summaryrefslogtreecommitdiff
path: root/base/gdevm1.c
blob: 9da4440e2d9818ff221fcab65636f83181a2618a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/

/* Monobit "memory" (stored bitmap) device */
#include "memory_.h"
#include "gserrors.h"
#include "gx.h"
#include "gxdevice.h"
#include "gxdevmem.h"           /* semi-public definitions */
#include "gdevmem.h"            /* private definitions */
#include "gsrop.h"

/* Either we can implement copy_mono directly, or we can call copy_rop to do
 * its work. We still do it directly for 'thin' regions by default. */
#define DO_COPY_MONO_BY_COPY_ROP

/* Either we can implement tile_rect directly, or we can call copy_rop to do
 * its work. It used to be faster to do it directly, but no more. */
#define DO_TILE_RECT_BY_COPY_ROP

/* Either we can implement fill_rect directly, or we can call copy_rop to do
 * its work. For now we still implement it directly, as for small tile widths
 * it wins over using run_rop. */
#undef DO_FILL_RECT_BY_COPY_ROP

/* Calculate the X offset for a given Y value, */
/* taking shift into account if necessary. */
#define x_offset(px, ty, textures)\
  ((textures)->shift == 0 ? (px) :\
   (px) + (ty) / (textures)->rep_height * (textures)->rep_shift)

/* ---------------- Monobit RasterOp ---------------- */

/* The guts of this function originally came from mem_mono_strip_copy_rop,
 * but have been split out here to allow other callers, such as the
 * functions below. In this function, rop works in terms of device pixel
 * values, not RGB-space values. */
int
mem_mono_strip_copy_rop2_dev(gx_device * dev, const byte * sdata,
                             int sourcex,uint sraster, gx_bitmap_id id,
                             const gx_color_index * scolors,
                             const gx_strip_bitmap * textures,
                             const gx_color_index * tcolors,
                             int x, int y, int width, int height,
                             int phase_x, int phase_y,
                             gs_logical_operation_t lop,
                             uint planar_height)
{
    gx_device_memory *mdev = (gx_device_memory *) dev;
    gs_rop3_t rop = (gs_rop3_t)lop;
    uint draster = mdev->raster;
    uint traster;
    int line_count;
    byte *drow;
    const byte *srow;
    int ty;
    rop_run_op ropper;

    if (planar_height != 0) {
        dmlprintf(dev->memory, "mem_default_strip_copy_rop2 should never be called!\n");
        return_error(gs_error_Fatal);
    }

    /* Modify the raster operation according to the source palette. */
    if (scolors != 0) {		/* Source with palette. */
        switch ((int)((scolors[1] << 1) + scolors[0])) {
            case 0:
                rop = rop3_know_S_0(rop);
                break;
            case 1:
                rop = rop3_invert_S(rop);
                break;
            case 2:
                break;
            case 3:
                rop = rop3_know_S_1(rop);
                break;
        }
    }
    /* Modify the raster operation according to the texture palette. */
    if (tcolors != 0) {		/* Texture with palette. */
        switch ((int)((tcolors[1] << 1) + tcolors[0])) {
            case 0:
                rop = rop3_know_T_0(rop);
                break;
            case 1:
                rop = rop3_invert_T(rop);
                break;
            case 2:
                break;
            case 3:
                rop = rop3_know_T_1(rop);
                break;
        }
    }
    /* Handle constant source and/or texture, and other special cases. */
    {
#if !defined(DO_COPY_MONO_BY_COPY_ROP) || !defined(DO_TILE_RECT_BY_COPY_ROP)
        gx_color_index color0, color1;
#endif

        switch (rop_usage_table[rop]) {
            case rop_usage_none:
#ifndef DO_FILL_RECT_BY_COPY_ROP /* Fill rect calls us - don't call it */
                /* We're just filling with a constant. */
                return (*dev_proc(dev, fill_rectangle))
                    (dev, x, y, width, height, (gx_color_index) (rop & 1));
#else
                break;
#endif
            case rop_usage_D:
                /* This is either D (no-op) or ~D. */
                if (rop == rop3_D)
                    return 0;
                /* Code no_S inline, then finish with no_T. */
                fit_fill(dev, x, y, width, height);
                sdata = scan_line_base(mdev, 0);
                sourcex = x;
                sraster = 0;
                goto no_T;
            case rop_usage_S:
#ifndef DO_COPY_MONO_BY_COPY_ROP /* Copy mono is calling us, don't call it! */
                /* This is either S or ~S, which copy_mono can handle. */
                if (rop == rop3_S)
                    color0 = 0, color1 = 1;
                else
                    color0 = 1, color1 = 0;
              do_copy:return (*dev_proc(dev, copy_mono))
                    (dev, sdata, sourcex, sraster, id, x, y, width, height,
                     color0, color1);
#else
                fit_copy(dev, sdata, sourcex, sraster, id, x, y, width, height);
                goto no_T;
                break;
#endif
            case rop_usage_DS:
#ifndef DO_COPY_MONO_BY_COPY_ROP /* Copy mono is calling us, don't call it! */
                /* This might be a case that copy_mono can handle. */
#define copy_case(c0, c1) color0 = c0, color1 = c1; goto do_copy;
                switch ((uint) rop) {	/* cast shuts up picky compilers */
                    case rop3_D & rop3_not(rop3_S):
                        copy_case(gx_no_color_index, 0);
                    case rop3_D | rop3_S:
                        copy_case(gx_no_color_index, 1);
                    case rop3_D & rop3_S:
                        copy_case(0, gx_no_color_index);
                    case rop3_D | rop3_not(rop3_S):
                        copy_case(1, gx_no_color_index);
                    default:;
                }
#undef copy_case
#endif
                fit_copy(dev, sdata, sourcex, sraster, id, x, y, width, height);
              no_T: /* Texture is not used; textures may be garbage. */
                textures = NULL;
                break;
            case rop_usage_T:
#ifndef DO_TILE_RECT_BY_COPY_ROP /* Tile rect calls us - don't call it! */
                /* This is either T or ~T, which tile_rectangle can handle. */
                if (rop == rop3_T)
                    color0 = 0, color1 = 1;
                else
                    color0 = 1, color1 = 0;
              do_tile:return (*dev_proc(dev, strip_tile_rectangle))
                    (dev, textures, x, y, width, height, color0, color1,
                     phase_x, phase_y);
#else
                fit_fill(dev, x, y, width, height);
                break;
#endif
            case rop_usage_DT:
#ifndef DO_TILE_RECT_BY_COPY_ROP /* Tile rect calls us - don't call it! */
                /* This might be a case that tile_rectangle can handle. */
#define tile_case(c0, c1) color0 = c0, color1 = c1; goto do_tile;
                switch ((uint) rop) {	/* cast shuts up picky compilers */
                    case rop3_D & rop3_not(rop3_T):
                        tile_case(gx_no_color_index, 0);
                    case rop3_D | rop3_T:
                        tile_case(gx_no_color_index, 1);
                    case rop3_D & rop3_T:
                        tile_case(0, gx_no_color_index);
                    case rop3_D | rop3_not(rop3_T):
                        tile_case(1, gx_no_color_index);
                    default:;
                }
#undef tile_case
#endif
                fit_fill(dev, x, y, width, height);
                /* Source is not used; sdata et al may be garbage. */
                sdata = mdev->base;	/* arbitrary, as long as all */
                                        /* accesses are valid */
                sourcex = x;	/* guarantee no source skew */
                sraster = 0;
                break;
            default:		/* rop_usage_[D]ST */
                fit_copy(dev, sdata, sourcex, sraster, id, x, y, width, height);
        }
    }

#ifdef DEBUG
    if_debug1m('b', dev->memory, "final rop=0x%x\n", rop);
#endif

    /* Set up transfer parameters. */
    line_count = height;
    srow = sdata;
    drow = scan_line_base(mdev, y);
    traster = (textures ? textures->raster : 0);
    ty = y + phase_y;

    if (textures == NULL) {
        int dbit = x & 7;
        int sbit = sourcex & 7;
        drow += (x>>3);
        srow += (sourcex>>3);
        if (width < 32) {
            /* Do it the old, 'slow' way. rop runs of less than 1 word are
             * not likely to be a win with rop_run. */
            /* Loop over scan lines. */
            int sskew = sbit - dbit;
            const rop_proc proc = rop_proc_table[rop];
            byte lmask, rmask;

            lmask = 0xff >> dbit;
            width += dbit;
            rmask = 0xff << (~(width - 1) & 7);
            if (sskew < 0)
                --srow, sskew += 8;
            if (width < 8)
                lmask &= rmask;
            for (; line_count-- > 0; drow += draster, srow += sraster) {
                byte *dptr = drow;
                const byte *sptr = srow;
                int left = width-8;
#define fetch1(ptr, skew)\
  (skew ? ((ptr[0] << skew) | (ptr[1] >> (8 - skew))) : *ptr)
                {
                    /* Left hand byte */
                    byte dbyte = *dptr;
                    byte sbyte = fetch1(sptr, sskew);
                    byte result = (*proc)(dbyte,sbyte,0);
                    sptr++;
                    *dptr++ = (result & lmask) | (dbyte & ~lmask);
                }
                if (left <= 0) /* if (width <= 8) we're done */
                    continue;
                left -= 8; /* left = bits to go - 8 */
                while (left > 0)
                {
                    byte dbyte = *dptr;
                    byte sbyte = fetch1(sptr, sskew);
                    sptr++;
                    *dptr++ = (*proc)(dbyte,sbyte,0);
                    left -= 8;
                }
                left += 8; /* left = bits to go < 8 */
                {
                    byte dbyte = *dptr;
                    byte sbyte = fetch1(sptr, sskew);
                    byte result = (*proc)(dbyte,sbyte,0);
                    *dptr = (result & rmask) | (dbyte & ~rmask);
                }
#undef fetch1
            }
        } else {
            /* Use Rop run */
            if (rop_get_run_op(&ropper, rop, 1, 0)) {
                /* Loop over scan lines. */
                for (; line_count-- > 0; drow += draster, srow += sraster) {
                    rop_set_s_bitmap_subbyte(&ropper, srow, sbit);
                    rop_run_subbyte(&ropper, drow, dbit, width);
                }
                rop_release_run_op(&ropper);
            }
        }
    } else if (textures->rep_width > 32) {
        /* Use Rop run */
        if (rop_get_run_op(&ropper, rop, 1, 0)) {
            /* Loop over scan lines. */
            for (; line_count-- > 0; drow += draster, srow += sraster, ++ty) {
                int sx = sourcex;
                int dx = x;
                int w = width;
                const byte *trow = textures->data + imod(ty, textures->rep_height) * traster;
                int xoff = x_offset(phase_x, ty, textures);
                int nw;
                int tx = imod(dx + xoff, textures->rep_width);

                /* Loop over (horizontal) copies of the tile. */
                for (; w > 0; sx += nw, dx += nw, w -= nw, tx = 0) {
                    int dbit = dx & 7;
                    int sbit = sx & 7;
                    int tbit = tx & 7;
                    byte *dptr = drow + (dx >> 3);
                    const byte *sptr = srow + (sx >> 3);
                    const byte *tptr = trow + (tx >> 3);
                    nw = min(w, textures->size.x - tx);
                    rop_set_s_bitmap_subbyte(&ropper, sptr, sbit);
                    rop_set_t_bitmap_subbyte(&ropper, tptr, tbit);
                    rop_run_subbyte(&ropper, dptr, dbit, nw);
                }
            }
            rop_release_run_op(&ropper);
        }
    } else if (srow == NULL) {
        /* Do it the old, 'slow' way. rop runs of less than 1 word are
         * not likely to be a win with rop_run. */
        /* Loop over scan lines. */
        const rop_proc proc = rop_proc_table[rop];
        for (; line_count-- > 0; drow += draster, ++ty) {
            int dx = x;
            int w = width;
            const byte *trow = textures->data + imod(ty, textures->rep_height) * traster;
            int xoff = x_offset(phase_x, ty, textures);
            int nw;
            int tx = imod(dx + xoff, textures->rep_width);

            /* Loop over (horizontal) copies of the tile. */
            for (; w > 0; dx += nw, w -= nw, tx = 0) {
                int dbit = dx & 7;
                int tbit = tx & 7;
                int tskew = tbit - dbit;
                int left = nw = min(w, textures->size.x - tx);
                byte lmask = 0xff >> dbit;
                byte rmask = 0xff << (~(dbit + nw - 1) & 7);
                byte mask = lmask;
                int nx = 8 - dbit;
                byte *dptr = drow + (dx >> 3);
                const byte *tptr = trow + (tx >> 3);

                if (tskew < 0)
                    --tptr, tskew += 8;
                for (; left > 0;
                    left -= nx, mask = 0xff, nx = 8,
                    ++dptr, ++tptr
                    ) {
                    byte dbyte = *dptr;

#define fetch1(ptr, skew)\
  (skew ? ((ptr[0] << skew) | (ptr[1] >> (8 - skew))) : *ptr)
                    byte tbyte = fetch1(tptr, tskew);

#undef fetch1
                    byte result = (*proc)(dbyte,0,tbyte);

                    if (left <= nx)
                        mask &= rmask;
                    *dptr = (mask == 0xff ? result :
                             (result & mask) | (dbyte & ~mask));
                }
            }
        }
    } else {
        /* Do it the old, 'slow' way. rop runs of less than 1 word are
         * not likely to be a win with rop_run. */
        /* Loop over scan lines. */
        const rop_proc proc = rop_proc_table[rop];
        for (; line_count-- > 0; drow += draster, srow += sraster, ++ty) {
            int sx = sourcex;
            int dx = x;
            int w = width;
            const byte *trow = textures->data + imod(ty, textures->rep_height) * traster;
            int xoff = x_offset(phase_x, ty, textures);
            int nw;
            int tx = imod(dx + xoff, textures->rep_width);

            /* Loop over (horizontal) copies of the tile. */
            for (; w > 0; sx += nw, dx += nw, w -= nw, tx = 0) {
                int dbit = dx & 7;
                int sbit = sx & 7;
                int sskew = sbit - dbit;
                int tbit = tx & 7;
                int tskew = tbit - dbit;
                int left = nw = min(w, textures->size.x - tx);
                byte lmask = 0xff >> dbit;
                byte rmask = 0xff << (~(dbit + nw - 1) & 7);
                byte mask = lmask;
                int nx = 8 - dbit;
                byte *dptr = drow + (dx >> 3);
                const byte *sptr = srow + (sx >> 3);
                const byte *tptr = trow + (tx >> 3);

                if (sskew < 0)
                    --sptr, sskew += 8;
                if (tskew < 0)
                    --tptr, tskew += 8;
                for (; left > 0;
                    left -= nx, mask = 0xff, nx = 8,
                    ++dptr, ++sptr, ++tptr
                    ) {
                    byte dbyte = *dptr;

#define fetch1(ptr, skew)\
  (skew ? ((ptr[0] << skew) | (ptr[1] >> (8 - skew))) : *ptr)
                    byte sbyte = fetch1(sptr, sskew);
                    byte tbyte = fetch1(tptr, tskew);

#undef fetch1
                    byte result = (*proc)(dbyte,sbyte,tbyte);

                    if (left <= nx)
                        mask &= rmask;
                    *dptr = (mask == 0xff ? result :
                             (result & mask) | (dbyte & ~mask));
                }
            }
        }
    }

#ifdef DEBUG
    if (gs_debug_c('B'))
        debug_dump_bitmap(mdev->memory, scan_line_base(mdev, y), mdev->raster,
                          height, "final dest bits");
#endif
    return 0;
}

/* ================ Standard (byte-oriented) device ================ */

/* Procedures */
static dev_proc_map_rgb_color(mem_mono_map_rgb_color);
static dev_proc_map_color_rgb(mem_mono_map_color_rgb);
static dev_proc_strip_tile_rectangle(mem_mono_strip_tile_rectangle);

/* The device descriptor. */
/* The instance is public. */
const gx_device_memory mem_mono_device =
    mem_device("image1", 0, 1, mem_dev_initialize_device_procs);

const gdev_mem_functions gdev_mem_fns_1 =
{
    mem_mono_map_rgb_color,
    mem_mono_map_color_rgb,
    mem_mono_fill_rectangle,
    mem_mono_copy_mono,
    gx_default_copy_color,
    gx_default_copy_alpha,
    mem_mono_strip_tile_rectangle,
    mem_mono_strip_copy_rop2,
    mem_get_bits_rectangle
};

/* Map color to/from RGB.  This may be inverted. */
static gx_color_index
mem_mono_map_rgb_color(gx_device * dev, const gx_color_value cv[])
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    return (gx_default_w_b_map_rgb_color(dev, cv) ^ mdev->palette.data[0]) & 1;
}

static int
mem_mono_map_color_rgb(gx_device * dev, gx_color_index color,
                       gx_color_value prgb[3])
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    /* NB code doesn't make sense... map_color_rgb procedures return an error code */
    return (gx_default_w_b_map_color_rgb(dev, color, prgb) ^ mdev->palette.data[0]) & 1;
}

/* Fill a rectangle with a color. */
int
mem_mono_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
                        gx_color_index color)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;

#ifdef DO_FILL_RECT_BY_COPY_ROP
    return mem_mono_strip_copy_rop(dev, NULL, 0, 0, gx_no_bitmap_id, NULL,
                             NULL, NULL,
                             x, y, w, h, 0, 0,
                             (color ? rop3_1 : rop3_0));
#else
    fit_fill(dev, x, y, w, h);
    bits_fill_rectangle(scan_line_base(mdev, y), x, mdev->raster,
                        -(int)(mono_fill_chunk) color, w, h);
    return 0;
#endif
}

/* Convert x coordinate to byte offset in scan line. */
#define x_to_byte(x) ((x) >> 3)

/* Copy a monochrome bitmap. */
#undef mono_masks
#define mono_masks mono_copy_masks

/*
 * Fetch a chunk from the source.
 *
 * Since source and destination are both always big-endian,
 * fetching an aligned chunk never requires byte swapping.
 */
#define CFETCH_ALIGNED(cptr)\
  (*(const chunk *)(cptr))

/*
 * Note that the macros always cast cptr,
 * so it doesn't matter what the type of cptr is.
 */
/* cshift = chunk_bits - shift. */
#undef chunk
#if ARCH_IS_BIG_ENDIAN
#  define chunk uint
#  define CFETCH_RIGHT(cptr, shift, cshift)\
        (CFETCH_ALIGNED(cptr) >> shift)
#  define CFETCH_LEFT(cptr, shift, cshift)\
        (CFETCH_ALIGNED(cptr) << shift)
#  define CFETCH_USES_CSKEW 0
/* Fetch a chunk that straddles a chunk boundary. */
#  define CFETCH2(cptr, cskew, skew)\
    (CFETCH_LEFT(cptr, cskew, skew) |\
     CFETCH_RIGHT((const chunk *)(cptr) + 1, skew, cskew))
#else /* little-endian */
#  define chunk bits16
static const bits16 right_masks2[9] =
{
    0xffff, 0x7f7f, 0x3f3f, 0x1f1f, 0x0f0f, 0x0707, 0x0303, 0x0101, 0x0000
};
static const bits16 left_masks2[9] =
{
    0xffff, 0xfefe, 0xfcfc, 0xf8f8, 0xf0f0, 0xe0e0, 0xc0c0, 0x8080, 0x0000
};

#  define CCONT(cptr, off) (((const chunk *)(cptr))[off])
#  define CFETCH_RIGHT(cptr, shift, cshift)\
        ((shift) < 8 ?\
         ((CCONT(cptr, 0) >> (shift)) & right_masks2[shift]) |\
          (CCONT(cptr, 0) << (cshift)) :\
         ((chunk)*(const byte *)(cptr) << (cshift)) & 0xff00)
#  define CFETCH_LEFT(cptr, shift, cshift)\
        ((shift) < 8 ?\
         ((CCONT(cptr, 0) << (shift)) & left_masks2[shift]) |\
          (CCONT(cptr, 0) >> (cshift)) :\
         ((CCONT(cptr, 0) & 0xff00) >> (cshift)) & 0xff)
#  define CFETCH_USES_CSKEW 1
/* Fetch a chunk that straddles a chunk boundary. */
/* We can avoid testing the shift amount twice */
/* by expanding the CFETCH_LEFT/right macros in-line. */
#  define CFETCH2(cptr, cskew, skew)\
        ((cskew) < 8 ?\
         ((CCONT(cptr, 0) << (cskew)) & left_masks2[cskew]) |\
          (CCONT(cptr, 0) >> (skew)) |\
          (((chunk)(((const byte *)(cptr))[2]) << (cskew)) & 0xff00) :\
         (((CCONT(cptr, 0) & 0xff00) >> (skew)) & 0xff) |\
          ((CCONT(cptr, 1) >> (skew)) & right_masks2[skew]) |\
           (CCONT(cptr, 1) << (cskew)))
#endif

typedef enum {
    COPY_OR = 0, COPY_STORE, COPY_AND, COPY_FUNNY
} copy_function;
typedef struct {
    int invert;
    copy_function op;
} copy_mode;

/*
 * Map from <color0,color1> to copy_mode.
 * Logically, this is a 2-D array.
 * The indexing is (transparent, 0, 1, unused). */
static const copy_mode copy_modes[16] = {
    {~0, COPY_FUNNY},           /* NN */
    {~0, COPY_AND},             /* N0 */
    {0, COPY_OR},               /* N1 */
    {0, 0},                     /* unused */
    {0, COPY_AND},              /* 0N */
    {0, COPY_FUNNY},            /* 00 */
    {0, COPY_STORE},            /* 01 */
    {0, 0},                     /* unused */
    {~0, COPY_OR},              /* 1N */
    {~0, COPY_STORE},           /* 10 */
    {0, COPY_FUNNY},            /* 11 */
    {0, 0},                     /* unused */
    {0, 0},                     /* unused */
    {0, 0},                     /* unused */
    {0, 0},                     /* unused */
    {0, 0},                     /* unused */
};

/* Handle the funny cases that aren't supposed to happen. */
#define FUNNY_CASE()\
  (invert ? gs_note_error(-1) :\
   mem_mono_fill_rectangle(dev, x, y, w, h, color0))

int
mem_mono_copy_mono(gx_device * dev,
 const byte * source_data, int source_x, int source_raster, gx_bitmap_id id,
   int x, int y, int w, int h, gx_color_index color0, gx_color_index color1)
{
/* Macros for writing partial chunks. */
/* The destination pointer is always named optr, */
/* and must be declared as chunk *. */
/* CINVERT may be temporarily redefined. */
#define CINVERT(bits) ((bits) ^ invert)
#define WRITE_OR_MASKED(bits, mask, off)\
  optr[off] |= (CINVERT(bits) & mask)
#define WRITE_STORE_MASKED(bits, mask, off)\
  optr[off] = ((optr[off] & ~mask) | (CINVERT(bits) & mask))
#define WRITE_AND_MASKED(bits, mask, off)\
  optr[off] &= (CINVERT(bits) | ~mask)
/* Macros for writing full chunks. */
#define WRITE_OR(bits)  *optr |= CINVERT(bits)
#define WRITE_STORE(bits) *optr = CINVERT(bits)
#define WRITE_AND(bits) *optr &= CINVERT(bits)

    gx_device_memory * const mdev = (gx_device_memory *)dev;
    register const byte *bptr;	/* actually chunk * */
    int dbit, wleft;
    uint mask;
    copy_mode mode;

    DECLARE_SCAN_PTR_VARS(dbptr, byte *, dest_raster);
#define optr ((chunk *)dbptr)
    register int skew;
    register uint invert;

    fit_copy(dev, source_data, source_x, source_raster, id, x, y, w, h);
#ifdef DO_COPY_MONO_BY_COPY_ROP
    if (w >= 32) {
        return mem_mono_strip_copy_rop2_dev(dev, source_data, source_x,
                                            source_raster,
                                            id, NULL, NULL, NULL,
                                            x, y, w, h, 0, 0,
                                            ((color0 == gx_no_color_index ? rop3_D :
                                              color0 == 0 ? rop3_0 : rop3_1) & ~rop3_S) |
                                            ((color1 == gx_no_color_index ? rop3_D :
                                              color1 == 0 ? rop3_0 : rop3_1) & rop3_S),
                                            0);
    }
#endif /* !DO_COPY_MONO_BY_COPY_ROP */
#if gx_no_color_index_value != -1       /* hokey! */
    if (color0 == gx_no_color_index)
        color0 = -1;
    if (color1 == gx_no_color_index)
        color1 = -1;
#endif
    mode = copy_modes[((int)color0 << 2) + (int)color1 + 5];
    invert = (uint)mode.invert; /* load register */
    SETUP_RECT_VARS(dbptr, byte *, dest_raster);
    bptr = source_data + ((source_x & ~chunk_align_bit_mask) >> 3);
    dbit = x & chunk_align_bit_mask;
    skew = dbit - (source_x & chunk_align_bit_mask);

/* Macro for incrementing to next chunk. */
#define NEXT_X_CHUNK()\
  bptr += chunk_bytes; dbptr += chunk_bytes
/* Common macro for the end of each scan line. */
#define END_Y_LOOP(sdelta, ddelta)\
  bptr += sdelta; dbptr += ddelta

    if ((wleft = w + dbit - chunk_bits) <= 0) {         /* The entire operation fits in one (destination) chunk. */
        set_mono_thin_mask(mask, w, dbit);

#define WRITE_SINGLE(wr_op, src)\
  for ( ; ; )\
   { wr_op(src, mask, 0);\
     if ( --h == 0 ) break;\
     END_Y_LOOP(source_raster, dest_raster);\
   }

#define WRITE1_LOOP(src)\
  switch ( mode.op ) {\
    case COPY_OR: WRITE_SINGLE(WRITE_OR_MASKED, src); break;\
    case COPY_STORE: WRITE_SINGLE(WRITE_STORE_MASKED, src); break;\
    case COPY_AND: WRITE_SINGLE(WRITE_AND_MASKED, src); break;\
    default: return FUNNY_CASE();\
  }

        if (skew >= 0) {        /* single -> single, right/no shift */
            if (skew == 0) {    /* no shift */
                WRITE1_LOOP(CFETCH_ALIGNED(bptr));
            } else {            /* right shift */
#if CFETCH_USES_CSKEW
                int cskew = chunk_bits - skew;
#endif

                WRITE1_LOOP(CFETCH_RIGHT(bptr, skew, cskew));
            }
        } else if (wleft <= skew) {     /* single -> single, left shift */
#if CFETCH_USES_CSKEW
            int cskew = chunk_bits + skew;
#endif

            skew = -skew;
            WRITE1_LOOP(CFETCH_LEFT(bptr, skew, cskew));
        } else {                /* double -> single */
            int cskew = -skew;

            skew += chunk_bits;
            WRITE1_LOOP(CFETCH2(bptr, cskew, skew));
        }
#undef WRITE1_LOOP
#undef WRITE_SINGLE
    } else if (wleft <= skew) { /* 1 source chunk -> 2 destination chunks. */
        /* This is an important special case for */
        /* both characters and halftone tiles. */
        uint rmask;
        int cskew = chunk_bits - skew;

        set_mono_left_mask(mask, dbit);
        set_mono_right_mask(rmask, wleft);
#undef CINVERT
#define CINVERT(bits) (bits)    /* pre-inverted here */

#if ARCH_IS_BIG_ENDIAN          /* no byte swapping */
#  define WRITE_1TO2(wr_op)\
  for ( ; ; )\
   { register uint bits = CFETCH_ALIGNED(bptr) ^ invert;\
     wr_op(bits >> skew, mask, 0);\
     wr_op(bits << cskew, rmask, 1);\
     if ( --h == 0 ) break;\
     END_Y_LOOP(source_raster, dest_raster);\
   }
#else /* byte swapping */
#  define WRITE_1TO2(wr_op)\
  for ( ; ; )\
   { wr_op(CFETCH_RIGHT(bptr, skew, cskew) ^ invert, mask, 0);\
     wr_op(CFETCH_LEFT(bptr, cskew, skew) ^ invert, rmask, 1);\
     if ( --h == 0 ) break;\
     END_Y_LOOP(source_raster, dest_raster);\
   }
#endif

        switch (mode.op) {
            case COPY_OR:
                WRITE_1TO2(WRITE_OR_MASKED);
                break;
            case COPY_STORE:
                WRITE_1TO2(WRITE_STORE_MASKED);
                break;
            case COPY_AND:
                WRITE_1TO2(WRITE_AND_MASKED);
                break;
            default:
                return FUNNY_CASE();
        }
#undef CINVERT
#define CINVERT(bits) ((bits) ^ invert)
#undef WRITE_1TO2
    } else {                    /* More than one source chunk and more than one */
        /* destination chunk are involved. */
        uint rmask;
        int words = (wleft & ~chunk_bit_mask) >> 3;
        uint sskip = source_raster - words;
        uint dskip = dest_raster - words;
        register uint bits;

        set_mono_left_mask(mask, dbit);
        set_mono_right_mask(rmask, wleft & chunk_bit_mask);
        if (skew == 0) {        /* optimize the aligned case */

#define WRITE_ALIGNED(wr_op, wr_op_masked)\
  for ( ; ; )\
   { int count = wleft;\
     /* Do first partial chunk. */\
     wr_op_masked(CFETCH_ALIGNED(bptr), mask, 0);\
     /* Do full chunks. */\
     while ( (count -= chunk_bits) >= 0 )\
      { NEXT_X_CHUNK(); wr_op(CFETCH_ALIGNED(bptr)); }\
     /* Do last chunk */\
     if ( count > -chunk_bits )\
      { wr_op_masked(CFETCH_ALIGNED(bptr + chunk_bytes), rmask, 1); }\
     if ( --h == 0 ) break;\
     END_Y_LOOP(sskip, dskip);\
   }

            switch (mode.op) {
                case COPY_OR:
                    WRITE_ALIGNED(WRITE_OR, WRITE_OR_MASKED);
                    break;
                case COPY_STORE:
                    WRITE_ALIGNED(WRITE_STORE, WRITE_STORE_MASKED);
                    break;
                case COPY_AND:
                    WRITE_ALIGNED(WRITE_AND, WRITE_AND_MASKED);
                    break;
                default:
                    return FUNNY_CASE();
            }
#undef WRITE_ALIGNED
        } else {                /* not aligned */
            int cskew = -skew & chunk_bit_mask;
            bool case_right =
            (skew >= 0 ? true :
             ((bptr += chunk_bytes), false));

            skew &= chunk_bit_mask;

#define WRITE_UNALIGNED(wr_op, wr_op_masked)\
  /* Prefetch partial word. */\
  bits =\
    (case_right ? CFETCH_RIGHT(bptr, skew, cskew) :\
     CFETCH2(bptr - chunk_bytes, cskew, skew));\
  wr_op_masked(bits, mask, 0);\
  /* Do full chunks. */\
  while ( count >= chunk_bits )\
    { bits = CFETCH2(bptr, cskew, skew);\
      NEXT_X_CHUNK(); wr_op(bits); count -= chunk_bits;\
    }\
  /* Do last chunk */\
  if ( count > 0 )\
    { bits = CFETCH_LEFT(bptr, cskew, skew);\
      if ( count > skew ) bits |= CFETCH_RIGHT(bptr + chunk_bytes, skew, cskew);\
      wr_op_masked(bits, rmask, 1);\
    }

            switch (mode.op) {
                case COPY_OR:
                    for (;;) {
                        int count = wleft;

                        WRITE_UNALIGNED(WRITE_OR, WRITE_OR_MASKED);
                        if (--h == 0)
                            break;
                        END_Y_LOOP(sskip, dskip);
                    }
                    break;
                case COPY_STORE:
                    for (;;) {
                        int count = wleft;

                        WRITE_UNALIGNED(WRITE_STORE, WRITE_STORE_MASKED);
                        if (--h == 0)
                            break;
                        END_Y_LOOP(sskip, dskip);
                    }
                    break;
                case COPY_AND:
                    for (;;) {
                        int count = wleft;

                        WRITE_UNALIGNED(WRITE_AND, WRITE_AND_MASKED);
                        if (--h == 0)
                            break;
                        END_Y_LOOP(sskip, dskip);
                    }
                    break;
                default /*case COPY_FUNNY */ :
                    return FUNNY_CASE();
            }
#undef WRITE_UNALIGNED
        }
    }
#undef END_Y_LOOP
#undef NEXT_X_CHUNK
    return 0;
#undef optr
}

/* Strip-tile with a monochrome halftone. */
/* This is a performance bottleneck for monochrome devices, */
/* so we re-implement it, even though it takes a lot of code. */
static int
mem_mono_strip_tile_rectangle(gx_device * dev,
                              register const gx_strip_bitmap * tiles,
int tx, int y, int tw, int th, gx_color_index color0, gx_color_index color1,
                              int px, int py)
{
#ifdef DO_TILE_RECT_BY_COPY_ROP
    gs_logical_operation_t rop = ((color0 == gx_no_color_index ? rop3_D :
                                   color0 == 0 ? rop3_0 : rop3_1) & ~rop3_T) |
                                 ((color1 == gx_no_color_index ? rop3_D :
                                   color1 == 0 ? rop3_0 : rop3_1) & rop3_T);

    /* If color0 == gx_no_color_index && color1 == gx_no_color_index then
     * we have a color pixmap, not a bitmap, so we want to use copy_color,
     * rather than copy_mono. This case gives us rop == 0xAA (no change). */
    if (rop == 0xAA)
        return gx_default_strip_tile_rectangle(dev, tiles, tx, y, tw, th,
                                               color0, color1, px, py);
    return mem_mono_strip_copy_rop2_dev(dev, NULL, 0, 0, tiles->id, NULL,
                                        tiles, NULL,
                                        tx, y, tw, th, px, py, rop, 0);
#else /* !USE_COPY_ROP */
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    register uint invert;
    int source_raster;
    uint tile_bits_size;
    const byte *source_data;
    const byte *end;
    int x, rw, w, h;
    register const byte *bptr;  /* actually chunk * */
    int dbit, wleft;
    uint mask;
    byte *dbase;

    DECLARE_SCAN_PTR_VARS(dbptr, byte *, dest_raster);
#define optr ((chunk *)dbptr)
    register int skew;

    /* This implementation doesn't handle strips yet. */
    if (color0 != (color1 ^ 1) || tiles->shift != 0)
        return gx_default_strip_tile_rectangle(dev, tiles, tx, y, tw, th,
                                               color0, color1, px, py);
    fit_fill(dev, tx, y, tw, th);
    invert = (uint)(-(int) color0);
    source_raster = tiles->raster;
    source_data = tiles->data + (imod(y + py, tiles->rep_height) * source_raster;
    tile_bits_size = tiles->size.y * source_raster;
    end = tiles->data + tile_bits_size;
#undef END_Y_LOOP
#define END_Y_LOOP(sdelta, ddelta)\
  if ( end - bptr <= sdelta )   /* wrap around */\
    bptr -= tile_bits_size;\
  bptr += sdelta; dbptr += ddelta
    dest_raster = mdev->raster;
    dbase = scan_line_base(mdev, y);
    x = tx;
    rw = tw;
    /*
     * The outermost loop here works horizontally, one iteration per
     * copy of the tile.  Note that all iterations except the first
     * have source_x = 0.
     */
    {
        int source_x = imod(x + px, tiles->rep_width;

        w = tiles->size.x - source_x;
        bptr = source_data + ((source_x & ~chunk_align_bit_mask) >> 3);
        dbit = x & chunk_align_bit_mask;
        skew = dbit - (source_x & chunk_align_bit_mask);
    }
  outer:if (w > rw)
        w = rw;
    h = th;
    dbptr = dbase + ((x >> 3) & -chunk_align_bytes);
    if ((wleft = w + dbit - chunk_bits) <= 0) {         /* The entire operation fits in one (destination) chunk. */
        set_mono_thin_mask(mask, w, dbit);
#define WRITE1_LOOP(src)\
  for ( ; ; )\
   { WRITE_STORE_MASKED(src, mask, 0);\
     if ( --h == 0 ) break;\
     END_Y_LOOP(source_raster, dest_raster);\
   }
        if (skew >= 0) {        /* single -> single, right/no shift */
            if (skew == 0) {    /* no shift */
                WRITE1_LOOP(CFETCH_ALIGNED(bptr));
            } else {            /* right shift */
#if CFETCH_USES_CSKEW
                int cskew = chunk_bits - skew;
#endif

                WRITE1_LOOP(CFETCH_RIGHT(bptr, skew, cskew));
            }
        } else if (wleft <= skew) {     /* single -> single, left shift */
#if CFETCH_USES_CSKEW
            int cskew = chunk_bits + skew;
#endif

            skew = -skew;
            WRITE1_LOOP(CFETCH_LEFT(bptr, skew, cskew));
        } else {                /* double -> single */
            int cskew = -skew;

            skew += chunk_bits;
            WRITE1_LOOP(CFETCH2(bptr, cskew, skew));
        }
#undef WRITE1_LOOP
    } else if (wleft <= skew) { /* 1 source chunk -> 2 destination chunks. */
        /* This is an important special case for */
        /* both characters and halftone tiles. */
        uint rmask;
        int cskew = chunk_bits - skew;

        set_mono_left_mask(mask, dbit);
        set_mono_right_mask(rmask, wleft);
#if ARCH_IS_BIG_ENDIAN          /* no byte swapping */
#undef CINVERT
#define CINVERT(bits) (bits)    /* pre-inverted here */
        for (;;) {
            register uint bits = CFETCH_ALIGNED(bptr) ^ invert;

            WRITE_STORE_MASKED(bits >> skew, mask, 0);
            WRITE_STORE_MASKED(bits << cskew, rmask, 1);
            if (--h == 0)
                break;
            END_Y_LOOP(source_raster, dest_raster);
        }
#undef CINVERT
#define CINVERT(bits) ((bits) ^ invert)
#else /* byte swapping */
        for (;;) {
            WRITE_STORE_MASKED(CFETCH_RIGHT(bptr, skew, cskew), mask, 0);
            WRITE_STORE_MASKED(CFETCH_LEFT(bptr, cskew, skew), rmask, 1);
            if (--h == 0)
                break;
            END_Y_LOOP(source_raster, dest_raster);
        }
#endif
    } else {                    /* More than one source chunk and more than one */
        /* destination chunk are involved. */
        uint rmask;
        int words = (wleft & ~chunk_bit_mask) >> 3;
        uint sskip = source_raster - words;
        uint dskip = dest_raster - words;
        register uint bits;

#define NEXT_X_CHUNK()\
  bptr += chunk_bytes; dbptr += chunk_bytes

        set_mono_right_mask(rmask, wleft & chunk_bit_mask);
        if (skew == 0) {        /* optimize the aligned case */
            if (dbit == 0)
                mask = 0;
            else
                set_mono_left_mask(mask, dbit);
            for (;;) {
                int count = wleft;

                /* Do first partial chunk. */
                if (mask)
                    WRITE_STORE_MASKED(CFETCH_ALIGNED(bptr), mask, 0);
                else
                    WRITE_STORE(CFETCH_ALIGNED(bptr));
                /* Do full chunks. */
                while ((count -= chunk_bits) >= 0) {
                    NEXT_X_CHUNK();
                    WRITE_STORE(CFETCH_ALIGNED(bptr));
                }
                /* Do last chunk */
                if (count > -chunk_bits) {
                    WRITE_STORE_MASKED(CFETCH_ALIGNED(bptr + chunk_bytes), rmask, 1);
                }
                if (--h == 0)
                    break;
                END_Y_LOOP(sskip, dskip);
            }
        } else {                /* not aligned */
            bool case_right =
            (skew >= 0 ? true :
             ((bptr += chunk_bytes), false));
            int cskew = -skew & chunk_bit_mask;

            skew &= chunk_bit_mask;
            set_mono_left_mask(mask, dbit);
            for (;;) {
                int count = wleft;

                if (case_right)
                    bits = CFETCH_RIGHT(bptr, skew, cskew);
                else
                    bits = CFETCH2(bptr - chunk_bytes, cskew, skew);
                WRITE_STORE_MASKED(bits, mask, 0);
                /* Do full chunks. */
                while (count >= chunk_bits) {
                    bits = CFETCH2(bptr, cskew, skew);
                    NEXT_X_CHUNK();
                    WRITE_STORE(bits);
                    count -= chunk_bits;
                }
                /* Do last chunk */
                if (count > 0) {
                    bits = CFETCH_LEFT(bptr, cskew, skew);
                    if (count > skew)
                        bits |= CFETCH_RIGHT(bptr + chunk_bytes, skew, cskew);
                    WRITE_STORE_MASKED(bits, rmask, 1);
                }
                if (--h == 0)
                    break;
                END_Y_LOOP(sskip, dskip);
            }
        }
    }
#undef END_Y_LOOP
#undef NEXT_X_CHUNK
#undef optr
    if ((rw -= w) > 0) {
        x += w;
        w = tiles->size.x;
        bptr = source_data;
        skew = dbit = x & chunk_align_bit_mask;
        goto outer;
    }
    return 0;
#endif /* !USE_COPY_ROP */
}



/* ================ "Word"-oriented device ================ */

/* Note that on a big-endian machine, this is the same as the */
/* standard byte-oriented-device. */

#if !ARCH_IS_BIG_ENDIAN

/* Procedures */
static dev_proc_copy_mono(mem1_word_copy_mono);
static dev_proc_fill_rectangle(mem1_word_fill_rectangle);

#define mem1_word_strip_tile_rectangle gx_default_strip_tile_rectangle

/* Here is the device descriptor. */
const gx_device_memory mem_mono_word_device =
    mem_device("image1w", 0, 1, mem_word_dev_initialize_device_procs);

const gdev_mem_functions gdev_mem_fns_1w =
{
    mem_mono_map_rgb_color,
    mem_mono_map_color_rgb,
    mem1_word_fill_rectangle,
    mem1_word_copy_mono,
    gx_default_copy_color,
    gx_default_copy_alpha,
    mem1_word_strip_tile_rectangle,
    gx_no_strip_copy_rop2,
    mem_word_get_bits_rectangle
};

/* Fill a rectangle with a color. */
static int
mem1_word_fill_rectangle(gx_device * dev, int x, int y, int w, int h,
                         gx_color_index color)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    byte *base;
    uint raster;

    fit_fill(dev, x, y, w, h);
    base = scan_line_base(mdev, y);
    raster = mdev->raster;
    mem_swap_byte_rect(base, raster, x, w, h, true);
    bits_fill_rectangle(base, x, raster, -(int)(mono_fill_chunk) color, w, h);
    mem_swap_byte_rect(base, raster, x, w, h, true);
    return 0;
}

/* Copy a bitmap. */
static int
mem1_word_copy_mono(gx_device * dev,
 const byte * source_data, int source_x, int source_raster, gx_bitmap_id id,
   int x, int y, int w, int h, gx_color_index color0, gx_color_index color1)
{
    gx_device_memory * const mdev = (gx_device_memory *)dev;
    byte *row;
    uint raster;
    bool store;

    fit_copy(dev, source_data, source_x, source_raster, id, x, y, w, h);
    row = scan_line_base(mdev, y);
    raster = mdev->raster;
    store = (color0 != gx_no_color_index && color1 != gx_no_color_index);
    mem_swap_byte_rect(row, raster, x, w, h, store);
    mem_mono_copy_mono(dev, source_data, source_x, source_raster, id,
                       x, y, w, h, color0, color1);
    mem_swap_byte_rect(row, raster, x, w, h, false);
    return 0;
}

#endif /* !ARCH_IS_BIG_ENDIAN */