1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
/* This file is part of the program psim.
Copyright 1994, 1995, 2002 Andrew Cagney <cagney@highland.com.au>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _PSIM_CONFIG_H_
#define _PSIM_CONFIG_H_
/* endianness of the host/target:
If the build process is aware (at compile time) of the endianness
of the host/target it is able to eliminate slower generic endian
handling code.
Possible values are 0 (unknown), LITTLE_ENDIAN, BIG_ENDIAN */
#ifndef WITH_HOST_BYTE_ORDER
#define WITH_HOST_BYTE_ORDER 0 /*unknown*/
#endif
#ifndef WITH_TARGET_BYTE_ORDER
#define WITH_TARGET_BYTE_ORDER 0 /*unknown*/
#endif
extern int current_host_byte_order;
#define CURRENT_HOST_BYTE_ORDER (WITH_HOST_BYTE_ORDER \
? WITH_HOST_BYTE_ORDER \
: current_host_byte_order)
extern int current_target_byte_order;
#define CURRENT_TARGET_BYTE_ORDER (WITH_TARGET_BYTE_ORDER \
? WITH_TARGET_BYTE_ORDER \
: current_target_byte_order)
/* PowerPC XOR endian.
In addition to the above, the simulator can support the PowerPC's
horrible XOR endian mode. This feature makes it possible to
control the endian mode of a processor using the MSR. */
#ifndef WITH_XOR_ENDIAN
#define WITH_XOR_ENDIAN 8
#endif
/* Intel host BSWAP support:
Whether to use bswap on the 486 and pentiums rather than the 386
sequence that uses xchgb/rorl/xchgb */
#ifndef WITH_BSWAP
#define WITH_BSWAP 0
#endif
/* SMP support:
Sets a limit on the number of processors that can be simulated. If
WITH_SMP is set to zero (0), the simulator is restricted to
suporting only on processor (and as a consequence leaves the SMP
code out of the build process).
The actual number of processors is taken from the device
/options/smp@<nr-cpu> */
#ifndef WITH_SMP
#define WITH_SMP 5
#endif
#if WITH_SMP
#define MAX_NR_PROCESSORS WITH_SMP
#else
#define MAX_NR_PROCESSORS 1
#endif
/* Word size of host/target:
Set these according to your host and target requirements. At this
point in time, I've only compiled (not run) for a 64bit and never
built for a 64bit host. This will always remain a compile time
option */
#ifndef WITH_TARGET_WORD_BITSIZE
#define WITH_TARGET_WORD_BITSIZE 32 /* compiled only */
#endif
#ifndef WITH_HOST_WORD_BITSIZE
#define WITH_HOST_WORD_BITSIZE 32 /* 64bit ready? */
#endif
/* Program environment:
Three environments are available - UEA (user), VEA (virtual) and
OEA (perating). The former two are environment that users would
expect to see (VEA includes things like coherency and the time
base) while OEA is what an operating system expects to see. By
setting these to specific values, the build process is able to
eliminate non relevent environment code
CURRENT_ENVIRONMENT specifies which of vea or oea is required for
the current runtime. */
#define USER_ENVIRONMENT 1
#define VIRTUAL_ENVIRONMENT 2
#define OPERATING_ENVIRONMENT 3
#ifndef WITH_ENVIRONMENT
#define WITH_ENVIRONMENT 0
#endif
extern int current_environment;
#define CURRENT_ENVIRONMENT (WITH_ENVIRONMENT \
? WITH_ENVIRONMENT \
: current_environment)
/* Optional VEA/OEA code:
The below, required for the OEA model may also be included in the
VEA model however, as far as I can tell only make things
slower... */
/* Events. Devices modeling real H/W need to be able to efficiently
schedule things to do at known times in the future. The event
queue implements this. Unfortunatly this adds the need to check
for any events once each full instruction cycle. */
#define WITH_EVENTS (WITH_ENVIRONMENT != USER_ENVIRONMENT)
/* Time base:
The PowerPC architecture includes the addition of both a time base
register and a decrement timer. Like events adds to the overhead
of of some instruction cycles. */
#ifndef WITH_TIME_BASE
#define WITH_TIME_BASE (WITH_ENVIRONMENT != USER_ENVIRONMENT)
#endif
/* Callback/Default Memory.
Core includes a builtin memory type (raw_memory) that is
implemented using an array. raw_memory does not require any
additional functions etc.
Callback memory is where the core calls a core device for the data
it requires.
Default memory is an extenstion of this where for addresses that do
not map into either a callback or core memory range a default map
can be used.
The OEA model uses callback memory for devices and default memory
for buses.
The VEA model uses callback memory to capture `page faults'.
While it may be possible to eliminate callback/default memory (and
hence also eliminate an additional test per memory fetch) it
probably is not worth the effort.
BTW, while raw_memory could have been implemented as a callback,
profiling has shown that there is a biger win (at least for the
x86) in eliminating a function call for the most common
(raw_memory) case. */
#define WITH_CALLBACK_MEMORY 1
/* Alignment:
The PowerPC may or may not handle miss aligned transfers. An
implementation normally handles miss aligned transfers in big
endian mode but generates an exception in little endian mode.
This model. Instead allows both little and big endian modes to
either take exceptions or handle miss aligned transfers.
If 0 is specified then for big-endian mode miss alligned accesses
are permitted (NONSTRICT_ALIGNMENT) while in little-endian mode the
processor will fault on them (STRICT_ALIGNMENT). */
#define NONSTRICT_ALIGNMENT 1
#define STRICT_ALIGNMENT 2
#ifndef WITH_ALIGNMENT
#define WITH_ALIGNMENT 0
#endif
extern int current_alignment;
#define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
? WITH_ALIGNMENT \
: current_alignment)
/* Floating point suport:
Still under development. */
#define SOFT_FLOATING_POINT 1
#define HARD_FLOATING_POINT 2
#ifndef WITH_FLOATING_POINT
#define WITH_FLOATING_POINT HARD_FLOATING_POINT
#endif
extern int current_floating_point;
#define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
? WITH_FLOATING_POINT \
: current_floating_point)
/* Debugging:
Control the inclusion of debugging code. */
/* Include the tracing code. Disabling this eliminates all tracing
code */
#ifndef WITH_TRACE
#define WITH_TRACE 1
#endif
/* include code that checks assertions scattered through out the
program */
#ifndef WITH_ASSERT
#define WITH_ASSERT 1
#endif
/* Whether to check instructions for reserved bits being set */
#ifndef WITH_RESERVED_BITS
#define WITH_RESERVED_BITS 1
#endif
/* include monitoring code */
#define MONITOR_INSTRUCTION_ISSUE 1
#define MONITOR_LOAD_STORE_UNIT 2
#ifndef WITH_MON
#define WITH_MON (MONITOR_LOAD_STORE_UNIT \
| MONITOR_INSTRUCTION_ISSUE)
#endif
/* Current CPU model (models are in the generated models.h include file) */
#ifndef WITH_MODEL
#define WITH_MODEL 0
#endif
#define CURRENT_MODEL (WITH_MODEL \
? WITH_MODEL \
: current_model)
#ifndef WITH_DEFAULT_MODEL
#define WITH_DEFAULT_MODEL DEFAULT_MODEL
#endif
#define MODEL_ISSUE_IGNORE (-1)
#define MODEL_ISSUE_PROCESS 1
#ifndef WITH_MODEL_ISSUE
#define WITH_MODEL_ISSUE 0
#endif
extern int current_model_issue;
#define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE \
? WITH_MODEL_ISSUE \
: current_model_issue)
/* Whether or not input/output just uses stdio, or uses printf_filtered for
output, and polling input for input. */
#define DONT_USE_STDIO 2
#define DO_USE_STDIO 1
#ifndef WITH_STDIO
#define WITH_STDIO 0
#endif
extern int current_stdio;
#define CURRENT_STDIO (WITH_STDIO \
? WITH_STDIO \
: current_stdio)
/* INLINE CODE SELECTION:
GCC -O3 attempts to inline any function or procedure in scope. The
options below facilitate fine grained control over what is and what
isn't made inline. For instance it can control things down to a
specific modules static routines. Doing this allows the compiler
to both eliminate the overhead of function calls and (as a
consequence) also eliminate further dead code.
On a CISC (x86) I've found that I can achieve an order of magnitude
speed improvement (x3-x5). In the case of RISC (sparc) while the
performance gain isn't as great it is still significant.
Each module is controled by the macro <module>_INLINE which can
have the values described below
0 Do not inline any thing for the given module
The following additional values are `bit fields' and can be
combined.
REVEAL_MODULE:
Include the C file for the module into the file being compiled
but do not make the functions within the module inline.
While of no apparent benefit, this makes it possible for the
included module, when compiled to inline its calls to what
would otherwize be external functions.
INLINE_MODULE:
Make external functions within the module `inline'. Thus if
the module is included into a file being compiled, calls to
its funtions can be eliminated. 2 implies 1.
PSIM_INLINE_LOCALS:
Make internal (static) functions within the module `inline'.
The following abreviations are available:
INCLUDE_MODULE == (REVEAL_MODULE | INLINE_MODULE)
ALL_INLINE == (REVEAL_MODULE | INLINE_MODULE | PSIM_INLINE_LOCALS)
In addition to this, modules have been put into two categories.
Simple modules - eg sim-endian.h bits.h
Because these modules are small and simple and do not have
any complex interpendencies they are configured, if
<module>_INLINE is so enabled, to inline themselves in all
modules that include those files.
For the default build, this is a real win as all byte
conversion and bit manipulation functions are inlined.
Complex modules - the rest
These are all handled using the files inline.h and inline.c.
psim.c includes the above which in turn include any remaining
code.
IMPLEMENTATION:
The inline ability is enabled by prefixing every data / function
declaration and definition with one of the following:
INLINE_<module>
Prefix to any global function that is a candidate for being
inline.
values - `', `static', `static INLINE'
EXTERN_<module>
Prefix to any global data structures for the module. Global
functions that are not to be inlined shall also be prefixed
with this.
values - `', `static', `static'
STATIC_INLINE_<module>
Prefix to any local (static) function that is a candidate for
being made inline.
values - `static', `static INLINE'
static
Prefix all local data structures. Local functions that are not
to be inlined shall also be prefixed with this.
values - `static', `static'
nb: will not work for modules that are being inlined for every
use (white lie).
extern
#ifndef _INLINE_C_
#endif
Prefix to any declaration of a global object (function or
variable) that should not be inlined and should have only one
definition. The #ifndef wrapper goes around the definition
propper to ensure that only one copy is generated.
nb: this will not work when a module is being inlined for every
use.
STATIC_<module>
Replaced by either `static' or `EXTERN_MODULE'.
REALITY CHECK:
This is not for the faint hearted. I've seen GCC get up to 500mb
trying to compile what this can create.
Some of the modules do not yet implement the WITH_INLINE_STATIC
option. Instead they use the macro STATIC_INLINE to control their
local function.
Because of the way that GCC parses __attribute__(), the macro's
need to be adjacent to the function name rather than at the start
of the line vis:
int STATIC_INLINE_MODULE f(void);
void INLINE_MODULE *g(void);
*/
#define REVEAL_MODULE 1
#define INLINE_MODULE 2
#define INCLUDE_MODULE (INLINE_MODULE | REVEAL_MODULE)
#define PSIM_INLINE_LOCALS 4
#define ALL_INLINE 7
/* Your compilers inline reserved word */
#ifndef INLINE
#if defined(__GNUC__) && defined(__OPTIMIZE__)
#define INLINE __inline__
#else
#define INLINE /*inline*/
#endif
#endif
/* Your compilers pass parameters in registers reserved word */
#ifndef WITH_REGPARM
#define WITH_REGPARM 0
#endif
/* Your compilers use an alternative calling sequence reserved word */
#ifndef WITH_STDCALL
#define WITH_STDCALL 0
#endif
#if !defined REGPARM
#if defined(__GNUC__) && (defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__))
#if (WITH_REGPARM && WITH_STDCALL)
#define REGPARM __attribute__((__regparm__(WITH_REGPARM),__stdcall__))
#else
#if (WITH_REGPARM && !WITH_STDCALL)
#define REGPARM __attribute__((__regparm__(WITH_REGPARM)))
#else
#if (!WITH_REGPARM && WITH_STDCALL)
#define REGPARM __attribute__((__stdcall__))
#endif
#endif
#endif
#endif
#endif
#if !defined REGPARM
#define REGPARM
#endif
/* Default prefix for static functions */
#ifndef STATIC_INLINE
#define STATIC_INLINE static INLINE
#endif
/* Default macro to simplify control several of key the inlines */
#ifndef DEFAULT_INLINE
#define DEFAULT_INLINE PSIM_INLINE_LOCALS
#endif
/* Code that converts between hosts and target byte order. Used on
every memory access (instruction and data). See sim-endian.h for
additional byte swapping configuration information. This module
can inline for all callers */
#ifndef SIM_ENDIAN_INLINE
#define SIM_ENDIAN_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
#endif
/* Low level bit manipulation routines. This module can inline for all
callers */
#ifndef BITS_INLINE
#define BITS_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
#endif
/* Code that gives access to various CPU internals such as registers.
Used every time an instruction is executed */
#ifndef CPU_INLINE
#define CPU_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
#endif
/* Code that translates between an effective and real address. Used
by every load or store. */
#ifndef VM_INLINE
#define VM_INLINE DEFAULT_INLINE
#endif
/* Code that loads/stores data to/from the memory data structure.
Used by every load or store */
#ifndef CORE_INLINE
#define CORE_INLINE DEFAULT_INLINE
#endif
/* Code to check for and process any events scheduled in the future.
Called once per instruction cycle */
#ifndef EVENTS_INLINE
#define EVENTS_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
#endif
/* Code monotoring the processors performance. It counts events on
every instruction cycle */
#ifndef MON_INLINE
#define MON_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
#endif
/* Code called on the rare occasions that an interrupt occures. */
#ifndef INTERRUPTS_INLINE
#define INTERRUPTS_INLINE DEFAULT_INLINE
#endif
/* Code called on the rare occasion that either gdb or the device tree
need to manipulate a register within a processor */
#ifndef REGISTERS_INLINE
#define REGISTERS_INLINE DEFAULT_INLINE
#endif
/* Code called on the rare occasion that a processor is manipulating
real hardware instead of RAM.
Also, most of the functions in devices.c are always called through
a jump table. */
#ifndef DEVICE_INLINE
#define DEVICE_INLINE (DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
#endif
/* Code called used while the device tree is being built.
Inlining this is of no benefit */
#ifndef TREE_INLINE
#define TREE_INLINE (DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
#endif
/* Code called whenever information on a Special Purpose Register is
required. Called by the mflr/mtlr pseudo instructions */
#ifndef SPREG_INLINE
#define SPREG_INLINE DEFAULT_INLINE
#endif
/* Functions modeling the semantics of each instruction. Two cases to
consider, firstly of idecode is implemented with a switch then this
allows the idecode function to inline each semantic function
(avoiding a call). The second case is when idecode is using a
table, even then while the semantic functions can't be inlined,
setting it to one still enables each semantic function to inline
anything they call (if that code is marked for being inlined).
WARNING: you need lots (like 200mb of swap) of swap. Setting this
to 1 is useful when using a table as it enables the sematic code to
inline all of their called functions */
#ifndef SEMANTICS_INLINE
#define SEMANTICS_INLINE (DEFAULT_INLINE & ~INLINE_MODULE)
#endif
/* When using the instruction cache, code to decode an instruction and
install it into the cache. Normally called when ever there is a
miss in the instruction cache. */
#ifndef ICACHE_INLINE
#define ICACHE_INLINE (DEFAULT_INLINE & ~INLINE_MODULE)
#endif
/* General functions called by semantics functions but part of the
instruction table. Although called by the semantic functions the
frequency of calls is low. Consequently the need to inline this
code is reduced. */
#ifndef SUPPORT_INLINE
#define SUPPORT_INLINE PSIM_INLINE_LOCALS
#endif
/* Model specific code used in simulating functional units. Note, it actaully
pays NOT to inline the PowerPC model functions (at least on the x86). This
is because if it is inlined, each PowerPC instruction gets a separate copy
of the code, which is not friendly to the cache. */
#ifndef MODEL_INLINE
#define MODEL_INLINE (DEFAULT_INLINE & ~INLINE_MODULE)
#endif
/* Code to print out what options we were compiled with. Because this
is called at process startup, it doesn't have to be inlined, but
if it isn't brought in and the model routines are inline, the model
routines will be pulled in twice. */
#ifndef OPTIONS_INLINE
#define OPTIONS_INLINE MODEL_INLINE
#endif
/* idecode acts as the hub of the system, everything else is imported
into this file */
#ifndef IDECOCE_INLINE
#define IDECODE_INLINE PSIM_INLINE_LOCALS
#endif
/* psim, isn't actually inlined */
#ifndef PSIM_INLINE
#define PSIM_INLINE PSIM_INLINE_LOCALS
#endif
/* Code to emulate os or rom compatibility. This code is called via a
table and hence there is little benefit in making it inline */
#ifndef OS_EMUL_INLINE
#define OS_EMUL_INLINE 0
#endif
#endif /* _PSIM_CONFIG_H */
|