summaryrefslogtreecommitdiff
path: root/gdb/value.c
blob: b9c4722461d5661e95ad098aba3c520b8af8a78e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
/* Low level packing and unpacking of values for GDB, the GNU Debugger.

   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   2009, 2010 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "gdb_string.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "command.h"
#include "gdbcmd.h"
#include "target.h"
#include "language.h"
#include "demangle.h"
#include "doublest.h"
#include "gdb_assert.h"
#include "regcache.h"
#include "block.h"
#include "dfp.h"
#include "objfiles.h"
#include "valprint.h"
#include "cli/cli-decode.h"

#include "python/python.h"

/* Prototypes for exported functions. */

void _initialize_values (void);

/* Definition of a user function.  */
struct internal_function
{
  /* The name of the function.  It is a bit odd to have this in the
     function itself -- the user might use a differently-named
     convenience variable to hold the function.  */
  char *name;

  /* The handler.  */
  internal_function_fn handler;

  /* User data for the handler.  */
  void *cookie;
};

static struct cmd_list_element *functionlist;

struct value
{
  /* Type of value; either not an lval, or one of the various
     different possible kinds of lval.  */
  enum lval_type lval;

  /* Is it modifiable?  Only relevant if lval != not_lval.  */
  int modifiable;

  /* Location of value (if lval).  */
  union
  {
    /* If lval == lval_memory, this is the address in the inferior.
       If lval == lval_register, this is the byte offset into the
       registers structure.  */
    CORE_ADDR address;

    /* Pointer to internal variable.  */
    struct internalvar *internalvar;

    /* If lval == lval_computed, this is a set of function pointers
       to use to access and describe the value, and a closure pointer
       for them to use.  */
    struct
    {
      struct lval_funcs *funcs; /* Functions to call.  */
      void *closure;            /* Closure for those functions to use.  */
    } computed;
  } location;

  /* Describes offset of a value within lval of a structure in bytes.
     If lval == lval_memory, this is an offset to the address.  If
     lval == lval_register, this is a further offset from
     location.address within the registers structure.  Note also the
     member embedded_offset below.  */
  int offset;

  /* Only used for bitfields; number of bits contained in them.  */
  int bitsize;

  /* Only used for bitfields; position of start of field.  For
     gdbarch_bits_big_endian=0 targets, it is the position of the LSB.  For
     gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
  int bitpos;

  /* Only used for bitfields; the containing value.  This allows a
     single read from the target when displaying multiple
     bitfields.  */
  struct value *parent;

  /* Frame register value is relative to.  This will be described in
     the lval enum above as "lval_register".  */
  struct frame_id frame_id;

  /* Type of the value.  */
  struct type *type;

  /* If a value represents a C++ object, then the `type' field gives
     the object's compile-time type.  If the object actually belongs
     to some class derived from `type', perhaps with other base
     classes and additional members, then `type' is just a subobject
     of the real thing, and the full object is probably larger than
     `type' would suggest.

     If `type' is a dynamic class (i.e. one with a vtable), then GDB
     can actually determine the object's run-time type by looking at
     the run-time type information in the vtable.  When this
     information is available, we may elect to read in the entire
     object, for several reasons:

     - When printing the value, the user would probably rather see the
     full object, not just the limited portion apparent from the
     compile-time type.

     - If `type' has virtual base classes, then even printing `type'
     alone may require reaching outside the `type' portion of the
     object to wherever the virtual base class has been stored.

     When we store the entire object, `enclosing_type' is the run-time
     type -- the complete object -- and `embedded_offset' is the
     offset of `type' within that larger type, in bytes.  The
     value_contents() macro takes `embedded_offset' into account, so
     most GDB code continues to see the `type' portion of the value,
     just as the inferior would.

     If `type' is a pointer to an object, then `enclosing_type' is a
     pointer to the object's run-time type, and `pointed_to_offset' is
     the offset in bytes from the full object to the pointed-to object
     -- that is, the value `embedded_offset' would have if we followed
     the pointer and fetched the complete object.  (I don't really see
     the point.  Why not just determine the run-time type when you
     indirect, and avoid the special case?  The contents don't matter
     until you indirect anyway.)

     If we're not doing anything fancy, `enclosing_type' is equal to
     `type', and `embedded_offset' is zero, so everything works
     normally.  */
  struct type *enclosing_type;
  int embedded_offset;
  int pointed_to_offset;

  /* Values are stored in a chain, so that they can be deleted easily
     over calls to the inferior.  Values assigned to internal
     variables, put into the value history or exposed to Python are
     taken off this list.  */
  struct value *next;

  /* Register number if the value is from a register.  */
  short regnum;

  /* If zero, contents of this value are in the contents field.  If
     nonzero, contents are in inferior.  If the lval field is lval_memory,
     the contents are in inferior memory at location.address plus offset.
     The lval field may also be lval_register.

     WARNING: This field is used by the code which handles watchpoints
     (see breakpoint.c) to decide whether a particular value can be
     watched by hardware watchpoints.  If the lazy flag is set for
     some member of a value chain, it is assumed that this member of
     the chain doesn't need to be watched as part of watching the
     value itself.  This is how GDB avoids watching the entire struct
     or array when the user wants to watch a single struct member or
     array element.  If you ever change the way lazy flag is set and
     reset, be sure to consider this use as well!  */
  char lazy;

  /* If nonzero, this is the value of a variable which does not
     actually exist in the program.  */
  char optimized_out;

  /* If value is a variable, is it initialized or not.  */
  int initialized;

  /* If value is from the stack.  If this is set, read_stack will be
     used instead of read_memory to enable extra caching.  */
  int stack;

  /* Actual contents of the value.  Target byte-order.  NULL or not
     valid if lazy is nonzero.  */
  gdb_byte *contents;

  /* The number of references to this value.  When a value is created,
     the value chain holds a reference, so REFERENCE_COUNT is 1.  If
     release_value is called, this value is removed from the chain but
     the caller of release_value now has a reference to this value.
     The caller must arrange for a call to value_free later.  */
  int reference_count;
};

/* Prototypes for local functions. */

static void show_values (char *, int);

static void show_convenience (char *, int);


/* The value-history records all the values printed
   by print commands during this session.  Each chunk
   records 60 consecutive values.  The first chunk on
   the chain records the most recent values.
   The total number of values is in value_history_count.  */

#define VALUE_HISTORY_CHUNK 60

struct value_history_chunk
  {
    struct value_history_chunk *next;
    struct value *values[VALUE_HISTORY_CHUNK];
  };

/* Chain of chunks now in use.  */

static struct value_history_chunk *value_history_chain;

static int value_history_count;	/* Abs number of last entry stored */


/* List of all value objects currently allocated
   (except for those released by calls to release_value)
   This is so they can be freed after each command.  */

static struct value *all_values;

/* Allocate a lazy value for type TYPE.  Its actual content is
   "lazily" allocated too: the content field of the return value is
   NULL; it will be allocated when it is fetched from the target.  */

struct value *
allocate_value_lazy (struct type *type)
{
  struct value *val;

  /* Call check_typedef on our type to make sure that, if TYPE
     is a TYPE_CODE_TYPEDEF, its length is set to the length
     of the target type instead of zero.  However, we do not
     replace the typedef type by the target type, because we want
     to keep the typedef in order to be able to set the VAL's type
     description correctly.  */
  check_typedef (type);

  val = (struct value *) xzalloc (sizeof (struct value));
  val->contents = NULL;
  val->next = all_values;
  all_values = val;
  val->type = type;
  val->enclosing_type = type;
  VALUE_LVAL (val) = not_lval;
  val->location.address = 0;
  VALUE_FRAME_ID (val) = null_frame_id;
  val->offset = 0;
  val->bitpos = 0;
  val->bitsize = 0;
  VALUE_REGNUM (val) = -1;
  val->lazy = 1;
  val->optimized_out = 0;
  val->embedded_offset = 0;
  val->pointed_to_offset = 0;
  val->modifiable = 1;
  val->initialized = 1;  /* Default to initialized.  */

  /* Values start out on the all_values chain.  */
  val->reference_count = 1;

  return val;
}

/* Allocate the contents of VAL if it has not been allocated yet.  */

void
allocate_value_contents (struct value *val)
{
  if (!val->contents)
    val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
}

/* Allocate a  value  and its contents for type TYPE.  */

struct value *
allocate_value (struct type *type)
{
  struct value *val = allocate_value_lazy (type);
  allocate_value_contents (val);
  val->lazy = 0;
  return val;
}

/* Allocate a  value  that has the correct length
   for COUNT repetitions of type TYPE.  */

struct value *
allocate_repeat_value (struct type *type, int count)
{
  int low_bound = current_language->string_lower_bound;		/* ??? */
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  struct type *array_type
    = lookup_array_range_type (type, low_bound, count + low_bound - 1);
  return allocate_value (array_type);
}

struct value *
allocate_computed_value (struct type *type,
                         struct lval_funcs *funcs,
                         void *closure)
{
  struct value *v = allocate_value (type);
  VALUE_LVAL (v) = lval_computed;
  v->location.computed.funcs = funcs;
  v->location.computed.closure = closure;
  set_value_lazy (v, 1);

  return v;
}

/* Accessor methods.  */

struct value *
value_next (struct value *value)
{
  return value->next;
}

struct type *
value_type (struct value *value)
{
  return value->type;
}
void
deprecated_set_value_type (struct value *value, struct type *type)
{
  value->type = type;
}

int
value_offset (struct value *value)
{
  return value->offset;
}
void
set_value_offset (struct value *value, int offset)
{
  value->offset = offset;
}

int
value_bitpos (struct value *value)
{
  return value->bitpos;
}
void
set_value_bitpos (struct value *value, int bit)
{
  value->bitpos = bit;
}

int
value_bitsize (struct value *value)
{
  return value->bitsize;
}
void
set_value_bitsize (struct value *value, int bit)
{
  value->bitsize = bit;
}

struct value *
value_parent (struct value *value)
{
  return value->parent;
}

gdb_byte *
value_contents_raw (struct value *value)
{
  allocate_value_contents (value);
  return value->contents + value->embedded_offset;
}

gdb_byte *
value_contents_all_raw (struct value *value)
{
  allocate_value_contents (value);
  return value->contents;
}

struct type *
value_enclosing_type (struct value *value)
{
  return value->enclosing_type;
}

const gdb_byte *
value_contents_all (struct value *value)
{
  if (value->lazy)
    value_fetch_lazy (value);
  return value->contents;
}

int
value_lazy (struct value *value)
{
  return value->lazy;
}

void
set_value_lazy (struct value *value, int val)
{
  value->lazy = val;
}

int
value_stack (struct value *value)
{
  return value->stack;
}

void
set_value_stack (struct value *value, int val)
{
  value->stack = val;
}

const gdb_byte *
value_contents (struct value *value)
{
  return value_contents_writeable (value);
}

gdb_byte *
value_contents_writeable (struct value *value)
{
  if (value->lazy)
    value_fetch_lazy (value);
  return value_contents_raw (value);
}

/* Return non-zero if VAL1 and VAL2 have the same contents.  Note that
   this function is different from value_equal; in C the operator ==
   can return 0 even if the two values being compared are equal.  */

int
value_contents_equal (struct value *val1, struct value *val2)
{
  struct type *type1;
  struct type *type2;
  int len;

  type1 = check_typedef (value_type (val1));
  type2 = check_typedef (value_type (val2));
  len = TYPE_LENGTH (type1);
  if (len != TYPE_LENGTH (type2))
    return 0;

  return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
}

int
value_optimized_out (struct value *value)
{
  return value->optimized_out;
}

void
set_value_optimized_out (struct value *value, int val)
{
  value->optimized_out = val;
}

int
value_embedded_offset (struct value *value)
{
  return value->embedded_offset;
}

void
set_value_embedded_offset (struct value *value, int val)
{
  value->embedded_offset = val;
}

int
value_pointed_to_offset (struct value *value)
{
  return value->pointed_to_offset;
}

void
set_value_pointed_to_offset (struct value *value, int val)
{
  value->pointed_to_offset = val;
}

struct lval_funcs *
value_computed_funcs (struct value *v)
{
  gdb_assert (VALUE_LVAL (v) == lval_computed);

  return v->location.computed.funcs;
}

void *
value_computed_closure (struct value *v)
{
  gdb_assert (VALUE_LVAL (v) == lval_computed);

  return v->location.computed.closure;
}

enum lval_type *
deprecated_value_lval_hack (struct value *value)
{
  return &value->lval;
}

CORE_ADDR
value_address (struct value *value)
{
  if (value->lval == lval_internalvar
      || value->lval == lval_internalvar_component)
    return 0;
  return value->location.address + value->offset;
}

CORE_ADDR
value_raw_address (struct value *value)
{
  if (value->lval == lval_internalvar
      || value->lval == lval_internalvar_component)
    return 0;
  return value->location.address;
}

void
set_value_address (struct value *value, CORE_ADDR addr)
{
  gdb_assert (value->lval != lval_internalvar
	      && value->lval != lval_internalvar_component);
  value->location.address = addr;
}

struct internalvar **
deprecated_value_internalvar_hack (struct value *value)
{
  return &value->location.internalvar;
}

struct frame_id *
deprecated_value_frame_id_hack (struct value *value)
{
  return &value->frame_id;
}

short *
deprecated_value_regnum_hack (struct value *value)
{
  return &value->regnum;
}

int
deprecated_value_modifiable (struct value *value)
{
  return value->modifiable;
}
void
deprecated_set_value_modifiable (struct value *value, int modifiable)
{
  value->modifiable = modifiable;
}

/* Return a mark in the value chain.  All values allocated after the
   mark is obtained (except for those released) are subject to being freed
   if a subsequent value_free_to_mark is passed the mark.  */
struct value *
value_mark (void)
{
  return all_values;
}

/* Take a reference to VAL.  VAL will not be deallocated until all
   references are released.  */

void
value_incref (struct value *val)
{
  val->reference_count++;
}

/* Release a reference to VAL, which was acquired with value_incref.
   This function is also called to deallocate values from the value
   chain.  */

void
value_free (struct value *val)
{
  if (val)
    {
      gdb_assert (val->reference_count > 0);
      val->reference_count--;
      if (val->reference_count > 0)
	return;

      /* If there's an associated parent value, drop our reference to
	 it.  */
      if (val->parent != NULL)
	value_free (val->parent);

      if (VALUE_LVAL (val) == lval_computed)
	{
	  struct lval_funcs *funcs = val->location.computed.funcs;

	  if (funcs->free_closure)
	    funcs->free_closure (val);
	}

      xfree (val->contents);
    }
  xfree (val);
}

/* Free all values allocated since MARK was obtained by value_mark
   (except for those released).  */
void
value_free_to_mark (struct value *mark)
{
  struct value *val;
  struct value *next;

  for (val = all_values; val && val != mark; val = next)
    {
      next = val->next;
      value_free (val);
    }
  all_values = val;
}

/* Free all the values that have been allocated (except for those released).
   Call after each command, successful or not.
   In practice this is called before each command, which is sufficient.  */

void
free_all_values (void)
{
  struct value *val;
  struct value *next;

  for (val = all_values; val; val = next)
    {
      next = val->next;
      value_free (val);
    }

  all_values = 0;
}

/* Remove VAL from the chain all_values
   so it will not be freed automatically.  */

void
release_value (struct value *val)
{
  struct value *v;

  if (all_values == val)
    {
      all_values = val->next;
      return;
    }

  for (v = all_values; v; v = v->next)
    {
      if (v->next == val)
	{
	  v->next = val->next;
	  break;
	}
    }
}

/* Release all values up to mark  */
struct value *
value_release_to_mark (struct value *mark)
{
  struct value *val;
  struct value *next;

  for (val = next = all_values; next; next = next->next)
    if (next->next == mark)
      {
	all_values = next->next;
	next->next = NULL;
	return val;
      }
  all_values = 0;
  return val;
}

/* Return a copy of the value ARG.
   It contains the same contents, for same memory address,
   but it's a different block of storage.  */

struct value *
value_copy (struct value *arg)
{
  struct type *encl_type = value_enclosing_type (arg);
  struct value *val;

  if (value_lazy (arg))
    val = allocate_value_lazy (encl_type);
  else
    val = allocate_value (encl_type);
  val->type = arg->type;
  VALUE_LVAL (val) = VALUE_LVAL (arg);
  val->location = arg->location;
  val->offset = arg->offset;
  val->bitpos = arg->bitpos;
  val->bitsize = arg->bitsize;
  VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
  VALUE_REGNUM (val) = VALUE_REGNUM (arg);
  val->lazy = arg->lazy;
  val->optimized_out = arg->optimized_out;
  val->embedded_offset = value_embedded_offset (arg);
  val->pointed_to_offset = arg->pointed_to_offset;
  val->modifiable = arg->modifiable;
  if (!value_lazy (val))
    {
      memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
	      TYPE_LENGTH (value_enclosing_type (arg)));

    }
  val->parent = arg->parent;
  if (val->parent)
    value_incref (val->parent);
  if (VALUE_LVAL (val) == lval_computed)
    {
      struct lval_funcs *funcs = val->location.computed.funcs;

      if (funcs->copy_closure)
        val->location.computed.closure = funcs->copy_closure (val);
    }
  return val;
}

void
set_value_component_location (struct value *component, struct value *whole)
{
  if (VALUE_LVAL (whole) == lval_internalvar)
    VALUE_LVAL (component) = lval_internalvar_component;
  else
    VALUE_LVAL (component) = VALUE_LVAL (whole);

  component->location = whole->location;
  if (VALUE_LVAL (whole) == lval_computed)
    {
      struct lval_funcs *funcs = whole->location.computed.funcs;

      if (funcs->copy_closure)
        component->location.computed.closure = funcs->copy_closure (whole);
    }
}


/* Access to the value history.  */

/* Record a new value in the value history.
   Returns the absolute history index of the entry.
   Result of -1 indicates the value was not saved; otherwise it is the
   value history index of this new item.  */

int
record_latest_value (struct value *val)
{
  int i;

  /* We don't want this value to have anything to do with the inferior anymore.
     In particular, "set $1 = 50" should not affect the variable from which
     the value was taken, and fast watchpoints should be able to assume that
     a value on the value history never changes.  */
  if (value_lazy (val))
    value_fetch_lazy (val);
  /* We preserve VALUE_LVAL so that the user can find out where it was fetched
     from.  This is a bit dubious, because then *&$1 does not just return $1
     but the current contents of that location.  c'est la vie...  */
  val->modifiable = 0;
  release_value (val);

  /* Here we treat value_history_count as origin-zero
     and applying to the value being stored now.  */

  i = value_history_count % VALUE_HISTORY_CHUNK;
  if (i == 0)
    {
      struct value_history_chunk *new
      = (struct value_history_chunk *)
      xmalloc (sizeof (struct value_history_chunk));
      memset (new->values, 0, sizeof new->values);
      new->next = value_history_chain;
      value_history_chain = new;
    }

  value_history_chain->values[i] = val;

  /* Now we regard value_history_count as origin-one
     and applying to the value just stored.  */

  return ++value_history_count;
}

/* Return a copy of the value in the history with sequence number NUM.  */

struct value *
access_value_history (int num)
{
  struct value_history_chunk *chunk;
  int i;
  int absnum = num;

  if (absnum <= 0)
    absnum += value_history_count;

  if (absnum <= 0)
    {
      if (num == 0)
	error (_("The history is empty."));
      else if (num == 1)
	error (_("There is only one value in the history."));
      else
	error (_("History does not go back to $$%d."), -num);
    }
  if (absnum > value_history_count)
    error (_("History has not yet reached $%d."), absnum);

  absnum--;

  /* Now absnum is always absolute and origin zero.  */

  chunk = value_history_chain;
  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
       i > 0; i--)
    chunk = chunk->next;

  return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
}

static void
show_values (char *num_exp, int from_tty)
{
  int i;
  struct value *val;
  static int num = 1;

  if (num_exp)
    {
      /* "show values +" should print from the stored position.
         "show values <exp>" should print around value number <exp>.  */
      if (num_exp[0] != '+' || num_exp[1] != '\0')
	num = parse_and_eval_long (num_exp) - 5;
    }
  else
    {
      /* "show values" means print the last 10 values.  */
      num = value_history_count - 9;
    }

  if (num <= 0)
    num = 1;

  for (i = num; i < num + 10 && i <= value_history_count; i++)
    {
      struct value_print_options opts;
      val = access_value_history (i);
      printf_filtered (("$%d = "), i);
      get_user_print_options (&opts);
      value_print (val, gdb_stdout, &opts);
      printf_filtered (("\n"));
    }

  /* The next "show values +" should start after what we just printed.  */
  num += 10;

  /* Hitting just return after this command should do the same thing as
     "show values +".  If num_exp is null, this is unnecessary, since
     "show values +" is not useful after "show values".  */
  if (from_tty && num_exp)
    {
      num_exp[0] = '+';
      num_exp[1] = '\0';
    }
}

/* Internal variables.  These are variables within the debugger
   that hold values assigned by debugger commands.
   The user refers to them with a '$' prefix
   that does not appear in the variable names stored internally.  */

struct internalvar
{
  struct internalvar *next;
  char *name;

  /* We support various different kinds of content of an internal variable.
     enum internalvar_kind specifies the kind, and union internalvar_data
     provides the data associated with this particular kind.  */

  enum internalvar_kind
    {
      /* The internal variable is empty.  */
      INTERNALVAR_VOID,

      /* The value of the internal variable is provided directly as
	 a GDB value object.  */
      INTERNALVAR_VALUE,

      /* A fresh value is computed via a call-back routine on every
	 access to the internal variable.  */
      INTERNALVAR_MAKE_VALUE,

      /* The internal variable holds a GDB internal convenience function.  */
      INTERNALVAR_FUNCTION,

      /* The variable holds an integer value.  */
      INTERNALVAR_INTEGER,

      /* The variable holds a pointer value.  */
      INTERNALVAR_POINTER,

      /* The variable holds a GDB-provided string.  */
      INTERNALVAR_STRING,

    } kind;

  union internalvar_data
    {
      /* A value object used with INTERNALVAR_VALUE.  */
      struct value *value;

      /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
      internalvar_make_value make_value;

      /* The internal function used with INTERNALVAR_FUNCTION.  */
      struct
	{
	  struct internal_function *function;
	  /* True if this is the canonical name for the function.  */
	  int canonical;
	} fn;

      /* An integer value used with INTERNALVAR_INTEGER.  */
      struct
        {
	  /* If type is non-NULL, it will be used as the type to generate
	     a value for this internal variable.  If type is NULL, a default
	     integer type for the architecture is used.  */
	  struct type *type;
	  LONGEST val;
        } integer;

      /* A pointer value used with INTERNALVAR_POINTER.  */
      struct
        {
	  struct type *type;
	  CORE_ADDR val;
        } pointer;

      /* A string value used with INTERNALVAR_STRING.  */
      char *string;
    } u;
};

static struct internalvar *internalvars;

/* If the variable does not already exist create it and give it the value given.
   If no value is given then the default is zero.  */
static void
init_if_undefined_command (char* args, int from_tty)
{
  struct internalvar* intvar;

  /* Parse the expression - this is taken from set_command().  */
  struct expression *expr = parse_expression (args);
  register struct cleanup *old_chain =
    make_cleanup (free_current_contents, &expr);

  /* Validate the expression.
     Was the expression an assignment?
     Or even an expression at all?  */
  if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
    error (_("Init-if-undefined requires an assignment expression."));

  /* Extract the variable from the parsed expression.
     In the case of an assign the lvalue will be in elts[1] and elts[2].  */
  if (expr->elts[1].opcode != OP_INTERNALVAR)
    error (_("The first parameter to init-if-undefined should be a GDB variable."));
  intvar = expr->elts[2].internalvar;

  /* Only evaluate the expression if the lvalue is void.
     This may still fail if the expresssion is invalid.  */
  if (intvar->kind == INTERNALVAR_VOID)
    evaluate_expression (expr);

  do_cleanups (old_chain);
}


/* Look up an internal variable with name NAME.  NAME should not
   normally include a dollar sign.

   If the specified internal variable does not exist,
   the return value is NULL.  */

struct internalvar *
lookup_only_internalvar (const char *name)
{
  struct internalvar *var;

  for (var = internalvars; var; var = var->next)
    if (strcmp (var->name, name) == 0)
      return var;

  return NULL;
}


/* Create an internal variable with name NAME and with a void value.
   NAME should not normally include a dollar sign.  */

struct internalvar *
create_internalvar (const char *name)
{
  struct internalvar *var;
  var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
  var->name = concat (name, (char *)NULL);
  var->kind = INTERNALVAR_VOID;
  var->next = internalvars;
  internalvars = var;
  return var;
}

/* Create an internal variable with name NAME and register FUN as the
   function that value_of_internalvar uses to create a value whenever
   this variable is referenced.  NAME should not normally include a
   dollar sign.  */

struct internalvar *
create_internalvar_type_lazy (char *name, internalvar_make_value fun)
{
  struct internalvar *var = create_internalvar (name);
  var->kind = INTERNALVAR_MAKE_VALUE;
  var->u.make_value = fun;
  return var;
}

/* Look up an internal variable with name NAME.  NAME should not
   normally include a dollar sign.

   If the specified internal variable does not exist,
   one is created, with a void value.  */

struct internalvar *
lookup_internalvar (const char *name)
{
  struct internalvar *var;

  var = lookup_only_internalvar (name);
  if (var)
    return var;

  return create_internalvar (name);
}

/* Return current value of internal variable VAR.  For variables that
   are not inherently typed, use a value type appropriate for GDBARCH.  */

struct value *
value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
{
  struct value *val;

  switch (var->kind)
    {
    case INTERNALVAR_VOID:
      val = allocate_value (builtin_type (gdbarch)->builtin_void);
      break;

    case INTERNALVAR_FUNCTION:
      val = allocate_value (builtin_type (gdbarch)->internal_fn);
      break;

    case INTERNALVAR_INTEGER:
      if (!var->u.integer.type)
	val = value_from_longest (builtin_type (gdbarch)->builtin_int,
				  var->u.integer.val);
      else
	val = value_from_longest (var->u.integer.type, var->u.integer.val);
      break;

    case INTERNALVAR_POINTER:
      val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
      break;

    case INTERNALVAR_STRING:
      val = value_cstring (var->u.string, strlen (var->u.string),
			   builtin_type (gdbarch)->builtin_char);
      break;

    case INTERNALVAR_VALUE:
      val = value_copy (var->u.value);
      if (value_lazy (val))
	value_fetch_lazy (val);
      break;

    case INTERNALVAR_MAKE_VALUE:
      val = (*var->u.make_value) (gdbarch, var);
      break;

    default:
      internal_error (__FILE__, __LINE__, "bad kind");
    }

  /* Change the VALUE_LVAL to lval_internalvar so that future operations
     on this value go back to affect the original internal variable.

     Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
     no underlying modifyable state in the internal variable.

     Likewise, if the variable's value is a computed lvalue, we want
     references to it to produce another computed lvalue, where
     references and assignments actually operate through the
     computed value's functions.

     This means that internal variables with computed values
     behave a little differently from other internal variables:
     assignments to them don't just replace the previous value
     altogether.  At the moment, this seems like the behavior we
     want.  */

  if (var->kind != INTERNALVAR_MAKE_VALUE
      && val->lval != lval_computed)
    {
      VALUE_LVAL (val) = lval_internalvar;
      VALUE_INTERNALVAR (val) = var;
    }

  return val;
}

int
get_internalvar_integer (struct internalvar *var, LONGEST *result)
{
  switch (var->kind)
    {
    case INTERNALVAR_INTEGER:
      *result = var->u.integer.val;
      return 1;

    default:
      return 0;
    }
}

static int
get_internalvar_function (struct internalvar *var,
			  struct internal_function **result)
{
  switch (var->kind)
    {
    case INTERNALVAR_FUNCTION:
      *result = var->u.fn.function;
      return 1;

    default:
      return 0;
    }
}

void
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
			   int bitsize, struct value *newval)
{
  gdb_byte *addr;

  switch (var->kind)
    {
    case INTERNALVAR_VALUE:
      addr = value_contents_writeable (var->u.value);

      if (bitsize)
	modify_field (value_type (var->u.value), addr + offset,
		      value_as_long (newval), bitpos, bitsize);
      else
	memcpy (addr + offset, value_contents (newval),
		TYPE_LENGTH (value_type (newval)));
      break;

    default:
      /* We can never get a component of any other kind.  */
      internal_error (__FILE__, __LINE__, "set_internalvar_component");
    }
}

void
set_internalvar (struct internalvar *var, struct value *val)
{
  enum internalvar_kind new_kind;
  union internalvar_data new_data = { 0 };

  if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
    error (_("Cannot overwrite convenience function %s"), var->name);

  /* Prepare new contents.  */
  switch (TYPE_CODE (check_typedef (value_type (val))))
    {
    case TYPE_CODE_VOID:
      new_kind = INTERNALVAR_VOID;
      break;

    case TYPE_CODE_INTERNAL_FUNCTION:
      gdb_assert (VALUE_LVAL (val) == lval_internalvar);
      new_kind = INTERNALVAR_FUNCTION;
      get_internalvar_function (VALUE_INTERNALVAR (val),
				&new_data.fn.function);
      /* Copies created here are never canonical.  */
      break;

    case TYPE_CODE_INT:
      new_kind = INTERNALVAR_INTEGER;
      new_data.integer.type = value_type (val);
      new_data.integer.val = value_as_long (val);
      break;

    case TYPE_CODE_PTR:
      new_kind = INTERNALVAR_POINTER;
      new_data.pointer.type = value_type (val);
      new_data.pointer.val = value_as_address (val);
      break;

    default:
      new_kind = INTERNALVAR_VALUE;
      new_data.value = value_copy (val);
      new_data.value->modifiable = 1;

      /* Force the value to be fetched from the target now, to avoid problems
	 later when this internalvar is referenced and the target is gone or
	 has changed.  */
      if (value_lazy (new_data.value))
       value_fetch_lazy (new_data.value);

      /* Release the value from the value chain to prevent it from being
	 deleted by free_all_values.  From here on this function should not
	 call error () until new_data is installed into the var->u to avoid
	 leaking memory.  */
      release_value (new_data.value);
      break;
    }

  /* Clean up old contents.  */
  clear_internalvar (var);

  /* Switch over.  */
  var->kind = new_kind;
  var->u = new_data;
  /* End code which must not call error().  */
}

void
set_internalvar_integer (struct internalvar *var, LONGEST l)
{
  /* Clean up old contents.  */
  clear_internalvar (var);

  var->kind = INTERNALVAR_INTEGER;
  var->u.integer.type = NULL;
  var->u.integer.val = l;
}

void
set_internalvar_string (struct internalvar *var, const char *string)
{
  /* Clean up old contents.  */
  clear_internalvar (var);

  var->kind = INTERNALVAR_STRING;
  var->u.string = xstrdup (string);
}

static void
set_internalvar_function (struct internalvar *var, struct internal_function *f)
{
  /* Clean up old contents.  */
  clear_internalvar (var);

  var->kind = INTERNALVAR_FUNCTION;
  var->u.fn.function = f;
  var->u.fn.canonical = 1;
  /* Variables installed here are always the canonical version.  */
}

void
clear_internalvar (struct internalvar *var)
{
  /* Clean up old contents.  */
  switch (var->kind)
    {
    case INTERNALVAR_VALUE:
      value_free (var->u.value);
      break;

    case INTERNALVAR_STRING:
      xfree (var->u.string);
      break;

    default:
      break;
    }

  /* Reset to void kind.  */
  var->kind = INTERNALVAR_VOID;
}

char *
internalvar_name (struct internalvar *var)
{
  return var->name;
}

static struct internal_function *
create_internal_function (const char *name,
			  internal_function_fn handler, void *cookie)
{
  struct internal_function *ifn = XNEW (struct internal_function);
  ifn->name = xstrdup (name);
  ifn->handler = handler;
  ifn->cookie = cookie;
  return ifn;
}

char *
value_internal_function_name (struct value *val)
{
  struct internal_function *ifn;
  int result;

  gdb_assert (VALUE_LVAL (val) == lval_internalvar);
  result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
  gdb_assert (result);

  return ifn->name;
}

struct value *
call_internal_function (struct gdbarch *gdbarch,
			const struct language_defn *language,
			struct value *func, int argc, struct value **argv)
{
  struct internal_function *ifn;
  int result;

  gdb_assert (VALUE_LVAL (func) == lval_internalvar);
  result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
  gdb_assert (result);

  return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
}

/* The 'function' command.  This does nothing -- it is just a
   placeholder to let "help function NAME" work.  This is also used as
   the implementation of the sub-command that is created when
   registering an internal function.  */
static void
function_command (char *command, int from_tty)
{
  /* Do nothing.  */
}

/* Clean up if an internal function's command is destroyed.  */
static void
function_destroyer (struct cmd_list_element *self, void *ignore)
{
  xfree (self->name);
  xfree (self->doc);
}

/* Add a new internal function.  NAME is the name of the function; DOC
   is a documentation string describing the function.  HANDLER is
   called when the function is invoked.  COOKIE is an arbitrary
   pointer which is passed to HANDLER and is intended for "user
   data".  */
void
add_internal_function (const char *name, const char *doc,
		       internal_function_fn handler, void *cookie)
{
  struct cmd_list_element *cmd;
  struct internal_function *ifn;
  struct internalvar *var = lookup_internalvar (name);

  ifn = create_internal_function (name, handler, cookie);
  set_internalvar_function (var, ifn);

  cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
		 &functionlist);
  cmd->destroyer = function_destroyer;
}

/* Update VALUE before discarding OBJFILE.  COPIED_TYPES is used to
   prevent cycles / duplicates.  */

void
preserve_one_value (struct value *value, struct objfile *objfile,
		    htab_t copied_types)
{
  if (TYPE_OBJFILE (value->type) == objfile)
    value->type = copy_type_recursive (objfile, value->type, copied_types);

  if (TYPE_OBJFILE (value->enclosing_type) == objfile)
    value->enclosing_type = copy_type_recursive (objfile,
						 value->enclosing_type,
						 copied_types);
}

/* Likewise for internal variable VAR.  */

static void
preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
			  htab_t copied_types)
{
  switch (var->kind)
    {
    case INTERNALVAR_INTEGER:
      if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
	var->u.integer.type
	  = copy_type_recursive (objfile, var->u.integer.type, copied_types);
      break;

    case INTERNALVAR_POINTER:
      if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
	var->u.pointer.type
	  = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
      break;

    case INTERNALVAR_VALUE:
      preserve_one_value (var->u.value, objfile, copied_types);
      break;
    }
}

/* Update the internal variables and value history when OBJFILE is
   discarded; we must copy the types out of the objfile.  New global types
   will be created for every convenience variable which currently points to
   this objfile's types, and the convenience variables will be adjusted to
   use the new global types.  */

void
preserve_values (struct objfile *objfile)
{
  htab_t copied_types;
  struct value_history_chunk *cur;
  struct internalvar *var;
  struct value *val;
  int i;

  /* Create the hash table.  We allocate on the objfile's obstack, since
     it is soon to be deleted.  */
  copied_types = create_copied_types_hash (objfile);

  for (cur = value_history_chain; cur; cur = cur->next)
    for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
      if (cur->values[i])
	preserve_one_value (cur->values[i], objfile, copied_types);

  for (var = internalvars; var; var = var->next)
    preserve_one_internalvar (var, objfile, copied_types);

  preserve_python_values (objfile, copied_types);

  htab_delete (copied_types);
}

static void
show_convenience (char *ignore, int from_tty)
{
  struct gdbarch *gdbarch = get_current_arch ();
  struct internalvar *var;
  int varseen = 0;
  struct value_print_options opts;

  get_user_print_options (&opts);
  for (var = internalvars; var; var = var->next)
    {
      if (!varseen)
	{
	  varseen = 1;
	}
      printf_filtered (("$%s = "), var->name);
      value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
		   &opts);
      printf_filtered (("\n"));
    }
  if (!varseen)
    printf_unfiltered (_("\
No debugger convenience variables now defined.\n\
Convenience variables have names starting with \"$\";\n\
use \"set\" as in \"set $foo = 5\" to define them.\n"));
}

/* Extract a value as a C number (either long or double).
   Knows how to convert fixed values to double, or
   floating values to long.
   Does not deallocate the value.  */

LONGEST
value_as_long (struct value *val)
{
  /* This coerces arrays and functions, which is necessary (e.g.
     in disassemble_command).  It also dereferences references, which
     I suspect is the most logical thing to do.  */
  val = coerce_array (val);
  return unpack_long (value_type (val), value_contents (val));
}

DOUBLEST
value_as_double (struct value *val)
{
  DOUBLEST foo;
  int inv;

  foo = unpack_double (value_type (val), value_contents (val), &inv);
  if (inv)
    error (_("Invalid floating value found in program."));
  return foo;
}

/* Extract a value as a C pointer. Does not deallocate the value.  
   Note that val's type may not actually be a pointer; value_as_long
   handles all the cases.  */
CORE_ADDR
value_as_address (struct value *val)
{
  struct gdbarch *gdbarch = get_type_arch (value_type (val));

  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
#if 0
  /* gdbarch_addr_bits_remove is wrong if we are being called for a
     non-address (e.g. argument to "signal", "info break", etc.), or
     for pointers to char, in which the low bits *are* significant.  */
  return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
#else

  /* There are several targets (IA-64, PowerPC, and others) which
     don't represent pointers to functions as simply the address of
     the function's entry point.  For example, on the IA-64, a
     function pointer points to a two-word descriptor, generated by
     the linker, which contains the function's entry point, and the
     value the IA-64 "global pointer" register should have --- to
     support position-independent code.  The linker generates
     descriptors only for those functions whose addresses are taken.

     On such targets, it's difficult for GDB to convert an arbitrary
     function address into a function pointer; it has to either find
     an existing descriptor for that function, or call malloc and
     build its own.  On some targets, it is impossible for GDB to
     build a descriptor at all: the descriptor must contain a jump
     instruction; data memory cannot be executed; and code memory
     cannot be modified.

     Upon entry to this function, if VAL is a value of type `function'
     (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
     value_address (val) is the address of the function.  This is what
     you'll get if you evaluate an expression like `main'.  The call
     to COERCE_ARRAY below actually does all the usual unary
     conversions, which includes converting values of type `function'
     to `pointer to function'.  This is the challenging conversion
     discussed above.  Then, `unpack_long' will convert that pointer
     back into an address.

     So, suppose the user types `disassemble foo' on an architecture
     with a strange function pointer representation, on which GDB
     cannot build its own descriptors, and suppose further that `foo'
     has no linker-built descriptor.  The address->pointer conversion
     will signal an error and prevent the command from running, even
     though the next step would have been to convert the pointer
     directly back into the same address.

     The following shortcut avoids this whole mess.  If VAL is a
     function, just return its address directly.  */
  if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
      || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
    return value_address (val);

  val = coerce_array (val);

  /* Some architectures (e.g. Harvard), map instruction and data
     addresses onto a single large unified address space.  For
     instance: An architecture may consider a large integer in the
     range 0x10000000 .. 0x1000ffff to already represent a data
     addresses (hence not need a pointer to address conversion) while
     a small integer would still need to be converted integer to
     pointer to address.  Just assume such architectures handle all
     integer conversions in a single function.  */

  /* JimB writes:

     I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
     must admonish GDB hackers to make sure its behavior matches the
     compiler's, whenever possible.

     In general, I think GDB should evaluate expressions the same way
     the compiler does.  When the user copies an expression out of
     their source code and hands it to a `print' command, they should
     get the same value the compiler would have computed.  Any
     deviation from this rule can cause major confusion and annoyance,
     and needs to be justified carefully.  In other words, GDB doesn't
     really have the freedom to do these conversions in clever and
     useful ways.

     AndrewC pointed out that users aren't complaining about how GDB
     casts integers to pointers; they are complaining that they can't
     take an address from a disassembly listing and give it to `x/i'.
     This is certainly important.

     Adding an architecture method like integer_to_address() certainly
     makes it possible for GDB to "get it right" in all circumstances
     --- the target has complete control over how things get done, so
     people can Do The Right Thing for their target without breaking
     anyone else.  The standard doesn't specify how integers get
     converted to pointers; usually, the ABI doesn't either, but
     ABI-specific code is a more reasonable place to handle it.  */

  if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
      && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
      && gdbarch_integer_to_address_p (gdbarch))
    return gdbarch_integer_to_address (gdbarch, value_type (val),
				       value_contents (val));

  return unpack_long (value_type (val), value_contents (val));
#endif
}

/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a long, or as a double, assuming the raw data is described
   by type TYPE.  Knows how to convert different sizes of values
   and can convert between fixed and floating point.  We don't assume
   any alignment for the raw data.  Return value is in host byte order.

   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_long() instead.

   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */

LONGEST
unpack_long (struct type *type, const gdb_byte *valaddr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
  enum type_code code = TYPE_CODE (type);
  int len = TYPE_LENGTH (type);
  int nosign = TYPE_UNSIGNED (type);

  switch (code)
    {
    case TYPE_CODE_TYPEDEF:
      return unpack_long (check_typedef (type), valaddr);
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_MEMBERPTR:
      if (nosign)
	return extract_unsigned_integer (valaddr, len, byte_order);
      else
	return extract_signed_integer (valaddr, len, byte_order);

    case TYPE_CODE_FLT:
      return extract_typed_floating (valaddr, type);

    case TYPE_CODE_DECFLOAT:
      /* libdecnumber has a function to convert from decimal to integer, but
	 it doesn't work when the decimal number has a fractional part.  */
      return decimal_to_doublest (valaddr, len, byte_order);

    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
         whether we want this to be true eventually.  */
      return extract_typed_address (valaddr, type);

    default:
      error (_("Value can't be converted to integer."));
    }
  return 0;			/* Placate lint.  */
}

/* Return a double value from the specified type and address.
   INVP points to an int which is set to 0 for valid value,
   1 for invalid value (bad float format).  In either case,
   the returned double is OK to use.  Argument is in target
   format, result is in host format.  */

DOUBLEST
unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
{
  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
  enum type_code code;
  int len;
  int nosign;

  *invp = 0;			/* Assume valid.   */
  CHECK_TYPEDEF (type);
  code = TYPE_CODE (type);
  len = TYPE_LENGTH (type);
  nosign = TYPE_UNSIGNED (type);
  if (code == TYPE_CODE_FLT)
    {
      /* NOTE: cagney/2002-02-19: There was a test here to see if the
	 floating-point value was valid (using the macro
	 INVALID_FLOAT).  That test/macro have been removed.

	 It turns out that only the VAX defined this macro and then
	 only in a non-portable way.  Fixing the portability problem
	 wouldn't help since the VAX floating-point code is also badly
	 bit-rotten.  The target needs to add definitions for the
	 methods gdbarch_float_format and gdbarch_double_format - these
	 exactly describe the target floating-point format.  The
	 problem here is that the corresponding floatformat_vax_f and
	 floatformat_vax_d values these methods should be set to are
	 also not defined either.  Oops!

         Hopefully someone will add both the missing floatformat
         definitions and the new cases for floatformat_is_valid ().  */

      if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
	{
	  *invp = 1;
	  return 0.0;
	}

      return extract_typed_floating (valaddr, type);
    }
  else if (code == TYPE_CODE_DECFLOAT)
    return decimal_to_doublest (valaddr, len, byte_order);
  else if (nosign)
    {
      /* Unsigned -- be sure we compensate for signed LONGEST.  */
      return (ULONGEST) unpack_long (type, valaddr);
    }
  else
    {
      /* Signed -- we are OK with unpack_long.  */
      return unpack_long (type, valaddr);
    }
}

/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a CORE_ADDR, assuming the raw data is described by type TYPE.
   We don't assume any alignment for the raw data.  Return value is in
   host byte order.

   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_address() instead.

   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */

CORE_ADDR
unpack_pointer (struct type *type, const gdb_byte *valaddr)
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
  return unpack_long (type, valaddr);
}


/* Get the value of the FIELDN'th field (which must be static) of
   TYPE.  Return NULL if the field doesn't exist or has been
   optimized out. */

struct value *
value_static_field (struct type *type, int fieldno)
{
  struct value *retval;

  if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
    {
      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
			 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
    }
  else
    {
      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
	/*TYPE_FIELD_NAME (type, fieldno);*/
      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);

      if (sym == NULL)
	{
	  /* With some compilers, e.g. HP aCC, static data members are reported
	     as non-debuggable symbols */
	  struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
	  if (!msym)
	    return NULL;
	  else
	    {
	      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
				 SYMBOL_VALUE_ADDRESS (msym));
	    }
	}
      else
	{
	  /* SYM should never have a SYMBOL_CLASS which will require
	     read_var_value to use the FRAME parameter.  */
	  if (symbol_read_needs_frame (sym))
	    warning (_("static field's value depends on the current "
		     "frame - bad debug info?"));
	  retval = read_var_value (sym, NULL);
 	}
      if (retval && VALUE_LVAL (retval) == lval_memory)
	SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
			    value_address (retval));
    }
  return retval;
}

/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.  
   You have to be careful here, since the size of the data area for the value 
   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger 
   than the old enclosing type, you have to allocate more space for the data.  
   The return value is a pointer to the new version of this value structure. */

struct value *
value_change_enclosing_type (struct value *val, struct type *new_encl_type)
{
  if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 
    val->contents =
      (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));

  val->enclosing_type = new_encl_type;
  return val;
}

/* Given a value ARG1 (offset by OFFSET bytes)
   of a struct or union type ARG_TYPE,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field. */

struct value *
value_primitive_field (struct value *arg1, int offset,
		       int fieldno, struct type *arg_type)
{
  struct value *v;
  struct type *type;

  CHECK_TYPEDEF (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Call check_typedef on our type to make sure that, if TYPE
     is a TYPE_CODE_TYPEDEF, its length is set to the length
     of the target type instead of zero.  However, we do not
     replace the typedef type by the target type, because we want
     to keep the typedef in order to be able to print the type
     description correctly.  */
  check_typedef (type);

  /* Handle packed fields */

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
    {
      /* Create a new value for the bitfield, with bitpos and bitsize
	 set.  If possible, arrange offset and bitpos so that we can
	 do a single aligned read of the size of the containing type.
	 Otherwise, adjust offset to the byte containing the first
	 bit.  Assume that the address, offset, and embedded offset
	 are sufficiently aligned.  */
      int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
      int container_bitsize = TYPE_LENGTH (type) * 8;

      v = allocate_value_lazy (type);
      v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
      if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
	  && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
	v->bitpos = bitpos % container_bitsize;
      else
	v->bitpos = bitpos % 8;
      v->offset = value_embedded_offset (arg1)
	+ (bitpos - v->bitpos) / 8;
      v->parent = arg1;
      value_incref (v->parent);
      if (!value_lazy (arg1))
	value_fetch_lazy (v);
    }
  else if (fieldno < TYPE_N_BASECLASSES (arg_type))
    {
      /* This field is actually a base subobject, so preserve the
         entire object's contents for later references to virtual
         bases, etc.  */

      /* Lazy register values with offsets are not supported.  */
      if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
	value_fetch_lazy (arg1);

      if (value_lazy (arg1))
	v = allocate_value_lazy (value_enclosing_type (arg1));
      else
	{
	  v = allocate_value (value_enclosing_type (arg1));
	  memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
		  TYPE_LENGTH (value_enclosing_type (arg1)));
	}
      v->type = type;
      v->offset = value_offset (arg1);
      v->embedded_offset = (offset + value_embedded_offset (arg1)
			    + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
    }
  else
    {
      /* Plain old data member */
      offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;

      /* Lazy register values with offsets are not supported.  */
      if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
	value_fetch_lazy (arg1);

      if (value_lazy (arg1))
	v = allocate_value_lazy (type);
      else
	{
	  v = allocate_value (type);
	  memcpy (value_contents_raw (v),
		  value_contents_raw (arg1) + offset,
		  TYPE_LENGTH (type));
	}
      v->offset = (value_offset (arg1) + offset
		   + value_embedded_offset (arg1));
    }
  set_value_component_location (v, arg1);
  VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
  return v;
}

/* Given a value ARG1 of a struct or union type,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field. */

struct value *
value_field (struct value *arg1, int fieldno)
{
  return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
}

/* Return a non-virtual function as a value.
   F is the list of member functions which contains the desired method.
   J is an index into F which provides the desired method.

   We only use the symbol for its address, so be happy with either a
   full symbol or a minimal symbol.
 */

struct value *
value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
		int offset)
{
  struct value *v;
  struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
  char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
  struct symbol *sym;
  struct minimal_symbol *msym;

  sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
  if (sym != NULL)
    {
      msym = NULL;
    }
  else
    {
      gdb_assert (sym == NULL);
      msym = lookup_minimal_symbol (physname, NULL, NULL);
      if (msym == NULL)
	return NULL;
    }

  v = allocate_value (ftype);
  if (sym)
    {
      set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
    }
  else
    {
      /* The minimal symbol might point to a function descriptor;
	 resolve it to the actual code address instead.  */
      struct objfile *objfile = msymbol_objfile (msym);
      struct gdbarch *gdbarch = get_objfile_arch (objfile);

      set_value_address (v,
	gdbarch_convert_from_func_ptr_addr
	   (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
    }

  if (arg1p)
    {
      if (type != value_type (*arg1p))
	*arg1p = value_ind (value_cast (lookup_pointer_type (type),
					value_addr (*arg1p)));

      /* Move the `this' pointer according to the offset.
         VALUE_OFFSET (*arg1p) += offset;
       */
    }

  return v;
}


/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
   object at VALADDR.  The bitfield starts at BITPOS bits and contains
   BITSIZE bits.

   Extracting bits depends on endianness of the machine.  Compute the
   number of least significant bits to discard.  For big endian machines,
   we compute the total number of bits in the anonymous object, subtract
   off the bit count from the MSB of the object to the MSB of the
   bitfield, then the size of the bitfield, which leaves the LSB discard
   count.  For little endian machines, the discard count is simply the
   number of bits from the LSB of the anonymous object to the LSB of the
   bitfield.

   If the field is signed, we also do sign extension. */

LONGEST
unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
		     int bitpos, int bitsize)
{
  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
  ULONGEST val;
  ULONGEST valmask;
  int lsbcount;
  int bytes_read;

  /* Read the minimum number of bytes required; there may not be
     enough bytes to read an entire ULONGEST.  */
  CHECK_TYPEDEF (field_type);
  if (bitsize)
    bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
  else
    bytes_read = TYPE_LENGTH (field_type);

  val = extract_unsigned_integer (valaddr + bitpos / 8,
				  bytes_read, byte_order);

  /* Extract bits.  See comment above. */

  if (gdbarch_bits_big_endian (get_type_arch (field_type)))
    lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
  else
    lsbcount = (bitpos % 8);
  val >>= lsbcount;

  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend. */

  if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
    {
      valmask = (((ULONGEST) 1) << bitsize) - 1;
      val &= valmask;
      if (!TYPE_UNSIGNED (field_type))
	{
	  if (val & (valmask ^ (valmask >> 1)))
	    {
	      val |= ~valmask;
	    }
	}
    }
  return (val);
}

/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
   VALADDR.  See unpack_bits_as_long for more details.  */

LONGEST
unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
{
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);

  return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
}

/* Modify the value of a bitfield.  ADDR points to a block of memory in
   target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
   is the desired value of the field, in host byte order.  BITPOS and BITSIZE
   indicate which bits (in target bit order) comprise the bitfield.  
   Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
   0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */

void
modify_field (struct type *type, gdb_byte *addr,
	      LONGEST fieldval, int bitpos, int bitsize)
{
  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
  ULONGEST oword;
  ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);

  /* If a negative fieldval fits in the field in question, chop
     off the sign extension bits.  */
  if ((~fieldval & ~(mask >> 1)) == 0)
    fieldval &= mask;

  /* Warn if value is too big to fit in the field in question.  */
  if (0 != (fieldval & ~mask))
    {
      /* FIXME: would like to include fieldval in the message, but
         we don't have a sprintf_longest.  */
      warning (_("Value does not fit in %d bits."), bitsize);

      /* Truncate it, otherwise adjoining fields may be corrupted.  */
      fieldval &= mask;
    }

  oword = extract_unsigned_integer (addr, sizeof oword, byte_order);

  /* Shifting for bit field depends on endianness of the target machine.  */
  if (gdbarch_bits_big_endian (get_type_arch (type)))
    bitpos = sizeof (oword) * 8 - bitpos - bitsize;

  oword &= ~(mask << bitpos);
  oword |= fieldval << bitpos;

  store_unsigned_integer (addr, sizeof oword, byte_order, oword);
}

/* Pack NUM into BUF using a target format of TYPE.  */

void
pack_long (gdb_byte *buf, struct type *type, LONGEST num)
{
  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
  int len;

  type = check_typedef (type);
  len = TYPE_LENGTH (type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_MEMBERPTR:
      store_signed_integer (buf, len, byte_order, num);
      break;

    case TYPE_CODE_REF:
    case TYPE_CODE_PTR:
      store_typed_address (buf, type, (CORE_ADDR) num);
      break;

    default:
      error (_("Unexpected type (%d) encountered for integer constant."),
	     TYPE_CODE (type));
    }
}


/* Convert C numbers into newly allocated values.  */

struct value *
value_from_longest (struct type *type, LONGEST num)
{
  struct value *val = allocate_value (type);

  pack_long (value_contents_raw (val), type, num);

  return val;
}


/* Create a value representing a pointer of type TYPE to the address
   ADDR.  */
struct value *
value_from_pointer (struct type *type, CORE_ADDR addr)
{
  struct value *val = allocate_value (type);
  store_typed_address (value_contents_raw (val), check_typedef (type), addr);
  return val;
}


/* Create a value of type TYPE whose contents come from VALADDR, if it
   is non-null, and whose memory address (in the inferior) is
   ADDRESS.  */

struct value *
value_from_contents_and_address (struct type *type,
				 const gdb_byte *valaddr,
				 CORE_ADDR address)
{
  struct value *v = allocate_value (type);
  if (valaddr == NULL)
    set_value_lazy (v, 1);
  else
    memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
  set_value_address (v, address);
  VALUE_LVAL (v) = lval_memory;
  return v;
}

struct value *
value_from_double (struct type *type, DOUBLEST num)
{
  struct value *val = allocate_value (type);
  struct type *base_type = check_typedef (type);
  enum type_code code = TYPE_CODE (base_type);
  int len = TYPE_LENGTH (base_type);

  if (code == TYPE_CODE_FLT)
    {
      store_typed_floating (value_contents_raw (val), base_type, num);
    }
  else
    error (_("Unexpected type encountered for floating constant."));

  return val;
}

struct value *
value_from_decfloat (struct type *type, const gdb_byte *dec)
{
  struct value *val = allocate_value (type);

  memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));

  return val;
}

struct value *
coerce_ref (struct value *arg)
{
  struct type *value_type_arg_tmp = check_typedef (value_type (arg));
  if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
    arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
			 unpack_pointer (value_type (arg),		
					 value_contents (arg)));
  return arg;
}

struct value *
coerce_array (struct value *arg)
{
  struct type *type;

  arg = coerce_ref (arg);
  type = check_typedef (value_type (arg));

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
      if (current_language->c_style_arrays)
	arg = value_coerce_array (arg);
      break;
    case TYPE_CODE_FUNC:
      arg = value_coerce_function (arg);
      break;
    }
  return arg;
}


/* Return true if the function returning the specified type is using
   the convention of returning structures in memory (passing in the
   address as a hidden first parameter).  */

int
using_struct_return (struct gdbarch *gdbarch,
		     struct type *func_type, struct type *value_type)
{
  enum type_code code = TYPE_CODE (value_type);

  if (code == TYPE_CODE_ERROR)
    error (_("Function return type unknown."));

  if (code == TYPE_CODE_VOID)
    /* A void return value is never in memory.  See also corresponding
       code in "print_return_value".  */
    return 0;

  /* Probe the architecture for the return-value convention.  */
  return (gdbarch_return_value (gdbarch, func_type, value_type,
				NULL, NULL, NULL)
	  != RETURN_VALUE_REGISTER_CONVENTION);
}

/* Set the initialized field in a value struct.  */

void
set_value_initialized (struct value *val, int status)
{
  val->initialized = status;
}

/* Return the initialized field in a value struct.  */

int
value_initialized (struct value *val)
{
  return val->initialized;
}

void
_initialize_values (void)
{
  add_cmd ("convenience", no_class, show_convenience, _("\
Debugger convenience (\"$foo\") variables.\n\
These variables are created when you assign them values;\n\
thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
\n\
A few convenience variables are given values automatically:\n\
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
\"$__\" holds the contents of the last address examined with \"x\"."),
	   &showlist);

  add_cmd ("values", no_class, show_values,
	   _("Elements of value history around item number IDX (or last ten)."),
	   &showlist);

  add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
Initialize a convenience variable if necessary.\n\
init-if-undefined VARIABLE = EXPRESSION\n\
Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
exist or does not contain a value.  The EXPRESSION is not evaluated if the\n\
VARIABLE is already initialized."));

  add_prefix_cmd ("function", no_class, function_command, _("\
Placeholder command for showing help on convenience functions."),
		  &functionlist, "function ", 0, &cmdlist);
}