summaryrefslogtreecommitdiff
path: root/base/ets.c
blob: cbcba6975722851215f16d31ccc73d0fdd876725 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
/* Copyright (C) 2013-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "ets.h"

/* source for threshold matrix - need to improve build process */
#include "ets_tm.h"

#define ETS_VERSION 150

#define ETS_SHIFT 16
#define IMO_SHIFT 14

#define FANCY_COUPLING

typedef struct {
    int err; /* Total error carried out of pixel in the line above */
    int r;   /* expected distance value (see paper for details) */
    int a;   /* expected distance intermediate value (see paper) */
    int b;   /* expected distance intermediate value (see paper) */
} ETS_PixelData;

typedef struct {
    int           *dst_line;  /* Output pointer */
    ETS_PixelData *line;      /* Internal data for each pixel on the line */
    int           *lut;       /* Table to map from input source value to internal
                               * intensity level. Internal intensity level is 0 to
                               * 1<<ETS_SHIFT. */
    int           *dist_lut;  /* A table of "expected distance between set pixels"
                               * values, stored in fixed point format with (ETS_SHIFT-c1)
                               * fractional bits. Values outside of the 'level 0-1' band
                               * will be set to 0 to avoid ETS weighting being used. */
    char          *rs_lut;   /* Random noise table; values between 0 and 24. x meaning
                              * use 32-x bits of random noise, */
    int            c1;       /* Shift adjustment for the dist_lut. */
    unsigned int   tm_offset;/* Plane offset within tm data */
    int            strength; /* Strength */
} ETS_PlaneCtx;

typedef unsigned int uint32;

typedef void (ETS_LineFn)(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const *src);

struct _ETS_Ctx {
    int width;
    int n_planes;
    int levels; /* Number of levels on output, <= 256 */
    ETS_PlaneCtx ** plane_ctx;
    int aspect_x;
    int aspect_y;
    int elo;
    int ehi;
    int *c_line;

    int ets_bias;
    int r_style;

    uint32 seeds[2];

    FILE *dump_file;
    ETS_DumpLevel dump_level;

    /* Threshold modulation array */
    unsigned int y;
    unsigned int tmwidth;
    unsigned int tmheight;
    const signed char *tmmat;

    ETS_LineFn *line_fn;
};

/* Maximum number of planes, but actually we want to dynamically
   allocate all scratch buffers that depend on this. */
#define M 16

typedef struct {
    int a;
    int b;
    int r;
    int e_1_0;
    int e_m1_1;
    int e_0_1;
    int e_1_1;
} ETS_PixelInternals;

/**
 * ets_line_template: Generic code to perform ETS screening
 * on an input line. Called to generate optimised versions.
 */
static inline void
ets_line_template(unsigned char * gs_restrict * gs_restrict dest, const ETS_SrcPixel * const gs_restrict * gs_restrict src, int n_planes, int levels, int aspect_x, int aspect_y, int elo, int ehi, int ets_biasing_mode, int r_style, int old_quant, int fancy_coupling, int * gs_restrict c_line,
                  const signed char * gs_restrict tmmat, unsigned int tmwidth, unsigned int tmheight, unsigned int y, int xd, ETS_PlaneCtx * gs_restrict * gs_restrict planes, uint32 *seeds, int in_plane_step, int out_plane_step)
{
    ETS_PixelInternals pi[M];
    ETS_PixelInternals * gs_restrict pii;
    int i;
    int im;
    int rg;
    uint32 seed1, seed2;
    uint32 sum;
    int plane_idx;
    int dith_mul = (old_quant ? levels : levels-1) << 8;
    int imo_mul = (1 << (ETS_SHIFT + IMO_SHIFT)) / (levels - 1);
    const int aspect_x2 = aspect_x * aspect_x;
    const int aspect_y2 = aspect_y * aspect_y;
    int coupling;
    int rand_shift;
    const signed char * gs_restrict tmline = (r_style == ETS_RSTYLE_THRESHOLD) ? (tmmat + (y % tmheight) * tmwidth) : 0;

    /* Read seeds (but only if we are using them) */
    seed1 = (r_style == 2 ? seeds[0] : 0);
    seed2 = (r_style == 2 ? seeds[1] : 0);

    /* Setup initial conditions for walking across the scanline. Because we
     * are dealing with multiple planes, we have arrays of each variable,
     * indexed by p = plane number.
     *   a[p]     = 2x+1 (where x is the horizontal distance to the nearest set pixel)
     *   b[p]     = 2y+1 (where y is the vertical distance to the nearest set pixel)
     *   r[p]     = distance^2 to the nearest set pixel in this plane.
     *   e_0_1[p] = error from pixel above
     *   e_1_0[p] = error from pixel to the left
     *   e_m1_1[p]= error from pixel above right
     *   e_1_1[p] = error from pixel above left
     */

    /* A potted recap of the distance calculations in the paper for easy
     * reference.
     *   distance to last dot   = SQR( (aspect_y * x)^2 + (aspect_x * y)^2 )
     *   r       =  distance^2  =      (aspect_y * x)^2 + (aspect_x * y)^2
     *           =                     aspect_y^2 * x^2 + aspect_x^2 * y^2
     *   r_below - r = (aspect_x^2 * (y+1)^2) - (aspect_x^2 * y^2)
     *               = aspect_x^2 * ( (y+1)^2 - y^2 )
     *               = aspect_x^2 * ( 2y + 1 )
     *   r_under - r = (aspect_y^2 * (x+1)^2) - (aspect_y^2 * x^2)
     *               = aspect_y^2 * ( (x+1)^2 - x^2 )
     *               = aspect_y^2 * ( 2x + 1 )
     * So, we keep:
     *   a       = aspect_y^2 * (2x+1)
     *   b       = aspect_x^2 * (2y+1)
     * And we can then update r by adding either a or b at each stage.
     */
    for (plane_idx = 0; plane_idx < n_planes; plane_idx++)
    {
        ETS_PlaneCtx *ctx = planes[plane_idx];

        pi[plane_idx].a = aspect_y2; /* aspect_y^2 * (2x + 1) where x = 0 */
        pi[plane_idx].b = aspect_x2; /* aspect_x^2 * (2y + 1) where y = 0 */
        pi[plane_idx].r = 0;
        pi[plane_idx].e_0_1 = 0;
        pi[plane_idx].e_1_0 = 0;
        pi[plane_idx].e_m1_1 = ctx->line[0].err;
    }

    coupling = 0;

    for (i = 0; i < xd; i++)
    {
        if (fancy_coupling)
            coupling += c_line[i];
        else
            coupling = 0;
        /* Lookup image data and compute R for all planes. */
        pii = pi;
        for (plane_idx = 0; plane_idx < n_planes; plane_idx++, pii++)
        {
            ETS_PlaneCtx *ctx = planes[plane_idx];
            ETS_SrcPixel src_pixel = src[plane_idx][i * in_plane_step];
            int new_r;
            int c1 = ctx->c1;
            int rlimit = 1 << (30 - ETS_SHIFT + c1);
            unsigned char *dst_ptr = dest[plane_idx];
            int new_e_1_0;
            int achieved_error;
            int err;
            int imo;
            int expected_r;
            ETS_PixelData * gs_restrict pd = &ctx->line[i];

            im         = ctx->lut[src_pixel];      /* image pixel (ink level) */
            expected_r = ctx->dist_lut[src_pixel]; /* expected distance */
            if (r_style != ETS_RSTYLE_NONE)
                rand_shift = ctx->rs_lut[src_pixel];   /* random noise shift */

            /* Forward pass distance computation; equation 2 from paper */
            if (pii->r + pii->a < pd->r)
            {
                pii->r += pii->a;
                pii->a += 2*aspect_y2;
            }
            else
            {
                pii->a = pd->a;
                pii->b = pd->b;
                pii->r = pd->r;
            }

            /* Shuffle all the errors and read the next one. */
            pii->e_1_1 = pii->e_0_1;
            pii->e_0_1 = pii->e_m1_1;
            pii->e_m1_1 = i == xd - 1 ? 0 : pd[1].err;
            /* Reuse of variables here; new_e_1_0 is the total error passed
             * into this pixel, with the traditional fs weights. */
            new_e_1_0 = ((pii->e_1_0 * 7 + pii->e_m1_1 * 3 +
                          pii->e_0_1 * 5 + pii->e_1_1 * 1) >> 4);

            /* White pixels stay white */
            if (im == 0)
            {
                dst_ptr[i * out_plane_step] = 0;
                /* If we are forcing white pixels to stay white, we should
                 * not propagate errors through them. Or at the very least
                 * we should attenuate such errors. */
                new_e_1_0 = 0;
            }
            else
            {
                /* The guts of ets (Equation 5) */
                int ets_bias;

                if (expected_r == 0)
                {
                    ets_bias = 0;
                }
                else
                {
                    /* Read the current distance, and clamp to avoid overflow
                     * in subsequent calculations. */
                    new_r = pii->r;
                    if (new_r > rlimit)
                        new_r = rlimit;
                    /* Should we store back with the limit? */

                    /* Change the units on the distance to match our lut
                     * and subtract our actual distance (rg) from the expected
                     * distance (expected_r). */
                    rg = new_r << (ETS_SHIFT - c1);
                    ets_bias = rg - expected_r;

                    /* So ets_bias is the difference that we want to base our
                     * threshold modulation on (section 2.1 of the paper).
                     * Exactly how do we do that? We present various options
                     * here.
                     *   0   no modulation
                     *   1   what the code did when it came to me. No reference
                     *       to this in the paper.
                     *   2   use it unchanged.
                     *   3   like 1, but same shift either side of 0.
                     *   4+  scale the modulation down.
                     */
                    switch (ets_biasing_mode)
                    {
                    case ETS_BIAS_ZERO:
                        ets_bias = 0;
                        break;
                    case ETS_BIAS_REDUCE_POSITIVE:
                        if (ets_bias > 0) ets_bias >>= 3;
                        break;
                    case ETS_BIAS_NONE:
                        break;
                    case ETS_BIAS_REDUCE:
                        ets_bias >>= 3;
                        break;
                    default:
                        ets_bias /= ets_bias-3;
                    }
                }

                /* Non white pixels get biased, and have the error
                 * applied. The error starts from the total error passed
                 * in. */
                err = new_e_1_0;

                /* Plus any ETS bias (calculated above) */
                err += ets_bias;

                /* Plus any random noise. Again various options here:
                 *    0   No random noise
                 *    1   The code as it came to me, using lookup table
                 *    2   commented out when it came to me; using pseudo
                 *        random numbers generated from seed.
                 */
                switch(r_style)
                {
                default:
                case ETS_RSTYLE_NONE:
                    break;
                case ETS_RSTYLE_PSEUDO:
                    /* Add the two seeds together */
                    sum = seed1 + seed2;

                    /* If the add generated a carry, increment
                     * the result of the addition.
                     */
                    if (sum < seed1 || sum < seed2) sum++;

                    /* Seed2 becomes old seed1, seed1 becomes result */
                    seed2 = seed1;
                    seed1 = sum;

                    err -= (sum >> rand_shift) - (0x80000000 >> rand_shift);
                    break;
                case ETS_RSTYLE_THRESHOLD:
                    err += tmline[((unsigned int)(i+ctx->tm_offset)) % tmwidth] << (24 - rand_shift);
                    break;
                }

                /* Clamp the error; this is explained in the paper in
                 * section 6 just after equation 7. */
                /* FIXME: Understand this better */
                if (err < elo)
                    err = elo;
                else if (err > ehi)
                    err = ehi;

                /* Add the coupling to our combined 'error + bias' value */
                /* FIXME: Are we sure this shouldn't be clamped? */
                err += coupling;

                /* Calculate imo = the quantised image value (Equation 7) */
                imo = ((err + im) * dith_mul + (old_quant ? 0 : (1 << (ETS_SHIFT + 7)))) >> (ETS_SHIFT + 8);

                /* Clamp to allow for over/underflow due to large errors */
                if (imo < 0) imo = 0;
                else if (imo > levels - 1) imo = levels - 1;

                /* Store final output pixel */
                dst_ptr[i * out_plane_step] = imo;

                /* Calculate the error between the desired and the obtained
                 * pixel values. */
                achieved_error = im - ((imo * imo_mul) >> IMO_SHIFT);

                /* And the error passed in is updated with the error for
                 * this pixel. */
                new_e_1_0 += achieved_error;

                /* Do the magic coupling here; strengths is 0 when
                 * multiplane optimisation is turned off, hence coupling
                 * remains 0 always. Equation 6. */
                coupling += (achieved_error * ctx->strength) >> 8;

                /* If we output a set pixel, then reset our distances. */
                if (imo != 0)
                {
                    pii->a = aspect_y2;
                    pii->b = aspect_x2;
                    pii->r = 0;
                }
            }

            /* Store the values back for the next pass (Equation 3) */
            pd->a = pii->a;
            pd->b = pii->b;
            pd->r = pii->r;
            pd->err = new_e_1_0;
            pii->e_1_0 = new_e_1_0;
        }
        if (fancy_coupling)
        {
            coupling = coupling >> 1;
            c_line[i] = coupling;
        }
    }

    /* Note: this isn't white optimized, but the payoff is probably not
       that important. */
    if (fancy_coupling)
    {
        coupling = 0;
        for (i = xd - 1; i >= 0; i--)
        {
            coupling = (coupling + c_line[i]) >> 1;
            c_line[i] = (coupling - (coupling >> 4));
        }
    }

    /* Update distances. Reverse scanline pass. */
    for (plane_idx = 0; plane_idx < n_planes; plane_idx++)
    {
        ETS_PlaneCtx *ctx = planes[plane_idx];
        int av = aspect_y2;
        int bv = aspect_x2;
        int rv = 0;
        int c1 = ctx->c1;
        int rlimit = 1 << (30 - ETS_SHIFT + c1);
        ETS_PixelData * gs_restrict pd = &ctx->line[xd];

        for (i = xd; i > 0; i--)
        {
            pd--;
            /* Equation 4 from the paper */
            if (rv + bv + av < pd->r + pd->b)
            {
                rv += av;
                av += (aspect_y2<<1);
            }
            else
            {
                rv = pd->r;
                av = pd->a;
                bv = pd->b;
            }
            if (rv > rlimit) rv = rlimit;
            pd->a = av;
            pd->b = bv + (aspect_x2 << 1);
            pd->r = rv + bv;
        }
    }

    if (r_style == 2)
    {
        seeds[0] = seed1;
        seeds[1] = seed2;
    }
}

/**
 * ets_line: Screen a line using EvenTonedFS screening.
 * @ctx: An #EBPlaneCtx context.
 * @dest: Array of destination buffers, 8 bpp pixels each.
 * @src: Array of source buffer, ET_SrcPixel pixels each.
 *
 * Screens a single line using Even ToneFS screening.
 **/
#ifdef OLD_QUANT
#define OLD_QUANT_VAL 1
#else
#define OLD_QUANT_VAL 0
#endif
#ifdef FANCY_COUPLING
#define FANCY_COUPLING_VAL 1
#else
#define FANCY_COUPLING_VAL 0
#endif

static void
ets_line_none(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const *src)
{
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, ETS_RSTYLE_NONE,
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
        etc->c_line, NULL, 0, 0, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
}

static void
ets_line_threshold(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * src)
{
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, ETS_RSTYLE_THRESHOLD,
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
        etc->c_line, etc->tmmat, etc->tmwidth, etc->tmheight, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
}

static void
ets_line_pseudo(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * src)
{
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, ETS_RSTYLE_PSEUDO,
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
        etc->c_line, NULL, 0, 0, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
}

#ifdef UNUSED
static void
ets_line_default(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * src)
{
    ets_line_template(dest, src, etc->n_planes, etc->levels, etc->aspect_x, etc->aspect_y, etc->elo, etc->ehi, etc->ets_bias, etc->r_style,
        OLD_QUANT_VAL, FANCY_COUPLING_VAL,
        etc->c_line, etc->tmmat, etc->tmwidth, etc->tmheight, etc->y, etc->width, etc->plane_ctx, etc->seeds, etc->n_planes, etc->n_planes);
}
#endif

void
ets_line(ETS_Ctx *etc, unsigned char **dest, const ETS_SrcPixel * const * gs_restrict src)
{
    etc->line_fn(etc, dest, src);
    etc->y++;
}

/**
 * ets_plane_free: Free an #EBPlaneCtx context.
 * @ctx: The #EBPlaneCtx context to free.
 *
 * Frees @ctx.
 **/
static void
ets_plane_free(void *malloc_arg, ETS_PlaneCtx *ctx)
{
    if (!ctx)
        return;

    ets_free(malloc_arg, ctx->line);
    ets_free(malloc_arg, ctx->lut);
    ets_free(malloc_arg, ctx->dist_lut);
    ets_free(malloc_arg, ctx->rs_lut);
    ets_free(malloc_arg, ctx);
}

static double
compute_distscale(const ETS_Params *params)
{
    double distscale = params->distscale;

    if (distscale == 0.0)
    {
        distscale = -1;
        switch(params->aspect_x)
        {
        case 1:
            switch(params->aspect_y)
            {
            case 1:
                distscale = 0.95;
                break;
            case 2:
                distscale = 1.8;
                break;
            case 3:
                distscale = 2.4; /* FIXME */
                break;
            case 4:
                distscale = 3.6;
                break;
            }
            break;
        case 2:
            switch(params->aspect_y)
            {
            case 1:
                distscale = 1.8;
                break;
            case 2:
                break;
            case 3:
                distscale = 1.35; /* FIXME */
                break;
            case 4:
                break;
            }
            break;
        case 3:
            switch(params->aspect_y)
            {
            case 1:
                distscale = 2.4; /* FIXME */
                break;
            case 2:
                distscale = 1.35; /* FIXME */
                break;
            case 3:
                break;
            case 4:
                distscale = 0.675; /* FIXME */
                break;
            }
            break;
        case 4:
            switch(params->aspect_y)
            {
            case 1:
                distscale = 3.6;
                break;
            case 2:
                break;
            case 3:
                distscale = 0.675; /* FIXME */
                break;
            case 4:
                break;
            }
            break;
        }
        if (distscale == -1)
        {
            fprintf(stderr, "aspect ratio of %d:%d not supported\n",
                    params->aspect_x, params->aspect_y);
            exit(1);
        }
    }
    return distscale;
}

static unsigned int
ets_log2(unsigned int x)
{
    unsigned int y = 0;
    unsigned int z;

    for (z = x; z > 1; z = z >> 1)
        y++;
    return y;
}

static unsigned int
ets_log2up(unsigned int x)
{
    return ets_log2(x-1)+1;
}

static int
compute_randshift(int nl, int rs_base, int levels)
{
    int rs = rs_base;

    if ((nl > (90 << (ETS_SHIFT - 10)) &&
         nl < (129 << (ETS_SHIFT - 10))) ||
        (nl > (162 << (ETS_SHIFT - 10)) &&
         nl < (180 << (ETS_SHIFT - 10))))
        rs--;
    else if (nl > (321 << (ETS_SHIFT - 10)) &&
             nl < (361 << (ETS_SHIFT - 10)))
    {
        rs--;
        if (nl > (331 << (ETS_SHIFT - 10)) &&
            nl < (351 << (ETS_SHIFT - 10)))
            rs--;
    }
    else if ((nl == (levels - 1) << ETS_SHIFT) &&
             nl > (((levels - 1) << ETS_SHIFT) -
                   (1 << (ETS_SHIFT - 2))))
    {
        /* don't add randomness in extreme shadows */
    }
    else if ((nl > (3 << (ETS_SHIFT - 2))))
    {
        nl -= (nl + (1 << (ETS_SHIFT - 2))) & -(1 << (ETS_SHIFT - 1));
        if (nl < 0) nl = -nl;
        if (nl < (1 << (ETS_SHIFT - 4))) rs--;
        if (nl < (1 << (ETS_SHIFT - 5))) rs--;
        if (nl < (1 << (ETS_SHIFT - 6))) rs--;
    }
    else
    {
        if (nl < (3 << (ETS_SHIFT - 3))) nl += 1 << (ETS_SHIFT - 2);
        nl = nl - (1 << (ETS_SHIFT - 1));
        if (nl < 0) nl = -nl;
        if (nl < (1 << (ETS_SHIFT - 4))) rs--;
        if (nl < (1 << (ETS_SHIFT - 5))) rs--;
        if (nl < (1 << (ETS_SHIFT - 6))) rs--;
    }
    return rs;
}

/**
 * ets_new: Create new Even ToneFS screening context.
 * @source_width: Width of source buffer.
 * @dest_width: Width of destination buffer, in pixels.
 * @lut: Lookup table for gray values.
 *
 * Creates a new context for Even ToneFS screening.
 *
 * If @dest_width is larger than @source_width, then input lines will
 * be expanded using nearest-neighbor sampling.
 *
 * @lut should be an array of 256 values, one for each possible input
 * gray value. @lut is a lookup table for gray values. Output is from
 * 0 for white (no ink) to ....
 *
 *
 * Return value: The new #EBPlaneCtx context.
 **/
static ETS_PlaneCtx *
ets_plane_new(void *malloc_arg, const ETS_Params *params, ETS_Ctx *etc, int plane_idx, int strength)
{
    int width = params->width;
    int *lut = params->luts[plane_idx];
    ETS_PlaneCtx *result;
    int i;
    int *new_lut = NULL;
    int *dist_lut = NULL;
    char *rs_lut = NULL;
    double distscale = compute_distscale(params);
    int c1;
    int rlimit;
    int log2_levels, log2_aspect;
    int rs_base;

    result = (ETS_PlaneCtx *)ets_malloc(malloc_arg, sizeof(ETS_PlaneCtx));
    if (result == NULL)
        goto fail;

    log2_levels = ets_log2(params->levels);
    log2_aspect = ets_log2(params->aspect_x) + ets_log2(params->aspect_y); /* FIXME */
    c1 = 6 + log2_aspect + log2_levels;
    if (params->c1_scale)
        c1 -= params->c1_scale[plane_idx];
    result->c1 = c1;
    rlimit = 1 << (30 - ETS_SHIFT + c1);
    result->tm_offset = TM_WIDTH/ets_log2up(params->n_planes);
    result->strength = strength;

    /* Set up a lut to map input values from the source domain to the
     * amount of ink. Callers can provide a lut of their own, which can be
     * used for gamma correction etc. In the absence of this, a linear
     * distribution is assumed. The user supplied lut should map from
     * 'amount of light' to 'gamma adjusted amount of light', as the code
     * subtracts the final value from (1<<ETS_SHIFT) (typically 65536) to
     * get 'amount of ink'. */
    new_lut = (int *)ets_malloc(malloc_arg, (ETS_SRC_MAX + 1) * sizeof(int));
    if (new_lut == NULL)
        goto fail;
    for (i = 0; i < ETS_SRC_MAX + 1; i++)
    {
        int nli;

        if (lut == NULL)
        {
#if ETS_SRC_MAX == 255
            nli = (i * 65793 + (i >> 7)) >> (24 - ETS_SHIFT);
#else
            nli = (i * ((double) (1 << ETS_SHIFT)) / ETS_SRC_MAX) + 0.5;
#endif
        }
        else
            nli = lut[i] >> (24 - ETS_SHIFT);
        if (params->polarity == ETS_BLACK_IS_ZERO)
            new_lut[i] = (1 << ETS_SHIFT) - nli;
        else
            new_lut[i] = nli;
    }

    /* Here we calculate 2 more lookup tables. These could be separated out
     * into 2 different loops, but are done in 1 to avoid a small amount of
     * recalculation.
     *   dist_lut[i] = expected distance between dots for a greyscale of level i
     *   rs_lut[i]   = whacky random noise scale factor.
     */
    dist_lut = (int *)ets_malloc(malloc_arg, (ETS_SRC_MAX + 1) * sizeof(int));
    if (dist_lut == NULL)
        goto fail;
    rs_lut   = (char *)ets_malloc(malloc_arg, (ETS_SRC_MAX + 1) * sizeof(int));
    if (rs_lut == NULL)
        goto fail;

    rs_base = 35 - ETS_SHIFT + log2_levels - params->rand_scale;

    /* The paper says that the expected 'value' for a grayshade g is:
     *     d_avg = 0.95 / 0.95/(g^2)
     * This seems wrong to me. Let's consider some common cases; for a given
     * greyscale, lay out the 'ideal' dithering, then consider removing each
     * set pixel in turn and measuring the distance between that pixel and
     * the closest set pixel.
     *
     * g = 1/2  #.#.#.#.   visibly, expected distance = SQR(2)
     *          .#.#.#.#
     *          #.#.#.#.
     *          .#.#.#.#
     *
     * g = 1/4  #.#.#.#.  expected distance = 2
     *          ........
     *          #.#.#.#.
     *          ........
     *
     * g = 1/16 #...#...  expected distance = 4
     *          ........
     *          ........
     *          ........
     *          #...#...
     *          ........
     *          ........
     *          ........
     *
     * This rough approach leads us to suspect that we should be finding
     * values roughly proportional to 1/SQR(g). Given the algorithm works in
     * terms of square distance, this means 1/g. This is at odds with the
     * value given in the paper. Being charitable and assuming that the paper
     * means 'squared distance' when it says 'value', we are still a square
     * off.
     *
     * Nonetheless, the code as supplied uses 0.95/g for the squared distance
     * (i.e. it appears to agree with our logic here).
     */
    for (i = 0; i <= ETS_SRC_MAX; i++)
    {
        double dist;
        int nl = new_lut[i] * (params->levels - 1);
        int rs;

        /* This is (or is supposed to be) equation 5 from the paper. If nl
         * is g, why aren't we dividing by nl*nl ? */
        if (nl == 0)
        {
            /* The expected distance for an ink level of 0 is infinite. Just
             * put 0! */
            dist = 0;
        }
        else if (nl >= ((1<<ETS_SHIFT)/(params->levels-1)))
        {
            /* New from RJW: Our distance measurements are only meaningful
             * within the bottom 'level band' of the output. Do not apply
             * ETS to higher ink levels. */
            dist = 0;
        }
        else
        {
            dist = (distscale * (1 << (2 * ETS_SHIFT - c1))) / nl;
            if (dist > rlimit << (ETS_SHIFT - c1))
                dist = rlimit << (ETS_SHIFT - c1);
        }

        if (params->rand_scale_luts == NULL)
        {
            rs = compute_randshift(nl, rs_base, params->levels);
            rs_lut[i] = rs;
        }
        else
        {
            int val = params->rand_scale_luts[plane_idx][i];

            rs_lut[i] = rs_base + 16 - ets_log2(val + (val >> 1));
        }
        dist_lut[i] = (int)dist;
    }

    result->lut = new_lut;
    result->dist_lut = dist_lut;
    result->rs_lut = rs_lut;

    result->line = (ETS_PixelData *)ets_calloc(malloc_arg, width, sizeof(ETS_PixelData));
    if (result->line == NULL)
        goto fail;
    for (i = 0; i < width; i++)
    {
        result->line[i].a = 1;
        result->line[i].b = 1;
        /* Initialize error with a non zero random value to ensure dots don't
           land on dots when we have same planes with same gray level and
           the plane interaction option is turned off.  Ideally the level
           of this error should be based upon the values of the first line
           to ensure that things get primed properly */
        result->line[i].err = -((rand () & 0x7fff) << 6) >> (24 - ETS_SHIFT);
    }

    return result;
fail:
    if (result)
    {
        ets_free(malloc_arg, new_lut);
        ets_free(malloc_arg, dist_lut);
        ets_free(malloc_arg, rs_lut);
        ets_free(malloc_arg, result->line);
    }
    ets_free(malloc_arg, result);
    return NULL;
}


/**
 * ets_destroy: Destroy an #EvenBetterCtx context.
 * @ctx: The #EvenBetterCtx context to destroy.
 *
 * Frees @ctx.
 **/
void
ets_destroy(void *malloc_arg, ETS_Ctx *ctx)
{
    int i;
    int n_planes;

    if (ctx == NULL)
        return;

    if (ctx->dump_file)
        fclose(ctx->dump_file);

    n_planes = ctx->n_planes;
    for (i = 0; i < n_planes; i++)
        ets_plane_free(malloc_arg, ctx->plane_ctx[i]);
    ets_free(malloc_arg,ctx->plane_ctx);
    ets_free(malloc_arg, ctx->c_line);

    ets_free(malloc_arg, ctx);
}

ETS_Ctx *
ets_create(void *malloc_arg, const ETS_Params *params)
{
    ETS_Ctx *result = (ETS_Ctx *)ets_malloc(malloc_arg, sizeof(ETS_Ctx));
    int n_planes = params->n_planes;
    int i;

    if (result == NULL)
        return NULL;

    if (params->dump_file)
    {
        int header[5];

        header[0] = 0x70644245;
        header[1] = 'M' * 0x1010000 + 'I' * 0x101;
        header[2] = ETS_VERSION;
        header[3] = ETS_SRC_MAX;
        header[4] = sizeof(ETS_SrcPixel);
        fwrite(header, sizeof(int), sizeof(header) / sizeof(header[0]),
               params->dump_file);
        if (params->dump_level >= ETS_DUMP_PARAMS)
        {
            fwrite(params, 1, sizeof(ETS_Params), params->dump_file);
        }
        if (params->dump_level >= ETS_DUMP_LUTS)
        {
            for (i = 0; i < params->n_planes; i++)
                fwrite(params->luts[i], sizeof(int), ETS_SRC_MAX + 1,
                       params->dump_file);
        }
    }

    result->width = params->width;
    result->n_planes = n_planes;
    result->levels = params->levels;

    result->aspect_x = params->aspect_x;
    result->aspect_y = params->aspect_y;

    result->ehi = (int)(0.6 * (1 << ETS_SHIFT) / (params->levels - 1));
    result->elo = -result->ehi;

    result->ets_bias = params->ets_bias;
    result->r_style = params->r_style;

    result->c_line = (int *)ets_calloc(malloc_arg, params->width, sizeof(int));

    result->seeds[0] = 0x5324879f;
    result->seeds[1] = 0xb78d0945;

    result->dump_file = params->dump_file;
    result->dump_level = params->dump_level;

    result->plane_ctx = (ETS_PlaneCtx **)ets_calloc(malloc_arg, n_planes, sizeof(ETS_PlaneCtx *));
    if (result->plane_ctx == NULL)
        goto fail;
    for (i = 0; i < n_planes; i++)
    {
        result->plane_ctx[i] = ets_plane_new(malloc_arg, params, result, i, params->strengths[i]);
        if (result->plane_ctx[i] == NULL)
            goto fail;
    }
    result->y = 0;
    result->tmmat = tmmat;
    result->tmwidth = TM_WIDTH;
    result->tmheight = TM_HEIGHT;

    /* Can replace this with optimised versions - for now, just the random ones. */
    switch (result->r_style)
    {
    default:
    case ETS_RSTYLE_NONE:
        result->line_fn = ets_line_none;
        break;
    case ETS_RSTYLE_THRESHOLD:
        result->line_fn = ets_line_threshold;
        break;
    case ETS_RSTYLE_PSEUDO:
        result->line_fn = ets_line_pseudo;
        break;
    }

    return result;

fail:
    ets_destroy(malloc_arg, result);
    return NULL;
}