summaryrefslogtreecommitdiff
path: root/base/gdevabuf.c
blob: f2f16b0cfd4e187d40f21fed54f68795e6ff040f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/

/* Alpha-buffering memory devices */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gxdevice.h"
#include "gxdevmem.h"		/* semi-public definitions */
#include "gdevmem.h"		/* private definitions */
#include "gzstate.h"
#include "gxdevcli.h"
#include "gxdevsop.h"

/* ================ Alpha devices ================ */

/*
 * These devices store 2 or 4 bits of alpha.  They are a hybrid of a
 * monobit device (for color mapping) and a 2- or 4-bit device (for painting).
 * Currently, we only use them for character rasterizing, but they might be
 * useful for other things someday.
 */

/* ================ Alpha-buffer device ================ */

/*
 * This device converts graphics sampled at a higher resolution to
 * alpha values at a lower resolution.  It does this by accumulating
 * the bits of a band and then converting the band to alphas.
 * In order to make this work, the client of the device must promise
 * only to visit each band at most once, except possibly for a single
 * scan line overlapping the adjacent band, and must promise only to write
 * a single color into the output.  In particular, this works
 * within a single call on gx_fill_path (if the fill loop is constrained
 * to process bands of limited height on each pass) or a single masked image
 * scanned in Y order, but not across such calls and not for other
 * kinds of painting operations.
 *
 * We implement this device as a subclass of a monobit memory device.
 * (We put its state in the definition of gx_device_memory just because
 * actual subclassing introduces a lot of needless boilerplate.)
 * We only allocate enough bits for one band.  The height of the band
 * must be a multiple of the Y scale factor; the minimum height
 * of the band is twice the Y scale factor.
 *
 * The bits in storage are actually a sliding window on the true
 * oversampled image.  To avoid having to copy the bits around when we
 * move the window, we adjust the mapping between the client's Y values
 * and our own, as follows:
 *      Client          Stored
 *      ------          ------
 *      y0..y0+m-1      n-m..n-1
 *      y0+m..y0+n-1    0..n-m-1
 * where n and m are multiples of the Y scale factor and 0 <= m <= n <=
 * the height of the band.  (In the device structure, m is called
 * mapped_start and n is called mapped_height.)  This allows us to slide
 * the window incrementally in either direction without copying any bits.
 */

/* Procedures */
static dev_proc_close_device(mem_abuf_close);
static dev_proc_copy_mono(mem_abuf_copy_mono);
static dev_proc_fill_rectangle(mem_abuf_fill_rectangle);
static dev_proc_get_clipping_box(mem_abuf_get_clipping_box);
static dev_proc_fill_rectangle_hl_color(mem_abuf_fill_rectangle_hl_color);
static dev_proc_fill_stroke_path(mem_abuf_fill_stroke_path);

/* The device descriptor. */
static void
mem_alpha_initialize_device_procs(gx_device *dev)
{
    mem_initialize_device_procs(dev);

    set_dev_proc(dev, map_rgb_color, gx_forward_map_rgb_color);
    set_dev_proc(dev, map_color_rgb, gx_forward_map_color_rgb);
    set_dev_proc(dev, fill_rectangle, mem_abuf_fill_rectangle);
    set_dev_proc(dev, copy_mono, mem_abuf_copy_mono);
    set_dev_proc(dev, copy_color, gx_default_copy_color);
    set_dev_proc(dev, strip_copy_rop2, gx_no_strip_copy_rop2);
    set_dev_proc(dev, fill_rectangle_hl_color, mem_abuf_fill_rectangle_hl_color);
    set_dev_proc(dev, fill_stroke_path, mem_abuf_fill_stroke_path);
}

static const gx_device_memory mem_alpha_buffer_device =
   mem_device("image(alpha buffer)", 0, 1, mem_alpha_initialize_device_procs);

/* Make an alpha-buffer memory device. */
/* We use abuf instead of alpha_buffer because */
/* gcc under VMS only retains 23 characters of procedure names. */
void
gs_make_mem_abuf_device(gx_device_memory * adev, gs_memory_t * mem,
                     gx_device * target, const gs_log2_scale_point * pscale,
                        int alpha_bits, int mapped_x, bool devn)
{
    gs_make_mem_device(adev, &mem_alpha_buffer_device, mem, 0, target);
    adev->max_fill_band = 1 << pscale->y;
    adev->log2_scale = *pscale;
    adev->log2_alpha_bits = alpha_bits >> 1;	/* works for 1,2,4 */
    adev->mapped_x = mapped_x;
    set_dev_proc(adev, close_device, mem_abuf_close);
    set_dev_proc(adev, get_clipping_box, mem_abuf_get_clipping_box);
    if (!devn)
        adev->save_hl_color = NULL; /* This is the test for when we flush the
                                       the buffer as to what copy_alpha type
                                       use */
    adev->color_info.anti_alias.text_bits =
      adev->color_info.anti_alias.graphics_bits =
        alpha_bits;
    adev->graphics_type_tag = target->graphics_type_tag;
}

/* Test whether a device is an alpha-buffering device. */
bool
gs_device_is_abuf(const gx_device * dev)
{				/* We can't just compare the procs, or even an individual proc, */
    /* because we might be tracing.  Instead, check the identity of */
    /* the device name. */
    return dev->dname == mem_alpha_buffer_device.dname;
}

/* Internal routine to flush a block of the buffer. */
/* A block is a group of scan lines whose initial Y is a multiple */
/* of the Y scale and whose height is equal to the Y scale. */
static int
abuf_flush_block(gx_device_memory * adev, int y)
{
    gx_device *target = adev->target;
    int block_height = 1 << adev->log2_scale.y;
    int alpha_bits = 1 << adev->log2_alpha_bits;
    int ddepth =
    (adev->width >> adev->log2_scale.x) << adev->log2_alpha_bits;
    uint draster = bitmap_raster(ddepth);
    int buffer_y = y - adev->mapped_y + adev->mapped_start;
    byte *bits;

    if (buffer_y >= adev->height)
        buffer_y -= adev->height;
    bits = scan_line_base(adev, buffer_y);
    {/*
      * Many bits are typically zero.  Save time by computing
      * an accurate X bounding box before compressing.
      * Unfortunately, in order to deal with alpha nibble swapping
      * (see gsbitops.c), we can't expand the box only to pixel
      * boundaries:
          int alpha_mask = -1 << adev->log2_alpha_bits;
      * Instead, we must expand it to byte boundaries,
      */
        int alpha_mask = ~7;
        gs_int_rect bbox;
        int width;

        bits_bounding_box(bits, block_height, adev->raster, &bbox);
        bbox.p.x &= alpha_mask;
        bbox.q.x = (bbox.q.x + ~alpha_mask) & alpha_mask;
        width = bbox.q.x - bbox.p.x;
        bits_compress_scaled(bits, bbox.p.x, width, block_height,
                             adev->raster, bits, draster, &adev->log2_scale,
                             adev->log2_alpha_bits);
        /* Set up with NULL when adev initialized */
        if (adev->save_hl_color == NULL) {
            return (*dev_proc(target, copy_alpha)) (target,
                                              bits, 0, draster, gx_no_bitmap_id,
                                                  (adev->mapped_x + bbox.p.x) >>
                                                    adev->log2_scale.x,
                                                    y >> adev->log2_scale.y,
                                                 width >> adev->log2_scale.x, 1,
                                                  adev->save_color, alpha_bits);
        } else {
            return (*dev_proc(target, copy_alpha_hl_color)) (target,
                                              bits, 0, draster, gx_no_bitmap_id,
                                                  (adev->mapped_x + bbox.p.x) >>
                                                    adev->log2_scale.x,
                                                    y >> adev->log2_scale.y,
                                                 width >> adev->log2_scale.x, 1,
                                                  adev->save_hl_color, alpha_bits);
        }
    }
}
/* Flush the entire buffer. */
static int
abuf_flush(gx_device_memory * adev)
{
    int y, code = 0;
    int block_height = 1 << adev->log2_scale.y;

    for (y = 0; y < adev->mapped_height; y += block_height)
        if ((code = abuf_flush_block(adev, adev->mapped_y + y)) < 0)
            return code;
    adev->mapped_height = adev->mapped_start = 0;
    return 0;
}

/* Close the device, flushing the buffer. */
static int
mem_abuf_close(gx_device * dev)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    int code = abuf_flush(mdev);

    if (code < 0)
        return code;
    return mem_close(dev);
}

/*
 * Framework for mapping a requested imaging operation to the buffer.
 * For now, we assume top-to-bottom transfers and use a very simple algorithm.
 */
typedef struct y_transfer_s {
    int y_next;
    int height_left;
    int transfer_y;
    int transfer_height;
} y_transfer;
static int
y_transfer_init(y_transfer * pyt, gx_device * dev, int ty, int th)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    int bh = 1 << mdev->log2_scale.y;

    if (ty < mdev->mapped_y || ty > mdev->mapped_y + mdev->mapped_height) {
        int code = abuf_flush(mdev);
        if (code < 0)
            return code;
        mdev->mapped_y = ty & -bh;
        mdev->mapped_height = bh;
        memset(scan_line_base(mdev, 0), 0, (size_t)bh * mdev->raster);
    }
    pyt->y_next = ty;
    pyt->height_left = th;
    pyt->transfer_height = 0;

    return 0;
}
/* while ( yt.height_left > 0 ) { y_transfer_next(&yt, mdev); ... } */
static int
y_transfer_next(y_transfer * pyt, gx_device * dev)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    int my = mdev->mapped_y, mh = mdev->mapped_height;
    int ms = mdev->mapped_start;
    int ty = pyt->y_next += pyt->transfer_height;
    int th = pyt->height_left;
    int bh = 1 << mdev->log2_scale.y;

    /* From here on, we know that my <= ty <= my + mh. */
    int tby, tbh;

    if (ty == my + mh) {	/* Add a new block at my1. */
        if (mh == mdev->height) {
            int code = abuf_flush_block(mdev, my);

            if (code < 0)
                return code;
            mdev->mapped_y = my += bh;
            if ((mdev->mapped_start = ms += bh) == mh)
                mdev->mapped_start = ms = 0;
        } else {		/* Because we currently never extend backwards, */
            /* we know we can't wrap around in this case. */
            mdev->mapped_height = mh += bh;
        }
        memset(scan_line_base(mdev, (ms == 0 ? mh : ms) - bh),
               0, (size_t)bh * mdev->raster);
    }
    /* Now we know that my <= ty < my + mh. */
    tby = ty - my + ms;
    if (tby < mdev->height) {
        tbh = mdev->height - ms;
        if (tbh > mh)
            tbh = mh;
        tbh -= tby - ms;
    } else {			/* wrap around */
        tby -= mdev->height;
        tbh = ms + mh - dev->height - tby;
    }
    if_debug7m('V', mdev->memory,
               "[V]abuf: my=%d, mh=%d, ms=%d, ty=%d, th=%d, tby=%d, tbh=%d\n",
               my, mh, ms, ty, th, tby, tbh);
    if (tbh > th)
        tbh = th;
    pyt->height_left = th - tbh;
    pyt->transfer_y = tby;
    pyt->transfer_height = tbh;
    return 0;
}

/* Copy a monobit image. */
static int
mem_abuf_copy_mono(gx_device * dev,
               const byte * base, int sourcex, int sraster, gx_bitmap_id id,
        int x, int y, int w, int h, gx_color_index zero, gx_color_index one)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    y_transfer yt;
    int code;

    if (zero != gx_no_color_index || one == gx_no_color_index)
        return_error(gs_error_undefinedresult);
    x -= mdev->mapped_x;
    fit_copy_xyw(dev, base, sourcex, sraster, id, x, y, w, h);	/* don't limit h */
    if (w <= 0 || h <= 0)
        return 0;
    if (mdev->mapped_height != 0 && mdev->save_color != one) {
        /* Color has changed. Better flush. */
        int code = abuf_flush(mdev);
        if (code < 0)
            return code;
    }
    mdev->save_color = one;
    code = y_transfer_init(&yt, dev, y, h);
    if (code < 0)
        return code;
    while (yt.height_left > 0) {
        code = y_transfer_next(&yt, dev);
        if (code < 0)
            return code;
        code = mem_mono_copy_mono(dev,
                                  base + (yt.y_next - y) * sraster,
                                  sourcex, sraster, gx_no_bitmap_id,
                                  x, yt.transfer_y, w, yt.transfer_height,
                                  gx_no_color_index, (gx_color_index) 1);
        if (code < 0)
            return code;
    }
    return 0;
}

/* Fill a rectangle. */
static int
mem_abuf_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
                        gx_color_index color)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    y_transfer yt;
    int code;

    x -= mdev->mapped_x;
    fit_fill_xy(dev, x, y, w, h);
    fit_fill_w(dev, x, w);	/* don't limit h */
    /* or check w <= 0, h <= 0 */
    if (mdev->mapped_height != 0 && mdev->save_color != color) {
        /* Color has changed. Better flush. */
        int code = abuf_flush(mdev);
        if (code < 0)
            return code;
    }
    mdev->save_color = color;
    code = y_transfer_init(&yt, dev, y, h);
    if (code < 0)
        return code;
    while (yt.height_left > 0) {
        code = y_transfer_next(&yt, dev);
        if (code < 0)
            return code;
        code = mem_mono_fill_rectangle(dev, x, yt.transfer_y,
                                       w, yt.transfer_height,
                                       (gx_color_index) 1);
        if (code < 0)
            return code;
    }
    return 0;
}

/* Fill a rectangle. */
static int
mem_abuf_fill_rectangle_hl_color(gx_device * dev, const gs_fixed_rect *rect,
                                 const gs_gstate *pgs,
                                 const gx_drawing_color *pdcolor,
                                 const gx_clip_path *pcpath)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    y_transfer yt;
    int x = fixed2int(rect->p.x);
    int y = fixed2int(rect->p.y);
    int w = fixed2int(rect->q.x) - x;
    int h = fixed2int(rect->q.y) - y;
    int code;
    (void)pgs;

    x -= mdev->mapped_x;
    fit_fill_xy(dev, x, y, w, h);
    fit_fill_w(dev, x, w);	/* don't limit h */
    /* or check w <= 0, h <= 0 */
    if (mdev->mapped_height != 0 &&
        memcmp(mdev->save_hl_color, pdcolor, sizeof(*pdcolor)) != 0) {
        /* Color has changed. Better flush. */
        int code = abuf_flush(mdev);
        if (code < 0)
            return code;
    }
    mdev->save_hl_color = pdcolor;
    code = y_transfer_init(&yt, dev, y, h);
    if (code < 0)
        return code;
    while (yt.height_left > 0) {
        code = y_transfer_next(&yt, dev);
        if (code < 0)
            return code;
        code = mem_mono_fill_rectangle(dev, x, yt.transfer_y,
                                       w, yt.transfer_height,
                                       (gx_color_index) 1);
        if (code < 0)
            return code;
    }
    return 0;
}

/*
 * Fill/Stroke a path.  This is the default implementation of the driver
 * fill_path procedure.
 */
int
mem_abuf_fill_stroke_path(gx_device * pdev, const gs_gstate * pgs,
                          gx_path * ppath,
                          const gx_fill_params * params_fill,
                          const gx_device_color * pdevc_fill,
                          const gx_stroke_params * params_stroke,
                          const gx_device_color * pdevc_stroke,
                          const gx_clip_path * pcpath)
{
    int code = 0;
    int code1;
    int has_comp = 1;
    overprint_abuf_state_t param;
    gx_device_memory* const mdev = (gx_device_memory*)pdev;

    param.op_trans = OP_FS_TRANS_PREFILL;
    param.pgs = pgs;
    param.pcpath = pcpath;
    param.ppath = ppath;
    param.alpha_buf_path_scale = mdev->log2_scale;

    /* Tell any overprint compositor (maybe a pdf14 device) that's listening to get ready for a fill/stroke. */
    code = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, &param, sizeof(param));
    if (code == gs_error_undefined)
        has_comp = false; /* No compositor listening. */
    else if (code < 0)
        return code; /* Any other error is real. */

    /* Do the fill. */
    code = dev_proc(pdev, fill_path)(pdev, pgs, ppath, params_fill, pdevc_fill, pcpath);
    if (code < 0) {
        /* If the fill failed do any tidy up necessary. */
        if (has_comp) {
            param.op_trans = OP_FS_TRANS_CLEANUP;
            code1 = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, &param, sizeof(param));
            if (code1 < 0)
                code = code1; /* If the pdf14 cleanup failed that is (more) fatal! */
        }
        return code;
    }
    abuf_flush(mdev);

    /* Handle stroke */
    gs_swapcolors_quick(pgs);
    if (has_comp) {
        param.op_trans = OP_FS_TRANS_PRESTROKE;
        code = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, &param, sizeof(param));
        if (code < 0)
        {
            gs_swapcolors_quick(pgs);
            return code;
        }
    }
    code = dev_proc(pdev, stroke_path)(pdev, pgs, ppath, params_stroke, pdevc_stroke, pcpath);
    abuf_flush(mdev);
    gs_swapcolors_quick(pgs);

    /* Tell the compositors we're done. */
    if (has_comp) {
        param.op_trans = OP_FS_TRANS_POSTSTROKE;
        code1 = dev_proc(pdev, dev_spec_op)(pdev, gxdso_abuf_optrans, &param, sizeof(param));
        if (code >= 0)
            code = code1;
    }
    return code;
}

/* Get the clipping box.  We must scale this up by the number of alpha bits. */
static void
mem_abuf_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    gx_device *tdev = mdev->target;

    (*dev_proc(tdev, get_clipping_box)) (tdev, pbox);
    pbox->p.x <<= mdev->log2_scale.x;
    pbox->p.y <<= mdev->log2_scale.y;
    pbox->q.x <<= mdev->log2_scale.x;
    pbox->q.y <<= mdev->log2_scale.y;
}

/*
 * Determine the number of bits of alpha buffer for a stroke or fill.
 * We should do alpha buffering iff this value is >1.
 */
int
alpha_buffer_bits(gs_gstate * pgs)
{
    gx_device *dev;

    dev = gs_currentdevice_inline(pgs);
    if (gs_device_is_abuf(dev)) {
        /* We're already writing into an alpha buffer. */
        return 0;
    }
    return (*dev_proc(dev, get_alpha_bits))
        (dev, (pgs->in_cachedevice ? go_text : go_graphics));
}