1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
// OBSOLETE
// OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
// OBSOLETE Foundation, Inc.
// OBSOLETE
// OBSOLETE This file is part of GDB.
// OBSOLETE
// OBSOLETE This program is free software; you can redistribute it and/or modify
// OBSOLETE it under the terms of the GNU General Public License as published by
// OBSOLETE the Free Software Foundation; either version 2 of the License, or
// OBSOLETE (at your option) any later version.
// OBSOLETE
// OBSOLETE This program is distributed in the hope that it will be useful,
// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// OBSOLETE GNU General Public License for more details.
// OBSOLETE
// OBSOLETE You should have received a copy of the GNU General Public License
// OBSOLETE along with this program; if not, write to the Free Software
// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE Boston, MA 02111-1307, USA. */
// OBSOLETE
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "target.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "bfd.h"
// OBSOLETE #include "gdb_string.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "symfile.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE
// OBSOLETE /* Function: m32r_use_struct_convention
// OBSOLETE Return nonzero if call_function should allocate stack space for a
// OBSOLETE struct return? */
// OBSOLETE int
// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
// OBSOLETE {
// OBSOLETE return (TYPE_LENGTH (type) > 8);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: frame_find_saved_regs
// OBSOLETE Return the frame_saved_regs structure for the frame.
// OBSOLETE Doesn't really work for dummy frames, but it does pass back
// OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
// OBSOLETE struct frame_saved_regs *regaddr)
// OBSOLETE {
// OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
// OBSOLETE if being done, its quite a lot
// OBSOLETE */
// OBSOLETE #if 0
// OBSOLETE static void
// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
// OBSOLETE {
// OBSOLETE printf_filtered (" %s %08x %08x ",
// OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn);
// OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info);
// OBSOLETE printf_filtered ("\n");
// OBSOLETE }
// OBSOLETE #define insn_debug(args) { printf_filtered args; }
// OBSOLETE #else
// OBSOLETE #define dump_insn(a,b,c) {}
// OBSOLETE #define insn_debug(args) {}
// OBSOLETE #endif
// OBSOLETE
// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
// OBSOLETE
// OBSOLETE /* Function: scan_prologue
// OBSOLETE This function decodes the target function prologue to determine
// OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it.
// OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument,
// OBSOLETE and returns the frame size. */
// OBSOLETE
// OBSOLETE /*
// OBSOLETE The sequence it currently generates is:
// OBSOLETE
// OBSOLETE if (varargs function) { ddi sp,#n }
// OBSOLETE push registers
// OBSOLETE if (additional stack <= 256) { addi sp,#-stack }
// OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack
// OBSOLETE
// OBSOLETE } else if (additional stack) {
// OBSOLETE seth sp,#(stack & 0xffff0000)
// OBSOLETE or3 sp,sp,#(stack & 0x0000ffff)
// OBSOLETE sub sp,r4
// OBSOLETE }
// OBSOLETE if (frame pointer) {
// OBSOLETE mv sp,fp
// OBSOLETE }
// OBSOLETE
// OBSOLETE These instructions are scheduled like everything else, so you should stop at
// OBSOLETE the first branch instruction.
// OBSOLETE
// OBSOLETE */
// OBSOLETE
// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info.
// OBSOLETE The results of decoding a prologue should be cached because this
// OBSOLETE thrashing is getting nuts.
// OBSOLETE I am thinking of making a container class with two indexes, name and
// OBSOLETE address. It may be better to extend the symbol table.
// OBSOLETE */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
// OBSOLETE unsigned long *framelength, struct frame_info *fi,
// OBSOLETE struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE unsigned long framesize;
// OBSOLETE int insn;
// OBSOLETE int op1;
// OBSOLETE int maybe_one_more = 0;
// OBSOLETE CORE_ADDR after_prologue = 0;
// OBSOLETE CORE_ADDR after_stack_adjust = 0;
// OBSOLETE CORE_ADDR current_pc;
// OBSOLETE
// OBSOLETE
// OBSOLETE framesize = 0;
// OBSOLETE after_prologue = 0;
// OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
// OBSOLETE
// OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
// OBSOLETE {
// OBSOLETE
// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2);
// OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */
// OBSOLETE
// OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its
// OBSOLETE immediate data as though it were an instruction */
// OBSOLETE if (current_pc & 0x02)
// OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */
// OBSOLETE if (maybe_one_more)
// OBSOLETE { /* The last instruction was a branch, usually terminates
// OBSOLETE the series, but if this is a parallel instruction,
// OBSOLETE it may be a stack framing instruction */
// OBSOLETE if (!(insn & 0x8000))
// OBSOLETE {
// OBSOLETE insn_debug (("Really done"));
// OBSOLETE break; /* nope, we are really done */
// OBSOLETE }
// OBSOLETE }
// OBSOLETE insn &= 0x7fff; /* decode this instruction further */
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE if (maybe_one_more)
// OBSOLETE break; /* This isnt the one more */
// OBSOLETE if (insn & 0x8000)
// OBSOLETE {
// OBSOLETE insn_debug (("32 bit insn\n"));
// OBSOLETE if (current_pc == scan_limit)
// OBSOLETE scan_limit += 2; /* extend the search */
// OBSOLETE current_pc += 2; /* skip the immediate data */
// OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */
// OBSOLETE /* add 16 bit sign-extended offset */
// OBSOLETE {
// OBSOLETE insn_debug (("stack increment\n"));
// OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
// OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
// OBSOLETE { /* subtract 24 bit sign-extended negative-offset */
// OBSOLETE dump_insn ("insn-2", current_pc + 2, insn);
// OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4);
// OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn);
// OBSOLETE if (insn & 0x00800000) /* sign extend */
// OBSOLETE insn |= 0xff000000; /* negative */
// OBSOLETE else
// OBSOLETE insn &= 0x00ffffff; /* positive */
// OBSOLETE framesize += insn;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE after_prologue = current_pc;
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */
// OBSOLETE
// OBSOLETE if ((insn & 0xf0ff) == 0x207f)
// OBSOLETE { /* st reg, @-sp */
// OBSOLETE int regno;
// OBSOLETE insn_debug (("push\n"));
// OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
// OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi)
// OBSOLETE fi->using_frame_pointer = 1;
// OBSOLETE #endif
// OBSOLETE framesize += 4;
// OBSOLETE #if 0
// OBSOLETE /* Why should we increase the scan limit, just because we did a push?
// OBSOLETE And if there is a reason, surely we would only want to do it if we
// OBSOLETE had already reached the scan limit... */
// OBSOLETE if (current_pc == scan_limit)
// OBSOLETE scan_limit += 2;
// OBSOLETE #endif
// OBSOLETE regno = ((insn >> 8) & 0xf);
// OBSOLETE if (fsr) /* save_regs offset */
// OBSOLETE fsr->regs[regno] = framesize;
// OBSOLETE after_prologue = 0;
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */
// OBSOLETE /* add 8 bit sign-extended offset */
// OBSOLETE {
// OBSOLETE int stack_adjust = (char) (insn & 0xff);
// OBSOLETE
// OBSOLETE /* there are probably two of these stack adjustments:
// OBSOLETE 1) A negative one in the prologue, and
// OBSOLETE 2) A positive one in the epilogue.
// OBSOLETE We are only interested in the first one. */
// OBSOLETE
// OBSOLETE if (stack_adjust < 0)
// OBSOLETE {
// OBSOLETE framesize -= stack_adjust;
// OBSOLETE after_prologue = 0;
// OBSOLETE /* A frameless function may have no "mv fp, sp".
// OBSOLETE In that case, this is the end of the prologue. */
// OBSOLETE after_stack_adjust = current_pc + 2;
// OBSOLETE }
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE if (insn == 0x1d8f)
// OBSOLETE { /* mv fp, sp */
// OBSOLETE if (fi)
// OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */
// OBSOLETE insn_debug (("done fp found\n"));
// OBSOLETE after_prologue = current_pc + 2;
// OBSOLETE break; /* end of stack adjustments */
// OBSOLETE }
// OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
// OBSOLETE {
// OBSOLETE insn_debug (("nop\n"));
// OBSOLETE after_prologue = current_pc + 2;
// OBSOLETE continue; /* nop occurs between pushes */
// OBSOLETE }
// OBSOLETE /* End of prolog if any of these are branch instructions */
// OBSOLETE if ((op1 == 0x7000)
// OBSOLETE || (op1 == 0xb000)
// OBSOLETE || (op1 == 0xf000))
// OBSOLETE {
// OBSOLETE after_prologue = current_pc;
// OBSOLETE insn_debug (("Done: branch\n"));
// OBSOLETE maybe_one_more = 1;
// OBSOLETE continue;
// OBSOLETE }
// OBSOLETE /* Some of the branch instructions are mixed with other types */
// OBSOLETE if (op1 == 0x1000)
// OBSOLETE {
// OBSOLETE int subop = insn & 0x0ff0;
// OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0))
// OBSOLETE {
// OBSOLETE insn_debug (("done: jmp\n"));
// OBSOLETE after_prologue = current_pc;
// OBSOLETE maybe_one_more = 1;
// OBSOLETE continue; /* jmp , jl */
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE if (current_pc >= scan_limit)
// OBSOLETE {
// OBSOLETE if (pl_endptr)
// OBSOLETE {
// OBSOLETE #if 1
// OBSOLETE if (after_stack_adjust != 0)
// OBSOLETE /* We did not find a "mv fp,sp", but we DID find
// OBSOLETE a stack_adjust. Is it safe to use that as the
// OBSOLETE end of the prologue? I just don't know. */
// OBSOLETE {
// OBSOLETE *pl_endptr = after_stack_adjust;
// OBSOLETE if (framelength)
// OBSOLETE *framelength = framesize;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE #endif
// OBSOLETE /* We reached the end of the loop without finding the end
// OBSOLETE of the prologue. No way to win -- we should report failure.
// OBSOLETE The way we do that is to return the original start_pc.
// OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */
// OBSOLETE *pl_endptr = start_pc;
// OBSOLETE }
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE if (after_prologue == 0)
// OBSOLETE after_prologue = current_pc;
// OBSOLETE
// OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
// OBSOLETE if (framelength)
// OBSOLETE *framelength = framesize;
// OBSOLETE if (pl_endptr)
// OBSOLETE *pl_endptr = after_prologue;
// OBSOLETE } /* decode_prologue */
// OBSOLETE
// OBSOLETE /* Function: skip_prologue
// OBSOLETE Find end of function prologue */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
// OBSOLETE {
// OBSOLETE CORE_ADDR func_addr, func_end;
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE
// OBSOLETE /* See what the symbol table says */
// OBSOLETE
// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
// OBSOLETE {
// OBSOLETE sal = find_pc_line (func_addr, 0);
// OBSOLETE
// OBSOLETE if (sal.line != 0 && sal.end <= func_end)
// OBSOLETE {
// OBSOLETE
// OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end));
// OBSOLETE func_end = sal.end;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE /* Either there's no line info, or the line after the prologue is after
// OBSOLETE the end of the function. In this case, there probably isn't a
// OBSOLETE prologue. */
// OBSOLETE {
// OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
// OBSOLETE sal.line, sal.end, func_end));
// OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT;
// OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
// OBSOLETE return sal.end;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc;
// OBSOLETE unsigned long framesize = 0;
// OBSOLETE
// OBSOLETE /* this code essentially duplicates skip_prologue,
// OBSOLETE but we need the start address below. */
// OBSOLETE
// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
// OBSOLETE {
// OBSOLETE sal = find_pc_line (prologue_start, 0);
// OBSOLETE
// OBSOLETE if (sal.line == 0) /* no line info, use current PC */
// OBSOLETE if (prologue_start == entry_point_address ())
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE prologue_start = fi->pc;
// OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks:
// OBSOLETE allow for 16 pushes, an add,
// OBSOLETE and "mv fp,sp" */
// OBSOLETE }
// OBSOLETE #if 0
// OBSOLETE prologue_end = min (prologue_end, fi->pc);
// OBSOLETE #endif
// OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
// OBSOLETE fi->pc, prologue_start, prologue_end));
// OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
// OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
// OBSOLETE fi, fsr);
// OBSOLETE return framesize;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: init_extra_frame_info
// OBSOLETE This function actually figures out the frame address for a given pc and
// OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit
// OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded
// OBSOLETE on the stack. The only reliable way to get this info is to
// OBSOLETE examine the prologue. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE int reg;
// OBSOLETE
// OBSOLETE if (fi->next)
// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next);
// OBSOLETE
// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
// OBSOLETE
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE {
// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong
// OBSOLETE by assuming it's always FP. */
// OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
// OBSOLETE SP_REGNUM);
// OBSOLETE fi->framesize = 0;
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE fi->using_frame_pointer = 0;
// OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
// OBSOLETE
// OBSOLETE if (!fi->next)
// OBSOLETE if (fi->using_frame_pointer)
// OBSOLETE {
// OBSOLETE fi->frame = read_register (FP_REGNUM);
// OBSOLETE }
// OBSOLETE else
// OBSOLETE fi->frame = read_register (SP_REGNUM);
// OBSOLETE else
// OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
// OBSOLETE /* we have an FP */
// OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++)
// OBSOLETE if (fi->fsr.regs[reg] != 0)
// OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: m32r_virtual_frame_pointer
// OBSOLETE Return the register that the function uses for a frame pointer,
// OBSOLETE plus any necessary offset to be applied to the register before
// OBSOLETE any frame pointer offsets. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
// OBSOLETE {
// OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc ();
// OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi);
// OBSOLETE
// OBSOLETE /* Set up a dummy frame_info. */
// OBSOLETE fi->next = NULL;
// OBSOLETE fi->prev = NULL;
// OBSOLETE fi->frame = 0;
// OBSOLETE fi->pc = pc;
// OBSOLETE
// OBSOLETE /* Analyze the prolog and fill in the extra info. */
// OBSOLETE m32r_init_extra_frame_info (fi);
// OBSOLETE
// OBSOLETE /* Results will tell us which type of frame it uses. */
// OBSOLETE if (fi->using_frame_pointer)
// OBSOLETE {
// OBSOLETE *reg = FP_REGNUM;
// OBSOLETE *offset = 0;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE *reg = SP_REGNUM;
// OBSOLETE *offset = 0;
// OBSOLETE }
// OBSOLETE do_cleanups (old_chain);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: find_callers_reg
// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing
// OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and
// OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This
// OBSOLETE would provide a graceful failure mode when trying to get the value of
// OBSOLETE caller-saves registers for an inner frame. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
// OBSOLETE {
// OBSOLETE for (; fi; fi = fi->next)
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
// OBSOLETE else if (fi->fsr.regs[regnum] != 0)
// OBSOLETE return read_memory_integer (fi->fsr.regs[regnum],
// OBSOLETE REGISTER_RAW_SIZE (regnum));
// OBSOLETE return read_register (regnum);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
// OBSOLETE the calling function's frame. This will be used to create a new
// OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
// OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
// OBSOLETE m32r, we save the frame size when we initialize the frame_info. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_frame_chain (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE CORE_ADDR fn_start, callers_pc, fp;
// OBSOLETE
// OBSOLETE /* is this a dummy frame? */
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */
// OBSOLETE
// OBSOLETE /* is caller-of-this a dummy frame? */
// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
// OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM);
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */
// OBSOLETE
// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
// OBSOLETE if (fn_start == entry_point_address ())
// OBSOLETE return 0; /* in _start fn, don't chain further */
// OBSOLETE if (fi->framesize == 0)
// OBSOLETE {
// OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
// OBSOLETE paddr (fi->frame),
// OBSOLETE paddr (fi->pc));
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
// OBSOLETE return fi->frame + fi->framesize;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: push_return_address (pc)
// OBSOLETE Set up the return address for the inferior function call.
// OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction
// OBSOLETE (ie. when using an empty CALL_DUMMY) */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
// OBSOLETE {
// OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
// OBSOLETE return sp;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Function: pop_frame
// OBSOLETE Discard from the stack the innermost frame,
// OBSOLETE restoring all saved registers. */
// OBSOLETE
// OBSOLETE struct frame_info *
// OBSOLETE m32r_pop_frame (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE int regnum;
// OBSOLETE
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
// OBSOLETE generic_pop_dummy_frame ();
// OBSOLETE else
// OBSOLETE {
// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++)
// OBSOLETE if (frame->fsr.regs[regnum] != 0)
// OBSOLETE write_register (regnum,
// OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4));
// OBSOLETE
// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
// OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM));
// OBSOLETE if (read_register (PSW_REGNUM) & 0x80)
// OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM));
// OBSOLETE else
// OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM));
// OBSOLETE }
// OBSOLETE flush_cached_frames ();
// OBSOLETE return NULL;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: frame_saved_pc
// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
// OBSOLETE in the stack anywhere, otherwise we get it from the registers. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
// OBSOLETE else
// OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: push_arguments
// OBSOLETE Setup the function arguments for calling a function in the inferior.
// OBSOLETE
// OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
// OBSOLETE which are dedicated for passing function arguments. Up to the first
// OBSOLETE four arguments (depending on size) may go into these registers.
// OBSOLETE The rest go on the stack.
// OBSOLETE
// OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole
// OBSOLETE register or a whole 32-bit word on the stack, and will be
// OBSOLETE right-justified in the register or the stack word. This includes
// OBSOLETE chars, shorts, and small aggregate types.
// OBSOLETE
// OBSOLETE Arguments of 8 bytes size are split between two registers, if
// OBSOLETE available. If only one register is available, the argument will
// OBSOLETE be split between the register and the stack. Otherwise it is
// OBSOLETE passed entirely on the stack. Aggregate types with sizes between
// OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified
// OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes
// OBSOLETE which are right-justified).
// OBSOLETE
// OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack,
// OBSOLETE and then a pointer to the copy is passed in the place of the normal
// OBSOLETE argument (either in a register if available, or on the stack).
// OBSOLETE
// OBSOLETE Functions that must return an aggregate type can return it in the
// OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or
// OBSOLETE less. For larger return values, the caller must allocate space for
// OBSOLETE the callee to copy the return value to. A pointer to this space is
// OBSOLETE passed as an implicit first argument, always in R0. */
// OBSOLETE
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
// OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr)
// OBSOLETE {
// OBSOLETE int stack_offset, stack_alloc;
// OBSOLETE int argreg;
// OBSOLETE int argnum;
// OBSOLETE struct type *type;
// OBSOLETE CORE_ADDR regval;
// OBSOLETE char *val;
// OBSOLETE char valbuf[4];
// OBSOLETE int len;
// OBSOLETE int odd_sized_struct;
// OBSOLETE
// OBSOLETE /* first force sp to a 4-byte alignment */
// OBSOLETE sp = sp & ~3;
// OBSOLETE
// OBSOLETE argreg = ARG0_REGNUM;
// OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */
// OBSOLETE if (struct_return)
// OBSOLETE write_register (argreg++, struct_addr);
// OBSOLETE
// OBSOLETE /* Now make sure there's space on the stack */
// OBSOLETE for (argnum = 0, stack_alloc = 0;
// OBSOLETE argnum < nargs; argnum++)
// OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
// OBSOLETE sp -= stack_alloc; /* make room on stack for args */
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Now load as many as possible of the first arguments into
// OBSOLETE registers, and push the rest onto the stack. There are 16 bytes
// OBSOLETE in four registers available. Loop thru args from first to last. */
// OBSOLETE
// OBSOLETE argreg = ARG0_REGNUM;
// OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
// OBSOLETE {
// OBSOLETE type = VALUE_TYPE (args[argnum]);
// OBSOLETE len = TYPE_LENGTH (type);
// OBSOLETE memset (valbuf, 0, sizeof (valbuf));
// OBSOLETE if (len < 4)
// OBSOLETE { /* value gets right-justified in the register or stack word */
// OBSOLETE memcpy (valbuf + (4 - len),
// OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len);
// OBSOLETE val = valbuf;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]);
// OBSOLETE
// OBSOLETE if (len > 4 && (len & 3) != 0)
// OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */
// OBSOLETE else
// OBSOLETE odd_sized_struct = 0;
// OBSOLETE while (len > 0)
// OBSOLETE {
// OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct)
// OBSOLETE { /* must go on the stack */
// OBSOLETE write_memory (sp + stack_offset, val, 4);
// OBSOLETE stack_offset += 4;
// OBSOLETE }
// OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!!
// OBSOLETE That's because some *&^%$ things get passed on the stack
// OBSOLETE AND in the registers! */
// OBSOLETE if (argreg <= ARGLAST_REGNUM)
// OBSOLETE { /* there's room in a register */
// OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
// OBSOLETE write_register (argreg++, regval);
// OBSOLETE }
// OBSOLETE /* Store the value 4 bytes at a time. This means that things
// OBSOLETE larger than 4 bytes may go partly in registers and partly
// OBSOLETE on the stack. */
// OBSOLETE len -= REGISTER_RAW_SIZE (argreg);
// OBSOLETE val += REGISTER_RAW_SIZE (argreg);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE return sp;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Function: fix_call_dummy
// OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function
// OBSOLETE has the responsability to insert the address of the actual code that
// OBSOLETE is the target of the target function call. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
// OBSOLETE struct value **args, struct type *type, int gcc_p)
// OBSOLETE {
// OBSOLETE /* ld24 r8, <(imm24) fun> */
// OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* Function: m32r_write_sp
// OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI,
// OBSOLETE we must actually write one of those two as well, depending on PSW. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE m32r_write_sp (CORE_ADDR val)
// OBSOLETE {
// OBSOLETE unsigned long psw = read_register (PSW_REGNUM);
// OBSOLETE
// OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */
// OBSOLETE write_register (SPU_REGNUM, val);
// OBSOLETE else
// OBSOLETE write_register (SPI_REGNUM, val);
// OBSOLETE write_register (SP_REGNUM, val);
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE _initialize_m32r_tdep (void)
// OBSOLETE {
// OBSOLETE tm_print_insn = print_insn_m32r;
// OBSOLETE }
|