getDebugChar ()) != '$')
	;

    retry:
      checksum = 0;
      xmitcsum = -1;
      count = 0;

      /* now, read until a # or end of buffer is found */
      while (count < BUFMAX - 1)
	{
	  ch = getDebugChar ();
	  if (ch == '$')
	    goto retry;
	  if (ch == '#')
	    break;
	  checksum = checksum + ch;
	  buffer[count] = ch;
	  count = count + 1;
	}
      buffer[count] = 0;

      if (ch == '#')
	{
	  ch = getDebugChar ();
	  xmitcsum = hex (ch) << 4;
	  ch = getDebugChar ();
	  xmitcsum += hex (ch);

	  if (checksum != xmitcsum)
	    {
	      if (remote_debug)
		{
		  unsigned char buf[16];

		  mem2hex ((unsigned char *) &checksum, buf, 4, 0);
		  gdb_error ("Bad checksum: my count = %s, ", buf);
		  mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0);
		  gdb_error ("sent count = %s\n", buf);
		  gdb_error (" -- Bad buffer: \"%s\"\n", buffer);
		}
	      putDebugChar ('-');	/* failed checksum */
	    }
	  else
	    {
	      putDebugChar ('+');	/* successful transfer */

	      /* if a sequence char is present, reply the sequence ID */
	      if (buffer[2] == ':')
		{
		  putDebugChar (buffer[0]);
		  putDebugChar (buffer[1]);

		  return &buffer[3];
		}

	      return &buffer[0];
	    }
	}
    }
}

/* send the packet in buffer.  */

static void
putpacket (unsigned char *buffer)
{
  unsigned char checksum;
  int count;
  char ch;

  /*  $<packet info>#<checksum>. */
  do
    {
      putDebugChar ('$');
      checksum = 0;
      count = 0;

      while (ch = buffer[count])
	{
	  putDebugChar (ch);
	  checksum += ch;
	  count += 1;
	}
      putDebugChar ('#');
      putDebugChar (hexchars[checksum >> 4]);
      putDebugChar (hexchars[checksum % 16]);
    }
  while (getDebugChar () != '+');
}

/* Address of a routine to RTE to if we get a memory fault.  */

static void (*volatile mem_fault_routine) () = 0;

static void
set_mem_err (void)
{
  mem_err = 1;
}

/* Check the address for safe access ranges.  As currently defined,
   this routine will reject the "expansion bus" address range(s).
   To make those ranges useable, someone must implement code to detect
   whether there's anything connected to the expansion bus. */

static int
mem_safe (unsigned char *addr)
{
#define BAD_RANGE_ONE_START	((unsigned char *) 0x600000)
#define BAD_RANGE_ONE_END	((unsigned char *) 0xa00000)
#define BAD_RANGE_TWO_START	((unsigned char *) 0xff680000)
#define BAD_RANGE_TWO_END	((unsigned char *) 0xff800000)

  if (addr < BAD_RANGE_ONE_START)
    return 1;			/* safe */
  if (addr < BAD_RANGE_ONE_END)
    return 0;			/* unsafe */
  if (addr < BAD_RANGE_TWO_START)
    return 1;			/* safe */
  if (addr < BAD_RANGE_TWO_END)
    return 0;			/* unsafe */
}

/* These are separate functions so that they are so short and sweet
   that the compiler won't save any registers (if there is a fault
   to mem_fault, they won't get restored, so there better not be any
   saved).  */
static int
get_char (unsigned char *addr)
{
#if 1
  if (mem_fault_routine && !mem_safe (addr))
    {
      mem_fault_routine ();
      return 0;
    }
#endif
  return *addr;
}

static void
set_char (unsigned char *addr, unsigned char val)
{
#if 1
  if (mem_fault_routine && !mem_safe (addr))
    {
      mem_fault_routine ();
      return;
    }
#endif
  *addr = val;
}

/* Convert the memory pointed to by mem into hex, placing result in buf.
   Return a pointer to the last char put in buf (null).
   If MAY_FAULT is non-zero, then we should set mem_err in response to
   a fault; if zero treat a fault like any other fault in the stub.  */

static unsigned char *
mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
{
  int i;
  unsigned char ch;

  if (may_fault)
    mem_fault_routine = set_mem_err;
  for (i = 0; i < count; i++)
    {
      ch = get_char (mem++);
      if (may_fault && mem_err)
	return (buf);
      *buf++ = hexchars[ch >> 4];
      *buf++ = hexchars[ch % 16];
    }
  *buf = 0;
  if (may_fault)
    mem_fault_routine = 0;
  return (buf);
}

/* Convert the hex array pointed to by buf into binary to be placed in mem.
   Return a pointer to the character AFTER the last byte written. */

static unsigned char *
hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
{
  int i;
  unsigned char ch;

  if (may_fault)
    mem_fault_routine = set_mem_err;
  for (i = 0; i < count; i++)
    {
      ch = hex (*buf++) << 4;
      ch = ch + hex (*buf++);
      set_char (mem++, ch);
      if (may_fault && mem_err)
	return (mem);
    }
  if (may_fault)
    mem_fault_routine = 0;
  return (mem);
}

/* Convert the binary stream in BUF to memory.

   Gdb will escape $, #, and the escape char (0x7d).
   COUNT is the total number of bytes to write into
   memory. */
static unsigned char *
bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
{
  int i;
  unsigned char ch;

  if (may_fault)
    mem_fault_routine = set_mem_err;
  for (i = 0; i < count; i++)
    {
      /* Check for any escaped characters. Be paranoid and
         only unescape chars that should be escaped. */
      if (*buf == 0x7d)
	{
	  switch (*(buf + 1))
	    {
	    case 0x3:		/* # */
	    case 0x4:		/* $ */
	    case 0x5d:		/* escape char */
	      buf++;
	      *buf |= 0x20;
	      break;
	    default:
	      /* nothing */
	      break;
	    }
	}

      set_char (mem++, *buf++);

      if (may_fault && mem_err)
	return mem;
    }

  if (may_fault)
    mem_fault_routine = 0;
  return mem;
}

/* this function takes the m32r exception vector and attempts to
   translate this number into a unix compatible signal value */

static int
computeSignal (int exceptionVector)
{
  int sigval;
  switch (exceptionVector)
    {
    case 0:
      sigval = 23;
      break;			/* I/O trap                    */
    case 1:
      sigval = 5;
      break;			/* breakpoint                  */
    case 2:
      sigval = 5;
      break;			/* breakpoint                  */
    case 3:
      sigval = 5;
      break;			/* breakpoint                  */
    case 4:
      sigval = 5;
      break;			/* breakpoint                  */
    case 5:
      sigval = 5;
      break;			/* breakpoint                  */
    case 6:
      sigval = 5;
      break;			/* breakpoint                  */
    case 7:
      sigval = 5;
      break;			/* breakpoint                  */
    case 8:
      sigval = 5;
      break;			/* breakpoint                  */
    case 9:
      sigval = 5;
      break;			/* breakpoint                  */
    case 10:
      sigval = 5;
      break;			/* breakpoint                  */
    case 11:
      sigval = 5;
      break;			/* breakpoint                  */
    case 12:
      sigval = 5;
      break;			/* breakpoint                  */
    case 13:
      sigval = 5;
      break;			/* breakpoint                  */
    case 14:
      sigval = 5;
      break;			/* breakpoint                  */
    case 15:
      sigval = 5;
      break;			/* breakpoint                  */
    case 16:
      sigval = 10;
      break;			/* BUS ERROR (alignment)       */
    case 17:
      sigval = 2;
      break;			/* INTerrupt                   */
    default:
      sigval = 7;
      break;			/* "software generated"        */
    }
  return (sigval);
}

/**********************************************/
/* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
/* RETURN NUMBER OF CHARS PROCESSED           */
/**********************************************/
static int
hexToInt (unsigned char **ptr, int *intValue)
{
  int numChars = 0;
  int hexValue;

  *intValue = 0;
  while (**ptr)
    {
      hexValue = hex (**ptr);
      if (hexValue >= 0)
	{
	  *intValue = (*intValue << 4) | hexValue;
	  numChars++;
	}
      else
	break;
      (*ptr)++;
    }
  return (numChars);
}

/*
  Table of branch instructions:
  
  10B6		RTE	return from trap or exception
  1FCr		JMP	jump
  1ECr		JL	jump and link
  7Fxx		BRA	branch
  FFxxxxxx	BRA	branch (long)
  B09rxxxx	BNEZ	branch not-equal-zero
  Br1rxxxx	BNE	branch not-equal
  7Dxx		BNC	branch not-condition
  FDxxxxxx	BNC	branch not-condition (long)
  B0Arxxxx	BLTZ	branch less-than-zero
  B0Crxxxx	BLEZ	branch less-equal-zero
  7Exx		BL	branch and link
  FExxxxxx	BL	branch and link (long)
  B0Drxxxx	BGTZ	branch greater-than-zero
  B0Brxxxx	BGEZ	branch greater-equal-zero
  B08rxxxx	BEQZ	branch equal-zero
  Br0rxxxx	BEQ	branch equal
  7Cxx		BC	branch condition
  FCxxxxxx	BC	branch condition (long)
  */

static int
isShortBranch (unsigned char *instr)
{
  unsigned char instr0 = instr[0] & 0x7F;	/* mask off high bit */

  if (instr0 == 0x10 && instr[1] == 0xB6)	/* RTE */
    return 1;			/* return from trap or exception */

  if (instr0 == 0x1E || instr0 == 0x1F)	/* JL or JMP */
    if ((instr[1] & 0xF0) == 0xC0)
      return 2;			/* jump thru a register */

  if (instr0 == 0x7C || instr0 == 0x7D ||	/* BC, BNC, BL, BRA */
      instr0 == 0x7E || instr0 == 0x7F)
    return 3;			/* eight bit PC offset */

  return 0;
}

static int
isLongBranch (unsigned char *instr)
{
  if (instr[0] == 0xFC || instr[0] == 0xFD ||	/* BRA, BNC, BL, BC */
      instr[0] == 0xFE || instr[0] == 0xFF)	/* 24 bit relative */
    return 4;
  if ((instr[0] & 0xF0) == 0xB0)	/* 16 bit relative */
    {
      if ((instr[1] & 0xF0) == 0x00 ||	/* BNE, BEQ */
	  (instr[1] & 0xF0) == 0x10)
	return 5;
      if (instr[0] == 0xB0)	/* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
	if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
	    (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
	    (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
	  return 6;
    }
  return 0;
}

/* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, 
   then it's a 2-byte instruction, else it's a 4-byte instruction.  */

#define INSTRUCTION_SIZE(addr) \
    ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)

static int
isBranch (unsigned char *instr)
{
  if (INSTRUCTION_SIZE (instr) == 2)
    return isShortBranch (instr);
  else
    return isLongBranch (instr);
}

static int
willBranch (unsigned char *instr, int branchCode)
{
  switch (branchCode)
    {
    case 0:
      return 0;			/* not a branch */
    case 1:
      return 1;			/* RTE */
    case 2:
      return 1;			/* JL or JMP    */
    case 3:			/* BC, BNC, BL, BRA (short) */
    case 4:			/* BC, BNC, BL, BRA (long) */
      switch (instr[0] & 0x0F)
	{
	case 0xC:		/* Branch if Condition Register */
	  return (registers[CBR] != 0);
	case 0xD:		/* Branch if NOT Condition Register */
	  return (registers[CBR] == 0);
	case 0xE:		/* Branch and Link */
	case 0xF:		/* Branch (unconditional) */
	  return 1;
	default:		/* oops? */
	  return 0;
	}
    case 5:			/* BNE, BEQ */
      switch (instr[1] & 0xF0)
	{
	case 0x00:		/* Branch if r1 equal to r2 */
	  return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
	case 0x10:		/* Branch if r1 NOT equal to r2 */
	  return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
	default:		/* oops? */
	  return 0;
	}
    case 6:			/* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
      switch (instr[1] & 0xF0)
	{
	case 0x80:		/* Branch if reg equal to zero */
	  return (registers[instr[1] & 0x0F] == 0);
	case 0x90:		/* Branch if reg NOT equal to zero */
	  return (registers[instr[1] & 0x0F] != 0);
	case 0xA0:		/* Branch if reg less than zero */
	  return (registers[instr[1] & 0x0F] < 0);
	case 0xB0:		/* Branch if reg greater or equal to zero */
	  return (registers[instr[1] & 0x0F] >= 0);
	case 0xC0:		/* Branch if reg less than or equal to zero */
	  return (registers[instr[1] & 0x0F] <= 0);
	case 0xD0:		/* Branch if reg greater than zero */
	  return (registers[instr[1] & 0x0F] > 0);
	default:		/* oops? */
	  return 0;
	}
    default:			/* oops? */
      return 0;
    }
}

static int
branchDestination (unsigned char *instr, int branchCode)
{
  switch (branchCode)
    {
    default:
    case 0:			/* not a branch */
      return 0;
    case 1:			/* RTE */
      return registers[BPC] & ~3;	/* pop BPC into PC */
    case 2:			/* JL or JMP */
      return registers[instr[1] & 0x0F] & ~3;	/* jump thru a register */
    case 3:			/* BC, BNC, BL, BRA (short, 8-bit relative offset) */
      return (((int) instr) & ~3) + ((char) instr[1] << 2);
    case 4:			/* BC, BNC, BL, BRA (long, 24-bit relative offset) */
      return ((int) instr +
	      ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) <<
	       2));
    case 5:			/* BNE, BEQ (16-bit relative offset) */
    case 6:			/* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
      return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
    }

  /* An explanatory note: in the last three return expressions, I have
     cast the most-significant byte of the return offset to char.
     What this accomplishes is sign extension.  If the other
     less-significant bytes were signed as well, they would get sign
     extended too and, if negative, their leading bits would clobber
     the bits of the more-significant bytes ahead of them.  There are
     other ways I could have done this, but sign extension from
     odd-sized integers is always a pain. */
}

static void
branchSideEffects (unsigned char *instr, int branchCode)
{
  switch (branchCode)
    {
    case 1:			/* RTE */
      return;			/* I <THINK> this is already handled... */
    case 2:			/* JL (or JMP) */
    case 3:			/* BL (or BC, BNC, BRA) */
    case 4:
      if ((instr[0] & 0x0F) == 0x0E)	/* branch/jump and link */
	registers[R14] = (registers[PC] & ~3) + 4;
      return;
    default:			/* any other branch has no side effects */
      return;
    }
}

static struct STEPPING_CONTEXT
{
  int stepping;			/* true when we've started a single-step */
  unsigned long target_addr;	/* the instr we're trying to execute */
  unsigned long target_size;	/* the size of the target instr */
  unsigned long noop_addr;	/* where we've inserted a no-op, if any */
  unsigned long trap1_addr;	/* the trap following the target instr */
  unsigned long trap2_addr;	/* the trap at a branch destination, if any */
  unsigned short noop_save;	/* instruction overwritten by our no-op */
  unsigned short trap1_save;	/* instruction overwritten by trap1 */
  unsigned short trap2_save;	/* instruction overwritten by trap2 */
  unsigned short continue_p;	/* true if NOT returning to gdb after step */
} stepping;

/* Function: prepare_to_step
   Called from handle_exception to prepare the user program to single-step.
   Places a trap instruction after the target instruction, with special 
   extra handling for branch instructions and for instructions in the 
   second half-word of a word.  

   Returns: True  if we should actually execute the instruction; 
	    False if we are going to emulate executing the instruction,
	    in which case we simply report to GDB that the instruction 
	    has already been executed.  */

#define TRAP1  0x10f1;		/* trap #1 instruction */
#define NOOP   0x7000;		/* noop    instruction */

static unsigned short trap1 = TRAP1;
static unsigned short noop = NOOP;

static int
prepare_to_step (continue_p)
     int continue_p;		/* if this isn't REALLY a single-step (see below) */
{
  unsigned long pc = registers[PC];
  int branchCode = isBranch ((unsigned char *) pc);
  unsigned char *p;

  /* zero out the stepping context 
     (paranoia -- it should already be zeroed) */
  for (p = (unsigned char *) &stepping;
       p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
    *p = 0;

  if (branchCode != 0)		/* next instruction is a branch */
    {
      branchSideEffects ((unsigned char *) pc, branchCode);
      if (willBranch ((unsigned char *) pc, branchCode))
	registers[PC] = branchDestination ((unsigned char *) pc, branchCode);
      else
	registers[PC] = pc + INSTRUCTION_SIZE (pc);
      return 0;			/* branch "executed" -- just notify GDB */
    }
  else if (((int) pc & 2) != 0)	/* "second-slot" instruction */
    {
      /* insert no-op before pc */
      stepping.noop_addr = pc - 2;
      stepping.noop_save = *(unsigned short *) stepping.noop_addr;
      *(unsigned short *) stepping.noop_addr = noop;
      /* insert trap  after  pc */
      stepping.trap1_addr = pc + 2;
      stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
      *(unsigned short *) stepping.trap1_addr = trap1;
    }
  else				/* "first-slot" instruction */
    {
      /* insert trap  after  pc */
      stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc);
      stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
      *(unsigned short *) stepping.trap1_addr = trap1;
    }
  /* "continue_p" means that we are actually doing a continue, and not 
     being requested to single-step by GDB.  Sometimes we have to do
     one single-step before continuing, because the PC is on a half-word
     boundary.  There's no way to simply resume at such an address.  */
  stepping.continue_p = continue_p;
  stepping.stepping = 1;	/* starting a single-step */
  return 1;
}

/* Function: finish_from_step
   Called from handle_exception to finish up when the user program 
   returns from a single-step.  Replaces the instructions that had
   been overwritten by traps or no-ops, 

   Returns: True  if we should notify GDB that the target stopped.
	    False if we only single-stepped because we had to before we
	    could continue (ie. we were trying to continue at a 
	    half-word boundary).  In that case don't notify GDB:
	    just "continue continuing".  */

static int
finish_from_step (void)
{
  if (stepping.stepping)	/* anything to do? */
    {
      int continue_p = stepping.continue_p;
      unsigned char *p;

      if (stepping.noop_addr)	/* replace instr "under" our no-op */
	*(unsigned short *) stepping.noop_addr = stepping.noop_save;
      if (stepping.trap1_addr)	/* replace instr "under" our trap  */
	*(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
      if (stepping.trap2_addr)	/* ditto our other trap, if any    */
	*(unsigned short *) stepping.trap2_addr = stepping.trap2_save;

      for (p = (unsigned char *) &stepping;	/* zero out the stepping context */
	   p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
	*p = 0;

      return !(continue_p);
    }
  else				/* we didn't single-step, therefore this must be a legitimate stop */
    return 1;
}

struct PSWreg
{				/* separate out the bit flags in the PSW register */
  int pad1:16;
  int bsm:1;
  int bie:1;
  int pad2:5;
  int bc:1;
  int sm:1;
  int ie:1;
  int pad3:5;
  int c:1;
} *psw;

/* Upon entry the value for LR to save has been pushed.
   We unpush that so that the value for the stack pointer saved is correct.
   Upon entry, all other registers are assumed to have not been modified
   since the interrupt/trap occured.  */

asm ("\n\
stash_registers:\n\
	push r0\n\
	push r1\n\
	seth r1, #shigh(registers)\n\
	add3 r1, r1, #low(registers)\n\
	pop r0		; r1\n\
	st r0, @(4,r1)\n\
	pop r0		; r0\n\
	st r0, @r1\n\
	addi r1, #4	; only add 4 as subsequent saves are `pre inc'\n\
	st r2, @+r1\n\
	st r3, @+r1\n\
	st r4, @+r1\n\
	st r5, @+r1\n\
	st r6, @+r1\n\
	st r7, @+r1\n\
	st r8, @+r1\n\
	st r9, @+r1\n\
	st r10, @+r1\n\
	st r11, @+r1\n\
	st r12, @+r1\n\
	st r13, @+r1    ; fp\n\
	pop r0		; lr (r14)\n\
	st r0, @+r1\n\
	st sp, @+r1	; sp contains right value at this point\n\
	mvfc r0, cr0\n\
	st r0, @+r1	; cr0 == PSW\n\
	mvfc r0, cr1\n\
	st r0, @+r1	; cr1 == CBR\n\
	mvfc r0, cr2\n\
	st r0, @+r1	; cr2 == SPI\n\
	mvfc r0, cr3\n\
	st r0, @+r1	; cr3 == SPU\n\
	mvfc r0, cr6\n\
	st r0, @+r1	; cr6 == BPC\n\
	st r0, @+r1	; PC  == BPC\n\
	mvfaclo r0\n\
	st r0, @+r1	; ACCL\n\
	mvfachi r0\n\
	st r0, @+r1	; ACCH\n\
	jmp lr");

/* C routine to clean up what stash_registers did.
   It is called after calling stash_registers.
   This is separate from stash_registers as we want to do this in C
   but doing stash_registers in C isn't straightforward.  */

static void
cleanup_stash (void)
{
  psw = (struct PSWreg *) &registers[PSW];	/* fields of PSW register */
  psw->sm = psw->bsm;		/* fix up pre-trap values of psw fields */
  psw->ie = psw->bie;
  psw->c = psw->bc;
  registers[CBR] = psw->bc;	/* fix up pre-trap "C" register */

#if 0				/* FIXME: Was in previous version.  Necessary?
				   (Remember that we use the "rte" insn to return from the
				   trap/interrupt so the values of bsm, bie, bc are important.  */
  psw->bsm = psw->bie = psw->bc = 0;	/* zero post-trap values */
#endif

  /* FIXME: Copied from previous version.  This can probably be deleted
     since methinks stash_registers has already done this.  */
  registers[PC] = registers[BPC];	/* pre-trap PC */

  /* FIXME: Copied from previous version.  Necessary?  */
  if (psw->sm)			/* copy R15 into (psw->sm ? SPU : SPI) */
    registers[SPU] = registers[R15];
  else
    registers[SPI] = registers[R15];
}

asm ("\n\
restore_and_return:\n\
	seth r0, #shigh(registers+8)\n\
	add3 r0, r0, #low(registers+8)\n\
	ld r2, @r0+	; restore r2\n\
	ld r3, @r0+	; restore r3\n\
	ld r4, @r0+	; restore r4\n\
	ld r5, @r0+	; restore r5\n\
	ld r6, @r0+	; restore r6\n\
	ld r7, @r0+	; restore r7\n\
	ld r8, @r0+	; restore r8\n\
	ld r9, @r0+	; restore r9\n\
	ld r10, @r0+	; restore r10\n\
	ld r11, @r0+	; restore r11\n\
	ld r12, @r0+	; restore r12\n\
	ld r13, @r0+	; restore r13\n\
	ld r14, @r0+	; restore r14\n\
	ld r15, @r0+	; restore r15\n\
	ld r1, @r0+	; restore cr0 == PSW\n\
	mvtc r1, cr0\n\
	ld r1, @r0+	; restore cr1 == CBR (no-op, because it's read only)\n\
	mvtc r1, cr1\n\
	ld r1, @r0+	; restore cr2 == SPI\n\
	mvtc r1, cr2\n\
	ld r1, @r0+	; restore cr3 == SPU\n\
	mvtc r1, cr3\n\
	addi r0, #4	; skip BPC\n\
	ld r1, @r0+	; restore cr6 (BPC) == PC\n\
	mvtc r1, cr6\n\
	ld r1, @r0+	; restore ACCL\n\
	mvtaclo r1\n\
	ld r1, @r0+	; restore ACCH\n\
	mvtachi r1\n\
	seth r0, #shigh(registers)\n\
	add3 r0, r0, #low(registers)\n\
	ld r1, @(4,r0)	; restore r1\n\
	ld r0, @r0	; restore r0\n\
	rte");

/* General trap handler, called after the registers have been stashed.
   NUM is the trap/exception number.  */

static void
process_exception (int num)
{
  cleanup_stash ();
  asm volatile ("\n\
	seth r1, #shigh(stackPtr)\n\
	add3 r1, r1, #low(stackPtr)\n\
	ld r15, @r1		; setup local stack (protect user stack)\n\
	mv r0, %0\n\
	bl handle_exception\n\
	bl restore_and_return"::"r" (num):"r0", "r1");
}

void _catchException0 ();

asm ("\n\
_catchException0:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #0\n\
	bl process_exception");

void _catchException1 ();

asm ("\n\
_catchException1:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	bl cleanup_stash\n\
	seth r1, #shigh(stackPtr)\n\
	add3 r1, r1, #low(stackPtr)\n\
	ld r15, @r1		; setup local stack (protect user stack)\n\
	seth r1, #shigh(registers + 21*4) ; PC\n\
	add3 r1, r1, #low(registers + 21*4)\n\
	ld r0, @r1\n\
	addi r0, #-4		; back up PC for breakpoint trap.\n\
	st r0, @r1		; FIXME: what about bp in right slot?\n\
	ldi r0, #1\n\
	bl handle_exception\n\
	bl restore_and_return");

void _catchException2 ();

asm ("\n\
_catchException2:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #2\n\
	bl process_exception");

void _catchException3 ();

asm ("\n\
_catchException3:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #3\n\
	bl process_exception");

void _catchException4 ();

asm ("\n\
_catchException4:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #4\n\
	bl process_exception");

void _catchException5 ();

asm ("\n\
_catchException5:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #5\n\
	bl process_exception");

void _catchException6 ();

asm ("\n\
_catchException6:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #6\n\
	bl process_exception");

void _catchException7 ();

asm ("\n\
_catchException7:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #7\n\
	bl process_exception");

void _catchException8 ();

asm ("\n\
_catchException8:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #8\n\
	bl process_exception");

void _catchException9 ();

asm ("\n\
_catchException9:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #9\n\
	bl process_exception");

void _catchException10 ();

asm ("\n\
_catchException10:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #10\n\
	bl process_exception");

void _catchException11 ();

asm ("\n\
_catchException11:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #11\n\
	bl process_exception");

void _catchException12 ();

asm ("\n\
_catchException12:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #12\n\
	bl process_exception");

void _catchException13 ();

asm ("\n\
_catchException13:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #13\n\
	bl process_exception");

void _catchException14 ();

asm ("\n\
_catchException14:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #14\n\
	bl process_exception");

void _catchException15 ();

asm ("\n\
_catchException15:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #15\n\
	bl process_exception");

void _catchException16 ();

asm ("\n\
_catchException16:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #16\n\
	bl process_exception");

void _catchException17 ();

asm ("\n\
_catchException17:\n\
	push lr\n\
	bl stash_registers\n\
	; Note that at this point the pushed value of `lr' has been popped\n\
	ldi r0, #17\n\
	bl process_exception");


/* this function is used to set up exception handlers for tracing and
   breakpoints */
void
set_debug_traps (void)
{
  /*  extern void remcomHandler(); */
  int i;

  for (i = 0; i < 18; i++)	/* keep a copy of old vectors */
    if (save_vectors[i] == 0)	/* only copy them the first time */
      save_vectors[i] = getExceptionHandler (i);

  stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];

  exceptionHandler (0, _catchException0);
  exceptionHandler (1, _catchException1);
  exceptionHandler (2, _catchException2);
  exceptionHandler (3, _catchException3);
  exceptionHandler (4, _catchException4);
  exceptionHandler (5, _catchException5);
  exceptionHandler (6, _catchException6);
  exceptionHandler (7, _catchException7);
  exceptionHandler (8, _catchException8);
  exceptionHandler (9, _catchException9);
  exceptionHandler (10, _catchException10);
  exceptionHandler (11, _catchException11);
  exceptionHandler (12, _catchException12);
  exceptionHandler (13, _catchException13);
  exceptionHandler (14, _catchException14);
  exceptionHandler (15, _catchException15);
  exceptionHandler (16, _catchException16);
  /*  exceptionHandler (17, _catchException17); */

  initialized = 1;
}

/* This function will generate a breakpoint exception.  It is used at the
   beginning of a program to sync up with a debugger and can be used
   otherwise as a quick means to stop program execution and "break" into
   the debugger. */

#define BREAKPOINT() asm volatile ("	trap #2");

void
breakpoint (void)
{
  if (initialized)
    BREAKPOINT ();
}

/* STDOUT section:
   Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
   Functions: gdb_putchar(char ch)
              gdb_puts(char *str)
              gdb_write(char *str, int len)
              gdb_error(char *format, char *parm)
	      */

/* Function: gdb_putchar(int)
   Make gdb write a char to stdout.
   Returns: the char */

static int
gdb_putchar (int ch)
{
  char buf[4];

  buf[0] = 'O';
  buf[1] = hexchars[ch >> 4];
  buf[2] = hexchars[ch & 0x0F];
  buf[3] = 0;
  putpacket (buf);
  return ch;
}

/* Function: gdb_write(char *, int)
   Make gdb write n bytes to stdout (not assumed to be null-terminated).
   Returns: number of bytes written */

static int
gdb_write (char *data, int len)
{
  char *buf, *cpy;
  int i;

  buf = remcomOutBuffer;
  buf[0] = 'O';
  i = 0;
  while (i < len)
    {
      for (cpy = buf + 1;
	   i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++)
	{
	  *cpy++ = hexchars[data[i] >> 4];
	  *cpy++ = hexchars[data[i] & 0x0F];
	}
      *cpy = 0;
      putpacket (buf);
    }
  return len;
}

/* Function: gdb_puts(char *)
   Make gdb write a null-terminated string to stdout.
   Returns: the length of the string */

static int
gdb_puts (char *str)
{
  return gdb_write (str, strlen (str));
}

/* Function: gdb_error(char *, char *)
   Send an error message to gdb's stdout.
   First string may have 1 (one) optional "%s" in it, which
   will cause the optional second string to be inserted.  */

static void
gdb_error (char *format, char *parm)
{
  char buf[400], *cpy;
  int len;

  if (remote_debug)
    {
      if (format && *format)
	len = strlen (format);
      else
	return;			/* empty input */

      if (parm && *parm)
	len += strlen (parm);

      for (cpy = buf; *format;)
	{
	  if (format[0] == '%' && format[1] == 's')	/* include second string */
	    {
	      format += 2;	/* advance two chars instead of just one */
	      while (parm && *parm)
		*cpy++ = *parm++;
	    }
	  else
	    *cpy++ = *format++;
	}
      *cpy = '\0';
      gdb_puts (buf);
    }
}

static unsigned char *
strcpy (unsigned char *dest, const unsigned char *src)
{
  unsigned char *ret = dest;

  if (dest && src)
    {
      while (*src)
	*dest++ = *src++;
      *dest = 0;
    }
  return ret;
}

static int
strlen (const unsigned char *src)
{
  int ret;

  for (ret = 0; *src; src++)
    ret++;

  return ret;
}

#if 0
void
exit (code)
     int code;
{
  _exit (code);
}

int
atexit (void *p)
{
  return 0;
}

void
abort (void)
{
  _exit (1);
}
#endif