summaryrefslogtreecommitdiff
path: root/xps/xpspath.c
diff options
context:
space:
mode:
Diffstat (limited to 'xps/xpspath.c')
-rw-r--r--xps/xpspath.c1136
1 files changed, 1136 insertions, 0 deletions
diff --git a/xps/xpspath.c b/xps/xpspath.c
new file mode 100644
index 000000000..b2af38898
--- /dev/null
+++ b/xps/xpspath.c
@@ -0,0 +1,1136 @@
+#include "ghostxps.h"
+
+static void
+xps_grow_rect(gs_rect *rect, float x, float y)
+{
+ if (x < rect->p.x) rect->p.x = x;
+ if (y < rect->p.y) rect->p.y = y;
+ if (x > rect->q.x) rect->q.x = x;
+ if (y > rect->q.y) rect->q.y = y;
+}
+
+void
+xps_bounds_in_user_space(xps_context_t *ctx, gs_rect *user)
+{
+ gs_matrix ctm;
+ gs_matrix inv;
+ gs_point a, b, c, d;
+
+ gs_currentmatrix(ctx->pgs, &ctm);
+ gs_matrix_invert(&ctm, &inv);
+
+ gs_point_transform(ctx->bounds.p.x, ctx->bounds.p.y, &inv, &a);
+ gs_point_transform(ctx->bounds.p.x, ctx->bounds.q.y, &inv, &b);
+ gs_point_transform(ctx->bounds.q.x, ctx->bounds.q.y, &inv, &c);
+ gs_point_transform(ctx->bounds.q.x, ctx->bounds.p.y, &inv, &d);
+
+ user->p.x = MIN(MIN(a.x, b.x), MIN(c.x, d.x));
+ user->p.y = MIN(MIN(a.y, b.y), MIN(c.y, d.y));
+ user->q.x = MAX(MAX(a.x, b.x), MAX(c.x, d.x));
+ user->q.y = MAX(MAX(a.y, b.y), MAX(c.y, d.y));
+
+#if 0
+ user->p.x = 0.0;
+ user->p.y = 0.0;
+ user->q.x = 1000.0;
+ user->q.y = 1000.0;
+#endif
+
+}
+
+static void
+xps_update_bounds(xps_context_t *ctx, gs_rect *save)
+{
+ segment *seg;
+ curve_segment *cseg;
+ gs_rect rc;
+
+ save->p.x = ctx->bounds.p.x;
+ save->p.y = ctx->bounds.p.y;
+ save->q.x = ctx->bounds.q.x;
+ save->q.y = ctx->bounds.q.y;
+
+ /* get bounds of current path (that is about to be clipped) */
+ /* the coordinates of the path segments are already in device space (yay!) */
+
+ seg = (segment*)ctx->pgs->path->first_subpath;
+ rc.p.x = rc.q.x = fixed2float(seg->pt.x);
+ rc.p.y = rc.q.y = fixed2float(seg->pt.y);
+
+ while (seg)
+ {
+ switch (seg->type)
+ {
+ case s_start:
+ xps_grow_rect(&rc, fixed2float(seg->pt.x), fixed2float(seg->pt.y));
+ break;
+ case s_line:
+ xps_grow_rect(&rc, fixed2float(seg->pt.x), fixed2float(seg->pt.y));
+ break;
+ case s_line_close:
+ break;
+ case s_curve:
+ cseg = (curve_segment*)seg;
+ xps_grow_rect(&rc, fixed2float(cseg->p1.x), fixed2float(cseg->p1.y));
+ xps_grow_rect(&rc, fixed2float(cseg->p2.x), fixed2float(cseg->p2.y));
+ xps_grow_rect(&rc, fixed2float(seg->pt.x), fixed2float(seg->pt.y));
+ break;
+ }
+ seg = seg->next;
+ }
+
+ /* intersect with old bounds, and fix degenerate case */
+
+ rect_intersect(ctx->bounds, rc);
+
+ if (ctx->bounds.q.x < ctx->bounds.p.x)
+ ctx->bounds.q.x = ctx->bounds.p.x;
+ if (ctx->bounds.q.y < ctx->bounds.p.y)
+ ctx->bounds.q.y = ctx->bounds.p.y;
+}
+
+static void
+xps_restore_bounds(xps_context_t *ctx, gs_rect *save)
+{
+ ctx->bounds.p.x = save->p.x;
+ ctx->bounds.p.y = save->p.y;
+ ctx->bounds.q.x = save->q.x;
+ ctx->bounds.q.y = save->q.y;
+}
+
+void
+xps_debug_bounds(xps_context_t *ctx)
+{
+ gs_matrix mat;
+
+ gs_gsave(ctx->pgs);
+
+ dprintf6("bounds: debug [%g %g %g %g] w=%g h=%g\n",
+ ctx->bounds.p.x, ctx->bounds.p.y,
+ ctx->bounds.q.x, ctx->bounds.q.y,
+ ctx->bounds.q.x - ctx->bounds.p.x,
+ ctx->bounds.q.y - ctx->bounds.p.y);
+
+ gs_make_identity(&mat);
+ gs_setmatrix(ctx->pgs, &mat);
+
+ gs_setgray(ctx->pgs, 0.3);
+ gs_moveto(ctx->pgs, ctx->bounds.p.x, ctx->bounds.p.y);
+ gs_lineto(ctx->pgs, ctx->bounds.q.x, ctx->bounds.q.y);
+ gs_moveto(ctx->pgs, ctx->bounds.q.x, ctx->bounds.p.y);
+ gs_lineto(ctx->pgs, ctx->bounds.p.x, ctx->bounds.q.y);
+
+ gs_moveto(ctx->pgs, ctx->bounds.p.x, ctx->bounds.p.y);
+ gs_lineto(ctx->pgs, ctx->bounds.p.x, ctx->bounds.q.y);
+ gs_lineto(ctx->pgs, ctx->bounds.q.x, ctx->bounds.q.y);
+ gs_lineto(ctx->pgs, ctx->bounds.q.x, ctx->bounds.p.y);
+ gs_closepath(ctx->pgs);
+
+ gs_stroke(ctx->pgs);
+
+ gs_grestore(ctx->pgs);
+}
+
+int
+xps_unclip(xps_context_t *ctx, gs_rect *saved_bounds)
+{
+ xps_restore_bounds(ctx, saved_bounds);
+ return 0;
+}
+
+int
+xps_clip(xps_context_t *ctx, gs_rect *saved_bounds)
+{
+ xps_update_bounds(ctx, saved_bounds);
+
+ if (ctx->fill_rule == 0)
+ gs_eoclip(ctx->pgs);
+ else
+ gs_clip(ctx->pgs);
+
+ gs_newpath(ctx->pgs);
+
+ return 0;
+}
+
+int
+xps_fill(xps_context_t *ctx)
+{
+ if (gs_currentopacityalpha(ctx->pgs) < 0.001)
+ gs_newpath(ctx->pgs);
+ else if (ctx->fill_rule == 0)
+ gs_eofill(ctx->pgs);
+ else
+ gs_fill(ctx->pgs);
+ return 0;
+}
+
+
+/* Draw an arc segment transformed by the matrix, we approximate with straight
+ * line segments. We cannot use the gs_arc function because they only draw
+ * circular arcs, we need to transform the line to make them elliptical but
+ * without transforming the line width.
+ */
+static inline void
+xps_draw_arc_segment(xps_context_t *ctx, gs_matrix *mtx, float th0, float th1, int iscw)
+{
+ float x, y, t, a, d;
+ gs_point p;
+
+ while (th1 < th0)
+ th1 += M_PI * 2.0;
+
+ d = 1 * (M_PI / 180.0); /* 1-degree precision */
+
+ if (iscw)
+ {
+ gs_point_transform(cos(th0), sin(th0), mtx, &p);
+ gs_lineto(ctx->pgs, p.x, p.y);
+ for (t = th0; t < th1; t += d)
+ {
+ gs_point_transform(cos(t), sin(t), mtx, &p);
+ gs_lineto(ctx->pgs, p.x, p.y);
+ }
+ gs_point_transform(cos(th1), sin(th1), mtx, &p);
+ gs_lineto(ctx->pgs, p.x, p.y);
+ }
+ else
+ {
+ th0 += M_PI * 2;
+ gs_point_transform(cos(th0), sin(th0), mtx, &p);
+ gs_lineto(ctx->pgs, p.x, p.y);
+ for (t = th0; t > th1; t -= d)
+ {
+ gs_point_transform(cos(t), sin(t), mtx, &p);
+ gs_lineto(ctx->pgs, p.x, p.y);
+ }
+ gs_point_transform(cos(th1), sin(th1), mtx, &p);
+ gs_lineto(ctx->pgs, p.x, p.y);
+ }
+}
+
+/* Given two vectors find the angle between them. */
+static inline double
+angle_between(const gs_point u, const gs_point v)
+{
+ double det = u.x * v.y - u.y * v.x;
+ double sign = (det < 0 ? -1.0 : 1.0);
+ double magu = u.x * u.x + u.y * u.y;
+ double magv = v.x * v.x + v.y * v.y;
+ double udotv = u.x * v.x + u.y * v.y;
+ double t = udotv / (magu * magv);
+ /* guard against rounding errors when near |1| (where acos will return NaN) */
+ if (t < -1.0) t = -1.0;
+ if (t > 1.0) t = 1.0;
+ return sign * acos(t);
+}
+
+static int
+xps_draw_arc(xps_context_t *ctx,
+ float size_x, float size_y, float rotation_angle,
+ int is_large_arc, int is_clockwise,
+ float point_x, float point_y)
+{
+ gs_matrix rotmat, revmat;
+ gs_matrix mtx;
+ gs_point pt;
+ double rx, ry;
+ double x1, y1, x2, y2;
+ double x1t, y1t;
+ double cxt, cyt, cx, cy;
+ double t1, t2, t3;
+ double sign;
+ double th1, dth;
+
+ gs_currentpoint(ctx->pgs, &pt);
+ x1 = pt.x;
+ y1 = pt.y;
+ x2 = point_x;
+ y2 = point_y;
+ rx = size_x;
+ ry = size_y;
+
+ if (is_clockwise != is_large_arc)
+ sign = 1;
+ else
+ sign = -1;
+
+ gs_make_rotation(rotation_angle, &rotmat);
+ gs_make_rotation(-rotation_angle, &revmat);
+
+ /* http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes */
+ /* Conversion from endpoint to center parameterization */
+
+ /* F.6.6.1 -- ensure radii are positive and non-zero */
+ rx = fabs(rx);
+ ry = fabs(ry);
+ if (rx < 0.001 || ry < 0.001)
+ {
+ gs_lineto(ctx->pgs, x2, y2);
+ return 0;
+ }
+
+ /* F.6.5.1 */
+ gs_distance_transform((x1 - x2) / 2.0, (y1 - y2) / 2.0, &revmat, &pt);
+ x1t = pt.x;
+ y1t = pt.y;
+
+ /* F.6.6.2 -- ensure radii are large enough */
+ t1 = (x1t * x1t) / (rx * rx) + (y1t * y1t) / (ry * ry);
+ if (t1 > 1.0)
+ {
+ rx = rx * sqrt(t1);
+ ry = ry * sqrt(t1);
+ }
+
+ /* F.6.5.2 */
+ t1 = (rx * rx * ry * ry) - (rx * rx * y1t * y1t) - (ry * ry * x1t * x1t);
+ t2 = (rx * rx * y1t * y1t) + (ry * ry * x1t * x1t);
+ t3 = t1 / t2;
+ /* guard against rounding errors; sqrt of negative numbers is bad for your health */
+ if (t3 < 0.0) t3 = 0.0;
+ t3 = sqrt(t3);
+
+ cxt = sign * t3 * (rx * y1t) / ry;
+ cyt = sign * t3 * -(ry * x1t) / rx;
+
+ /* F.6.5.3 */
+ gs_distance_transform(cxt, cyt, &rotmat, &pt);
+ cx = pt.x + (x1 + x2) / 2;
+ cy = pt.y + (y1 + y2) / 2;
+
+ /* F.6.5.4 */
+ {
+ gs_point coord1, coord2, coord3, coord4;
+ coord1.x = 1;
+ coord1.y = 0;
+ coord2.x = (x1t - cxt) / rx;
+ coord2.y = (y1t - cyt) / ry;
+ coord3.x = (x1t - cxt) / rx;
+ coord3.y = (y1t - cyt) / ry;
+ coord4.x = (-x1t - cxt) / rx;
+ coord4.y = (-y1t - cyt) / ry;
+ th1 = angle_between(coord1, coord2);
+ dth = angle_between(coord3, coord4);
+ if (dth < 0 && !is_clockwise)
+ dth += (degrees_to_radians * 360);
+ if (dth > 0 && is_clockwise)
+ dth -= (degrees_to_radians * 360);
+ }
+
+ gs_make_identity(&mtx);
+ gs_matrix_translate(&mtx, cx, cy, &mtx);
+ gs_matrix_rotate(&mtx, rotation_angle, &mtx);
+ gs_matrix_scale(&mtx, rx, ry, &mtx);
+ xps_draw_arc_segment(ctx, &mtx, th1, th1 + dth, is_clockwise);
+
+ gs_lineto(ctx->pgs, point_x, point_y);
+
+ return 0;
+}
+
+
+/*
+ * Parse an abbreviated geometry string, and call
+ * ghostscript moveto/lineto/curveto functions to
+ * build up a path.
+ */
+
+int
+xps_parse_abbreviated_geometry(xps_context_t *ctx, char *geom)
+{
+ char **args;
+ char **pargs;
+ char *s = geom;
+ gs_point pt;
+ int i, n;
+ int cmd, old;
+ float x1, y1, x2, y2, x3, y3;
+ float smooth_x, smooth_y; /* saved cubic bezier control point for smooth curves */
+ int reset_smooth;
+
+ args = xps_alloc(ctx, sizeof(char*) * (strlen(geom) + 1));
+ pargs = args;
+
+ //dprintf1("new path (%.70s)\n", geom);
+ gs_newpath(ctx->pgs);
+
+ ctx->fill_rule = 0;
+
+ while (*s)
+ {
+ if ((*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z'))
+ {
+ *pargs++ = s++;
+ }
+ else if ((*s >= '0' && *s <= '9') || *s == '.' || *s == '+' || *s == '-' || *s == 'e' || *s == 'E')
+ {
+ *pargs++ = s;
+ while ((*s >= '0' && *s <= '9') || *s == '.' || *s == '+' || *s == '-' || *s == 'e' || *s == 'E')
+ s ++;
+ }
+ else
+ {
+ s++;
+ }
+ }
+
+ pargs[0] = s;
+ pargs[1] = 0;
+
+ n = pargs - args;
+ i = 0;
+
+ old = 0;
+
+ reset_smooth = 1;
+ smooth_x = 0.0;
+ smooth_y = 0.0;
+
+ while (i < n)
+ {
+ cmd = args[i][0];
+ if (cmd == '+' || cmd == '.' || cmd == '-' || (cmd >= '0' && cmd <= '9'))
+ cmd = old; /* it's a number, repeat old command */
+ else
+ i ++;
+
+ if (reset_smooth)
+ {
+ smooth_x = 0.0;
+ smooth_y = 0.0;
+ }
+
+ reset_smooth = 1;
+
+ switch (cmd)
+ {
+ case 'F':
+ ctx->fill_rule = atoi(args[i]);
+ i ++;
+ break;
+
+ case 'M':
+ gs_moveto(ctx->pgs, atof(args[i]), atof(args[i+1]));
+ //dprintf2("moveto %g %g\n", atof(args[i]), atof(args[i+1]));
+ i += 2;
+ break;
+ case 'm':
+ gs_rmoveto(ctx->pgs, atof(args[i]), atof(args[i+1]));
+ //dprintf2("rmoveto %g %g\n", atof(args[i]), atof(args[i+1]));
+ i += 2;
+ break;
+
+ case 'L':
+ gs_lineto(ctx->pgs, atof(args[i]), atof(args[i+1]));
+ //dprintf2("lineto %g %g\n", atof(args[i]), atof(args[i+1]));
+ i += 2;
+ break;
+ case 'l':
+ gs_rlineto(ctx->pgs, atof(args[i]), atof(args[i+1]));
+ //dprintf2("rlineto %g %g\n", atof(args[i]), atof(args[i+1]));
+ i += 2;
+ break;
+
+ case 'H':
+ gs_currentpoint(ctx->pgs, &pt);
+ gs_lineto(ctx->pgs, atof(args[i]), pt.y);
+ //dprintf1("hlineto %g\n", atof(args[i]));
+ i += 1;
+ break;
+ case 'h':
+ gs_rlineto(ctx->pgs, atof(args[i]), 0.0);
+ //dprintf1("rhlineto %g\n", atof(args[i]));
+ i += 1;
+ break;
+
+ case 'V':
+ gs_currentpoint(ctx->pgs, &pt);
+ gs_lineto(ctx->pgs, pt.x, atof(args[i]));
+ //dprintf1("vlineto %g\n", atof(args[i]));
+ i += 1;
+ break;
+ case 'v':
+ gs_rlineto(ctx->pgs, 0.0, atof(args[i]));
+ //dprintf1("rvlineto %g\n", atof(args[i]));
+ i += 1;
+ break;
+
+ case 'C':
+ x1 = atof(args[i+0]);
+ y1 = atof(args[i+1]);
+ x2 = atof(args[i+2]);
+ y2 = atof(args[i+3]);
+ x3 = atof(args[i+4]);
+ y3 = atof(args[i+5]);
+ gs_curveto(ctx->pgs, x1, y1, x2, y2, x3, y3);
+ i += 6;
+ reset_smooth = 0;
+ smooth_x = x3 - x2;
+ smooth_y = y3 - y2;
+ break;
+
+ case 'c':
+ gs_currentpoint(ctx->pgs, &pt);
+ x1 = atof(args[i+0]) + pt.x;
+ y1 = atof(args[i+1]) + pt.y;
+ x2 = atof(args[i+2]) + pt.x;
+ y2 = atof(args[i+3]) + pt.y;
+ x3 = atof(args[i+4]) + pt.x;
+ y3 = atof(args[i+5]) + pt.y;
+ gs_curveto(ctx->pgs, x1, y1, x2, y2, x3, y3);
+ i += 6;
+ reset_smooth = 0;
+ smooth_x = x3 - x2;
+ smooth_y = y3 - y2;
+ break;
+
+ case 'S':
+ gs_currentpoint(ctx->pgs, &pt);
+ x1 = atof(args[i+0]);
+ y1 = atof(args[i+1]);
+ x2 = atof(args[i+2]);
+ y2 = atof(args[i+3]);
+ //dprintf2("smooth %g %g\n", smooth_x, smooth_y);
+ gs_curveto(ctx->pgs, pt.x + smooth_x, pt.y + smooth_y, x1, y1, x2, y2);
+ i += 4;
+ reset_smooth = 0;
+ smooth_x = x2 - x1;
+ smooth_y = y2 - y1;
+ break;
+
+ case 's':
+ gs_currentpoint(ctx->pgs, &pt);
+ x1 = atof(args[i+0]) + pt.x;
+ y1 = atof(args[i+1]) + pt.y;
+ x2 = atof(args[i+2]) + pt.x;
+ y2 = atof(args[i+3]) + pt.y;
+ //dprintf2("smooth %g %g\n", smooth_x, smooth_y);
+ gs_curveto(ctx->pgs, pt.x + smooth_x, pt.y + smooth_y, x1, y1, x2, y2);
+ i += 4;
+ reset_smooth = 0;
+ smooth_x = x2 - x1;
+ smooth_y = y2 - y1;
+ break;
+
+ case 'Q':
+ x1 = atof(args[i+0]);
+ y1 = atof(args[i+1]);
+ x2 = atof(args[i+2]);
+ y2 = atof(args[i+3]);
+ //dprintf4("conicto %g %g %g %g\n", x1, y1, x2, y2);
+ gs_curveto(ctx->pgs,
+ (pt.x + 2 * x1) / 3, (pt.y + 2 * y1) / 3,
+ (x2 + 2 * x1) / 3, (y2 + 2 * y1) / 3,
+ x2, y2);
+ i += 4;
+ break;
+ case 'q':
+ gs_currentpoint(ctx->pgs, &pt);
+ x1 = atof(args[i+0]) + pt.x;
+ y1 = atof(args[i+1]) + pt.y;
+ x2 = atof(args[i+2]) + pt.x;
+ y2 = atof(args[i+3]) + pt.y;
+ //dprintf4("conicto %g %g %g %g\n", x1, y1, x2, y2);
+ gs_curveto(ctx->pgs,
+ (pt.x + 2 * x1) / 3, (pt.y + 2 * y1) / 3,
+ (x2 + 2 * x1) / 3, (y2 + 2 * y1) / 3,
+ x2, y2);
+ i += 4;
+ break;
+
+ case 'A':
+ xps_draw_arc(ctx,
+ atof(args[i+0]), atof(args[i+1]), atof(args[i+2]),
+ atoi(args[i+3]), atoi(args[i+4]),
+ atof(args[i+5]), atof(args[i+6]));
+ i += 7;
+ break;
+ case 'a':
+ gs_currentpoint(ctx->pgs, &pt);
+ xps_draw_arc(ctx,
+ atof(args[i+0]), atof(args[i+1]), atof(args[i+2]),
+ atoi(args[i+3]), atoi(args[i+4]),
+ atof(args[i+5]) + pt.x, atof(args[i+6]) + pt.y);
+ i += 7;
+ break;
+
+ case 'Z':
+ case 'z':
+ gs_closepath(ctx->pgs);
+ //dputs("closepath\n");
+ break;
+
+ default:
+ /* eek */
+ break;
+ }
+
+ old = cmd;
+ }
+
+ xps_free(ctx, args);
+
+ return 0;
+}
+
+static int
+xps_parse_arc_segment(xps_context_t *ctx, xps_item_t *root, int stroking, int *skipped_stroke)
+{
+ /* ArcSegment pretty much follows the SVG algorithm for converting an
+ arc in endpoint representation to an arc in centerpoint
+ representation. Once in centerpoint it can be given to the
+ graphics library in the form of a postscript arc.
+ */
+
+ float rotation_angle;
+ int is_large_arc, is_clockwise;
+ float point_x, point_y;
+ float size_x, size_y;
+ int is_stroked;
+
+ char *point_att = xps_att(root, "Point");
+ char *size_att = xps_att(root, "Size");
+ char *rotation_angle_att = xps_att(root, "RotationAngle");
+ char *is_large_arc_att = xps_att(root, "IsLargeArc");
+ char *sweep_direction_att = xps_att(root, "SweepDirection");
+ char *is_stroked_att = xps_att(root, "IsStroked");
+
+ if (!point_att || !size_att || !rotation_angle_att || !is_large_arc_att || !sweep_direction_att)
+ return gs_throw(-1, "ArcSegment element is missing attributes");
+
+ is_stroked = 1;
+ if (is_stroked_att && !strcmp(is_stroked_att, "false"))
+ is_stroked = 0;
+ if (!is_stroked)
+ *skipped_stroke = 1;
+
+ sscanf(point_att, "%g,%g", &point_x, &point_y);
+ sscanf(size_att, "%g,%g", &size_x, &size_y);
+ rotation_angle = atof(rotation_angle_att);
+ is_large_arc = !strcmp(is_large_arc_att, "true");
+ is_clockwise = !strcmp(sweep_direction_att, "Clockwise");
+
+ if (stroking && !is_stroked)
+ {
+ gs_moveto(ctx->pgs, point_x, point_y);
+ return 0;
+ }
+
+ return xps_draw_arc(ctx, size_x, size_y, rotation_angle,
+ is_large_arc, is_clockwise, point_x, point_y);
+}
+
+static int
+xps_parse_poly_quadratic_bezier_segment(xps_context_t *ctx, xps_item_t *root, int stroking, int *skipped_stroke)
+{
+ char *points_att = xps_att(root, "Points");
+ char *is_stroked_att = xps_att(root, "IsStroked");
+ float x[2], y[2];
+ int is_stroked;
+ gs_point pt;
+ char *s;
+ int n;
+
+ if (!points_att)
+ return gs_throw(-1, "PolyQuadraticBezierSegment element has no points");
+
+ is_stroked = 1;
+ if (is_stroked_att && !strcmp(is_stroked_att, "false"))
+ is_stroked = 0;
+ if (!is_stroked)
+ *skipped_stroke = 1;
+
+ s = points_att;
+ n = 0;
+ while (*s != 0)
+ {
+ while (*s == ' ') s++;
+ sscanf(s, "%g,%g", &x[n], &y[n]);
+ while (*s != ' ' && *s != 0) s++;
+ n ++;
+ if (n == 2)
+ {
+ if (stroking && !is_stroked)
+ {
+ gs_moveto(ctx->pgs, x[1], y[1]);
+ }
+ else
+ {
+ gs_currentpoint(ctx->pgs, &pt);
+ gs_curveto(ctx->pgs,
+ (pt.x + 2 * x[0]) / 3, (pt.y + 2 * y[0]) / 3,
+ (x[1] + 2 * x[0]) / 3, (y[1] + 2 * y[0]) / 3,
+ x[1], y[1]);
+ }
+ n = 0;
+ }
+ }
+
+ return 0;
+}
+
+static int
+xps_parse_poly_bezier_segment(xps_context_t *ctx, xps_item_t *root, int stroking, int *skipped_stroke)
+{
+ char *points_att = xps_att(root, "Points");
+ char *is_stroked_att = xps_att(root, "IsStroked");
+ float x[3], y[3];
+ int is_stroked;
+ char *s;
+ int n;
+
+ if (!points_att)
+ return gs_throw(-1, "PolyBezierSegment element has no points");
+
+ is_stroked = 1;
+ if (is_stroked_att && !strcmp(is_stroked_att, "false"))
+ is_stroked = 0;
+ if (!is_stroked)
+ *skipped_stroke = 1;
+
+ s = points_att;
+ n = 0;
+ while (*s != 0)
+ {
+ while (*s == ' ') s++;
+ sscanf(s, "%g,%g", &x[n], &y[n]);
+ while (*s != ' ' && *s != 0) s++;
+ n ++;
+ if (n == 3)
+ {
+ if (stroking && !is_stroked)
+ gs_moveto(ctx->pgs, x[2], y[2]);
+ else
+ gs_curveto(ctx->pgs, x[0], y[0], x[1], y[1], x[2], y[2]);
+ n = 0;
+ }
+ }
+
+ return 0;
+}
+
+static int
+xps_parse_poly_line_segment(xps_context_t *ctx, xps_item_t *root, int stroking, int *skipped_stroke)
+{
+ char *points_att = xps_att(root, "Points");
+ char *is_stroked_att = xps_att(root, "IsStroked");
+ int is_stroked;
+ float x, y;
+ char *s;
+
+ if (!points_att)
+ return gs_throw(-1, "PolyLineSegment element has no points");
+
+ is_stroked = 1;
+ if (is_stroked_att && !strcmp(is_stroked_att, "false"))
+ is_stroked = 0;
+ if (!is_stroked)
+ *skipped_stroke = 1;
+
+ s = points_att;
+ while (*s != 0)
+ {
+ while (*s == ' ') s++;
+ sscanf(s, "%g,%g", &x, &y);
+ if (stroking && !is_stroked)
+ gs_moveto(ctx->pgs, x, y);
+ else
+ gs_lineto(ctx->pgs, x, y);
+ while (*s != ' ' && *s != 0) s++;
+ }
+
+ return 0;
+}
+
+static int
+xps_parse_path_figure(xps_context_t *ctx, xps_item_t *root, int stroking)
+{
+ xps_item_t *node;
+
+ char *is_closed_att;
+ char *start_point_att;
+ char *is_filled_att;
+
+ int is_closed = 0;
+ int is_filled = 1;
+ float start_x = 0.0;
+ float start_y = 0.0;
+
+ int skipped_stroke = 0;
+
+ is_closed_att = xps_att(root, "IsClosed");
+ start_point_att = xps_att(root, "StartPoint");
+ is_filled_att = xps_att(root, "IsFilled");
+
+ if (is_closed_att)
+ is_closed = !strcmp(is_closed_att, "true");
+ if (is_filled_att)
+ is_filled = !strcmp(is_filled_att, "true");
+ if (start_point_att)
+ sscanf(start_point_att, "%g,%g", &start_x, &start_y);
+
+ if (!stroking && !is_filled) /* not filled, when filling */
+ return 0;
+
+ gs_moveto(ctx->pgs, start_x, start_y);
+
+ for (node = xps_down(root); node; node = xps_next(node))
+ {
+ if (!strcmp(xps_tag(node), "ArcSegment"))
+ xps_parse_arc_segment(ctx, node, stroking, &skipped_stroke);
+ if (!strcmp(xps_tag(node), "PolyBezierSegment"))
+ xps_parse_poly_bezier_segment(ctx, node, stroking, &skipped_stroke);
+ if (!strcmp(xps_tag(node), "PolyLineSegment"))
+ xps_parse_poly_line_segment(ctx, node, stroking, &skipped_stroke);
+ if (!strcmp(xps_tag(node), "PolyQuadraticBezierSegment"))
+ xps_parse_poly_quadratic_bezier_segment(ctx, node, stroking, &skipped_stroke);
+ }
+
+ if (is_closed)
+ {
+ if (stroking && skipped_stroke)
+ gs_lineto(ctx->pgs, start_x, start_y); /* we've skipped using gs_moveto... */
+ else
+ gs_closepath(ctx->pgs); /* no skipped segments, safe to closepath properly */
+ }
+
+ return 0;
+}
+
+int
+xps_parse_path_geometry(xps_context_t *ctx, xps_resource_t *dict, xps_item_t *root, int stroking)
+{
+ xps_item_t *node;
+
+ char *figures_att;
+ char *fill_rule_att;
+ char *transform_att;
+
+ xps_item_t *transform_tag = NULL;
+ xps_item_t *figures_tag = NULL; /* only used by resource */
+
+ gs_matrix transform;
+ gs_matrix saved_transform;
+ int even_odd = 0;
+
+ ctx->fill_rule = 0;
+
+ gs_newpath(ctx->pgs);
+
+ figures_att = xps_att(root, "Figures");
+ fill_rule_att = xps_att(root, "FillRule");
+ transform_att = xps_att(root, "Transform");
+
+ for (node = xps_down(root); node; node = xps_next(node))
+ {
+ if (!strcmp(xps_tag(node), "PathGeometry.Transform"))
+ transform_tag = xps_down(node);
+ }
+
+ xps_resolve_resource_reference(ctx, dict, &transform_att, &transform_tag);
+ xps_resolve_resource_reference(ctx, dict, &figures_att, &figures_tag);
+
+ if (fill_rule_att)
+ {
+ if (!strcmp(fill_rule_att, "NonZero"))
+ ctx->fill_rule = 1;
+ if (!strcmp(fill_rule_att, "EvenOdd"))
+ ctx->fill_rule = 0;
+ }
+
+ gs_make_identity(&transform);
+ if (transform_att || transform_tag)
+ {
+ if (transform_att)
+ xps_parse_render_transform(ctx, transform_att, &transform);
+ if (transform_tag)
+ xps_parse_matrix_transform(ctx, transform_tag, &transform);
+ }
+
+ gs_currentmatrix(ctx->pgs, &saved_transform);
+ gs_concat(ctx->pgs, &transform);
+
+ if (figures_att)
+ {
+ xps_parse_abbreviated_geometry(ctx, figures_att);
+ }
+
+ if (figures_tag)
+ {
+ xps_parse_path_figure(ctx, figures_tag, stroking);
+ }
+
+ for (node = xps_down(root); node; node = xps_next(node))
+ {
+ if (!strcmp(xps_tag(node), "PathFigure"))
+ xps_parse_path_figure(ctx, node, stroking);
+ }
+
+ gs_setmatrix(ctx->pgs, &saved_transform);
+
+ return 0;
+}
+
+/*
+ * Parse an XPS <Path> element, and call relevant ghostscript
+ * functions for drawing and/or clipping the child elements.
+ */
+
+int
+xps_parse_path(xps_context_t *ctx, xps_resource_t *dict, xps_item_t *root)
+{
+ xps_item_t *node;
+
+ char *transform_att;
+ char *clip_att;
+ char *data_att;
+ char *fill_att;
+ char *stroke_att;
+ char *opacity_att;
+ char *opacity_mask_att;
+
+ xps_item_t *transform_tag = NULL;
+ xps_item_t *clip_tag = NULL;
+ xps_item_t *data_tag = NULL;
+ xps_item_t *fill_tag = NULL;
+ xps_item_t *stroke_tag = NULL;
+ xps_item_t *opacity_mask_tag = NULL;
+
+ char *fill_opacity_att = NULL;
+ char *stroke_opacity_att = NULL;
+
+ char *stroke_dash_array_att;
+ char *stroke_dash_cap_att;
+ char *stroke_dash_offset_att;
+ char *stroke_end_line_cap_att;
+ char *stroke_start_line_cap_att;
+ char *stroke_line_join_att;
+ char *stroke_miter_limit_att;
+ char *stroke_thickness_att;
+
+ gs_line_cap linecap;
+ gs_line_join linejoin;
+ float linewidth;
+ float miterlimit;
+ float samples[32];
+ gs_color_space *colorspace;
+
+ gs_rect saved_bounds;
+
+ gs_gsave(ctx->pgs);
+
+ /*
+ * Extract attributes and extended attributes.
+ */
+
+ transform_att = xps_att(root, "RenderTransform");
+ clip_att = xps_att(root, "Clip");
+ data_att = xps_att(root, "Data");
+ fill_att = xps_att(root, "Fill");
+ stroke_att = xps_att(root, "Stroke");
+ opacity_att = xps_att(root, "Opacity");
+ opacity_mask_att = xps_att(root, "OpacityMask");
+
+ stroke_dash_array_att = xps_att(root, "StrokeDashArray");
+ stroke_dash_cap_att = xps_att(root, "StrokeDashCap");
+ stroke_dash_offset_att = xps_att(root, "StrokeDashOffset");
+ stroke_end_line_cap_att = xps_att(root, "StrokeEndLineCap");
+ stroke_start_line_cap_att = xps_att(root, "StrokeStartLineCap");
+ stroke_line_join_att = xps_att(root, "StrokeLineJoin");
+ stroke_miter_limit_att = xps_att(root, "StrokeMiterLimit");
+ stroke_thickness_att = xps_att(root, "StrokeThickness");
+
+ for (node = xps_down(root); node; node = xps_next(node))
+ {
+ if (!strcmp(xps_tag(node), "Path.RenderTransform"))
+ transform_tag = xps_down(node);
+
+ if (!strcmp(xps_tag(node), "Path.OpacityMask"))
+ opacity_mask_tag = xps_down(node);
+
+ if (!strcmp(xps_tag(node), "Path.Clip"))
+ clip_tag = xps_down(node);
+
+ if (!strcmp(xps_tag(node), "Path.Fill"))
+ fill_tag = xps_down(node);
+
+ if (!strcmp(xps_tag(node), "Path.Stroke"))
+ stroke_tag = xps_down(node);
+
+ if (!strcmp(xps_tag(node), "Path.Data"))
+ data_tag = xps_down(node);
+ }
+
+ xps_resolve_resource_reference(ctx, dict, &data_att, &data_tag);
+ xps_resolve_resource_reference(ctx, dict, &clip_att, &clip_tag);
+ xps_resolve_resource_reference(ctx, dict, &transform_att, &transform_tag);
+ xps_resolve_resource_reference(ctx, dict, &fill_att, &fill_tag);
+ xps_resolve_resource_reference(ctx, dict, &stroke_att, &stroke_tag);
+ xps_resolve_resource_reference(ctx, dict, &opacity_mask_att, &opacity_mask_tag);
+
+ /*
+ * Act on the information we have gathered:
+ */
+
+ if (fill_tag && !strcmp(xps_tag(fill_tag), "SolidColorBrush"))
+ {
+ fill_opacity_att = xps_att(fill_tag, "Opacity");
+ fill_att = xps_att(fill_tag, "Color");
+ fill_tag = NULL;
+ }
+
+ if (stroke_tag && !strcmp(xps_tag(stroke_tag), "SolidColorBrush"))
+ {
+ stroke_opacity_att = xps_att(stroke_tag, "Opacity");
+ stroke_att = xps_att(stroke_tag, "Color");
+ stroke_tag = NULL;
+ }
+
+ /* TODO: stroke_end_line_cap_att */
+ /* TODO: stroke_dash_cap_att */
+
+ linecap = gs_cap_butt;
+ if (stroke_start_line_cap_att)
+ {
+ if (!strcmp(stroke_start_line_cap_att, "Flat")) linecap = gs_cap_butt;
+ if (!strcmp(stroke_start_line_cap_att, "Square")) linecap = gs_cap_square;
+ if (!strcmp(stroke_start_line_cap_att, "Round")) linecap = gs_cap_round;
+ if (!strcmp(stroke_start_line_cap_att, "Triangle")) linecap = gs_cap_triangle;
+ }
+ gs_setlinecap(ctx->pgs, linecap);
+
+ linejoin = gs_join_miter;
+ if (stroke_line_join_att)
+ {
+ if (!strcmp(stroke_line_join_att, "Miter")) linejoin = gs_join_miter;
+ if (!strcmp(stroke_line_join_att, "Bevel")) linejoin = gs_join_bevel;
+ if (!strcmp(stroke_line_join_att, "Round")) linejoin = gs_join_round;
+ }
+ gs_setlinejoin(ctx->pgs, linejoin);
+
+ miterlimit = 10.0;
+ if (stroke_miter_limit_att)
+ miterlimit = atof(stroke_miter_limit_att);
+ gs_setmiterlimit(ctx->pgs, miterlimit);
+
+ linewidth = 1.0;
+ if (stroke_thickness_att)
+ linewidth = atof(stroke_thickness_att);
+ gs_setlinewidth(ctx->pgs, linewidth);
+
+ if (stroke_dash_array_att)
+ {
+ char *s = stroke_dash_array_att;
+ float dash_array[100];
+ float dash_offset = 0.0;
+ int dash_count = 0;
+
+ if (stroke_dash_offset_att)
+ dash_offset = atof(stroke_dash_offset_att) * linewidth;
+
+ while (*s)
+ {
+ while (*s == ' ')
+ s++;
+ dash_array[dash_count++] = atof(s) * linewidth;
+ while (*s && *s != ' ')
+ s++;
+ }
+
+ gs_setdash(ctx->pgs, dash_array, dash_count, dash_offset);
+ }
+ else
+ {
+ gs_setdash(ctx->pgs, NULL, 0, 0.0);
+ }
+
+ if (transform_att || transform_tag)
+ {
+ gs_matrix transform;
+
+ if (transform_att)
+ xps_parse_render_transform(ctx, transform_att, &transform);
+ if (transform_tag)
+ xps_parse_matrix_transform(ctx, transform_tag, &transform);
+
+ gs_concat(ctx->pgs, &transform);
+ }
+
+ if (clip_att || clip_tag)
+ {
+ if (clip_att)
+ xps_parse_abbreviated_geometry(ctx, clip_att);
+ if (clip_tag)
+ xps_parse_path_geometry(ctx, dict, clip_tag, 0);
+
+ xps_clip(ctx, &saved_bounds);
+ }
+
+ xps_begin_opacity(ctx, dict, opacity_att, opacity_mask_tag);
+
+ if (fill_att)
+ {
+ xps_parse_color(ctx, fill_att, &colorspace, samples);
+ if (fill_opacity_att)
+ samples[0] = atof(fill_opacity_att);
+ xps_set_color(ctx, colorspace, samples);
+
+ if (data_att)
+ xps_parse_abbreviated_geometry(ctx, data_att);
+ if (data_tag)
+ xps_parse_path_geometry(ctx, dict, data_tag, 0);
+
+ xps_fill(ctx);
+ }
+
+ if (fill_tag)
+ {
+ if (data_att)
+ xps_parse_abbreviated_geometry(ctx, data_att);
+ if (data_tag)
+ xps_parse_path_geometry(ctx, dict, data_tag, 0);
+
+ xps_parse_brush(ctx, dict, fill_tag);
+ }
+
+ if (stroke_att)
+ {
+ xps_parse_color(ctx, stroke_att, &colorspace, samples);
+ if (stroke_opacity_att)
+ samples[0] = atof(stroke_opacity_att);
+ xps_set_color(ctx, colorspace, samples);
+
+ if (data_att)
+ xps_parse_abbreviated_geometry(ctx, data_att);
+ if (data_tag)
+ xps_parse_path_geometry(ctx, dict, data_tag, 1);
+
+ gs_stroke(ctx->pgs);
+ }
+
+ if (stroke_tag)
+ {
+ if (data_att)
+ xps_parse_abbreviated_geometry(ctx, data_att);
+ if (data_tag)
+ xps_parse_path_geometry(ctx, dict, data_tag, 1);
+
+ ctx->fill_rule = 1; /* over-ride fill rule when converting outline to stroked */
+ gs_strokepath(ctx->pgs);
+
+ xps_parse_brush(ctx, dict, stroke_tag);
+ }
+
+ if (clip_att || clip_tag)
+ {
+ xps_unclip(ctx, &saved_bounds);
+ }
+
+ xps_end_opacity(ctx, dict, opacity_att, opacity_mask_tag);
+
+ gs_grestore(ctx->pgs);
+
+ return 0;
+}
+