summaryrefslogtreecommitdiff
path: root/base/gsbitops.c
blob: 32102bff6c58823268b9b97c8f9273296f18aec9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Bitmap filling, copying, and transforming operations */
#include "stdio_.h"
#include "memory_.h"
#include "gdebug.h"
#include "gserrors.h"
#include "gstypes.h"
#include "gsbittab.h"
#include "gxbitops.h"
#include "gxcindex.h"

/* ---------------- Bit-oriented operations ---------------- */

/* Define masks for little-endian operation. */
/* masks[i] has the first i bits off and the rest on. */
#if !ARCH_IS_BIG_ENDIAN
const bits16 mono_copy_masks[17] = {
    0xffff, 0xff7f, 0xff3f, 0xff1f,
    0xff0f, 0xff07, 0xff03, 0xff01,
    0xff00, 0x7f00, 0x3f00, 0x1f00,
    0x0f00, 0x0700, 0x0300, 0x0100,
    0x0000
};
const bits32 mono_fill_masks[33] = {
#define mask(n)\
  (((bits32)~0xff | (0xff >> (n & 7))) << (n & -8))
    mask( 0),mask( 1),mask( 2),mask( 3),mask( 4),mask( 5),mask( 6),mask( 7),
    mask( 8),mask( 9),mask(10),mask(11),mask(12),mask(13),mask(14),mask(15),
    mask(16),mask(17),mask(18),mask(19),mask(20),mask(21),mask(22),mask(23),
    mask(24),mask(25),mask(26),mask(27),mask(28),mask(29),mask(30),mask(31),
    0
#undef mask
};
#endif

/* Fill a rectangle of bits with an 8x1 pattern. */
/* The pattern argument must consist of the pattern in every byte, */
/* e.g., if the desired pattern is 0xaa, the pattern argument must */
/* have the value 0xaaaa (if ints are short) or 0xaaaaaaaa. */
#undef chunk
#define chunk mono_fill_chunk
#undef mono_masks
#define mono_masks mono_fill_masks
void
bits_fill_rectangle(byte * dest, int dest_bit, uint draster,
                    mono_fill_chunk pattern, int width_bits, int height)
{
    uint bit;
    chunk right_mask;
    int line_count = height;
    chunk *ptr;
    int last_bit;

#define FOR_EACH_LINE(stat)\
        do { stat } while ( inc_ptr(ptr, draster), --line_count )

    dest += (dest_bit >> 3) & -chunk_align_bytes;
    ptr = (chunk *) dest;
    bit = dest_bit & chunk_align_bit_mask;
    last_bit = width_bits + bit - (chunk_bits + 1);

    if (last_bit < 0) {		/* <=1 chunk */
        set_mono_thin_mask(right_mask, width_bits, bit);
        if (pattern == 0)
            FOR_EACH_LINE(*ptr &= ~right_mask;);
        else if (pattern == (mono_fill_chunk)(-1))
            FOR_EACH_LINE(*ptr |= right_mask;);
        else
            FOR_EACH_LINE(
                *ptr = (*ptr & ~right_mask) | (pattern & right_mask); );
    } else {
        chunk mask;
        int last = last_bit >> chunk_log2_bits;

        set_mono_left_mask(mask, bit);
        set_mono_right_mask(right_mask, (last_bit & chunk_bit_mask) + 1);
        switch (last) {
            case 0:		/* 2 chunks */
                if (pattern == 0)
                    FOR_EACH_LINE(*ptr &= ~mask; ptr[1] &= ~right_mask;);
                else if (pattern == (mono_fill_chunk)(-1))
                    FOR_EACH_LINE(*ptr |= mask; ptr[1] |= right_mask;);
                else
                    FOR_EACH_LINE(
                        *ptr = (*ptr & ~mask) | (pattern & mask);
                        ptr[1] = (ptr[1] & ~right_mask) | (pattern & right_mask); );
                break;
            case 1:		/* 3 chunks */
                if (pattern == 0)
                    FOR_EACH_LINE( *ptr &= ~mask;
                                   ptr[1] = 0;
                                   ptr[2] &= ~right_mask; );
                else if (pattern == (mono_fill_chunk)(-1))
                    FOR_EACH_LINE( *ptr |= mask;
                                   ptr[1] = ~(chunk) 0;
                                   ptr[2] |= right_mask; );
                else
                    FOR_EACH_LINE( *ptr = (*ptr & ~mask) | (pattern & mask);
                                    ptr[1] = pattern;
                                    ptr[2] = (ptr[2] & ~right_mask) | (pattern & right_mask); );
                break;
            default:{		/* >3 chunks */
                    uint byte_count = (last_bit >> 3) & -chunk_bytes;

                    if (pattern == 0)
                        FOR_EACH_LINE( *ptr &= ~mask;
                                       memset(ptr + 1, 0, byte_count);
                                       ptr[last + 1] &= ~right_mask; );
                    else if (pattern == (mono_fill_chunk)(-1))
                        FOR_EACH_LINE( *ptr |= mask;
                                       memset(ptr + 1, 0xff, byte_count);
                                       ptr[last + 1] |= right_mask; );
                    else
                        FOR_EACH_LINE(
                                *ptr = (*ptr & ~mask) | (pattern & mask);
                                memset(ptr + 1, (byte) pattern, byte_count);
                                ptr[last + 1] = (ptr[last + 1] & ~right_mask) |
                                                (pattern & right_mask); 	);
                }
        }
    }
#undef FOR_EACH_LINE
}

/*
 * Similar to bits_fill_rectangle, but with an additional source mask.
 * The src_mask variable is 1 for those bits of the original that are
 * to be retained. The mask argument must consist of the requisite value
 * in every byte, in the same manner as the pattern.
 */
void
bits_fill_rectangle_masked(byte * dest, int dest_bit, uint draster,
                    mono_fill_chunk pattern, mono_fill_chunk src_mask,
                    int width_bits, int height)
{
    uint bit;
    chunk right_mask;
    int line_count = height;
    chunk *ptr;
    int last_bit;

#define FOR_EACH_LINE(stat)\
        do { stat } while ( inc_ptr(ptr, draster), --line_count )

    dest += (dest_bit >> 3) & -chunk_align_bytes;
    ptr = (chunk *) dest;
    bit = dest_bit & chunk_align_bit_mask;
    last_bit = width_bits + bit - (chunk_bits + 1);

    if (last_bit < 0) {		/* <=1 chunk */
        set_mono_thin_mask(right_mask, width_bits, bit);
        right_mask &= ~src_mask;
        if (pattern == 0)
            FOR_EACH_LINE(*ptr &= ~right_mask;);
        else if (pattern == (mono_fill_chunk)(-1))
            FOR_EACH_LINE(*ptr |= right_mask;);
        else
            FOR_EACH_LINE(
                *ptr = (*ptr & ~right_mask) | (pattern & right_mask); );
    } else {
        chunk mask;
        int last = last_bit >> chunk_log2_bits;

        set_mono_left_mask(mask, bit);
        set_mono_right_mask(right_mask, (last_bit & chunk_bit_mask) + 1);
        mask &= ~src_mask;
        right_mask &= ~src_mask;
        switch (last) {
            case 0:		/* 2 chunks */
                if (pattern == 0)
                    FOR_EACH_LINE(*ptr &= ~mask; ptr[1] &= ~right_mask;);
                else if (pattern == (mono_fill_chunk)(-1))
                    FOR_EACH_LINE(*ptr |= mask; ptr[1] |= right_mask;);
                else
                    FOR_EACH_LINE(
                        *ptr = (*ptr & ~mask) | (pattern & mask);
                        ptr[1] = (ptr[1] & ~right_mask) | (pattern & right_mask); );
                break;
            case 1:		/* 3 chunks */
                if (pattern == 0)
                    FOR_EACH_LINE( *ptr &= ~mask;
                                   ptr[1] &= src_mask;
                                   ptr[2] &= ~right_mask; );
                else if (pattern == (mono_fill_chunk)(-1))
                    FOR_EACH_LINE( *ptr |= mask;
                                   ptr[1] |= ~src_mask;
                                   ptr[2] |= right_mask; );
                else
                    FOR_EACH_LINE( *ptr = (*ptr & ~mask) | (pattern & mask);
                                    ptr[1] =(ptr[1] & src_mask) | pattern;
                                    ptr[2] = (ptr[2] & ~right_mask) | (pattern & right_mask); );
                break;
            default:{		/* >3 chunks */
                    int     i;

                    if (pattern == 0)
                        FOR_EACH_LINE( *ptr++ &= ~mask;
                                       for (i = 0; i < last; i++)
                                           *ptr++ &= src_mask;
                                       *ptr &= ~right_mask; );
                    else if (pattern == (mono_fill_chunk)(-1))
                        FOR_EACH_LINE( *ptr++ |= mask;
                                       for (i = 0; i < last; i++)
                                           *ptr++ |= ~src_mask;
                                        *ptr |= right_mask; );
                    else
                        FOR_EACH_LINE(
                            /* note: we know (pattern & ~src_mask) == pattern */
                            *ptr = (*ptr & ~mask) | (pattern & mask);
                            ++ptr;
                            for (i = 0; i < last; i++, ptr++)
                                *ptr = (*ptr & src_mask) | pattern;
                            *ptr = (*ptr & ~right_mask) | (pattern & right_mask); );
                }
        }
    }
#undef FOR_EACH_LINE
}

/* Replicate a bitmap horizontally in place. */
void
bits_replicate_horizontally(byte * data, uint width, uint height,
                 uint raster, uint replicated_width, uint replicated_raster)
{
    /* The current algorithm is extremely inefficient! */
    const byte *orig_row = data + (height - 1) * raster;
    byte *tile_row = data + (height - 1) * replicated_raster;
    uint y;

    if (!(width & 7)) {
        uint src_bytes = width >> 3;
        uint dest_bytes = replicated_width >> 3;

        for (y = height; y-- > 0;
             orig_row -= raster, tile_row -= replicated_raster
             ) {
            uint move = src_bytes;
            const byte *from = orig_row;
            byte *to = tile_row + dest_bytes - src_bytes;

            memmove(to, from, move);
            while (to - tile_row >= move) {
                from = to;
                to -= move;
                memmove(to, from, move);
                move <<= 1;
            }
            if (to != tile_row)
                memmove(tile_row, to, to - tile_row);
        }
    } else {
        /*
         * This algorithm is inefficient, but probably not worth improving.
         */
        uint bit_count = width & (uint)(-(int)width);  /* lowest bit: 1, 2, or 4 */
        uint left_mask = (0xff00 >> bit_count) & 0xff;

        for (y = height; y-- > 0;
             orig_row -= raster, tile_row -= replicated_raster
             ) {
            uint sx;

            for (sx = width; sx > 0;) {
                uint bits, dx;

                sx -= bit_count;
                bits = (orig_row[sx >> 3] << (sx & 7)) & left_mask;
                for (dx = sx + replicated_width; dx >= width;) {
                    byte *dp;
                    int dbit;

                    dx -= width;
                    dbit = dx & 7;
                    dp = tile_row + (dx >> 3);
                    *dp = (*dp & ~(left_mask >> dbit)) | (bits >> dbit);
                }
            }
        }
    }
}

/* Replicate a bitmap vertically in place. */
void
bits_replicate_vertically(byte * data, uint height, uint raster,
                          uint replicated_height)
{
    byte *dest = data;
    uint h = replicated_height;
    uint size = raster * height;

    while (h > height) {
        memcpy(dest + size, dest, size);
        dest += size;
        h -= height;
    }
}

/* Find the bounding box of a bitmap. */
/* Assume bits beyond the width are zero. */
void
bits_bounding_box(const byte * data, uint height, uint raster,
                  gs_int_rect * pbox)
{
    register const ulong *lp;
    static const byte first_1[16] = {
        4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
    };
    static const byte last_1[16] = {
        0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4
    };

    /* Count trailing blank rows. */
    /* Since the raster is a multiple of sizeof(long), */
    /* we don't need to scan by bytes, only by longs. */

    lp = (const ulong *)(data + raster * height);
    while ((const byte *)lp > data && !lp[-1])
        --lp;
    if ((const byte *)lp == data) {
        pbox->p.x = pbox->q.x = pbox->p.y = pbox->q.y = 0;
        return;
    }
    pbox->q.y = height = ((const byte *)lp - data + raster - 1) / raster;

    /* Count leading blank rows. */

    lp = (const ulong *)data;
    while (!*lp)
        ++lp;
    {
        uint n = ((const byte *)lp - data) / raster;

        pbox->p.y = n;
        if (n)
            height -= n, data += n * raster;
    }

    /* Find the left and right edges. */
    /* We know that the first and last rows are non-blank. */

    {
        uint raster_longs = raster >> ARCH_LOG2_SIZEOF_LONG;
        uint left = raster_longs - 1, right = 0;
        ulong llong = 0, rlong = 0;
        const byte *q;
        uint h, n;

        for (q = data, h = height; h-- > 0; q += raster) {	/* Work from the left edge by longs. */
            for (lp = (const ulong *)q, n = 0;
                 n < left && !*lp; lp++, n++
                );
            if (n < left)
                left = n, llong = *lp;
            else
                llong |= *lp;
            /* Work from the right edge by longs. */
            for (lp = (const ulong *)(q + raster - sizeof(long)),
                 n = raster_longs - 1;

                 n > right && !*lp; lp--, n--
                );
            if (n > right)
                right = n, rlong = *lp;
            else
                rlong |= *lp;
        }

        /* Do binary subdivision on edge longs.  We assume that */
        /* sizeof(long) = 4 or 8. */
#if ARCH_SIZEOF_LONG > 8
        Error_longs_are_too_large();
#endif

#if ARCH_IS_BIG_ENDIAN
#  define last_bits(n) ((1L << (n)) - 1)
#  define shift_out_last(x,n) ((x) >>= (n))
#  define right_justify_last(x,n) DO_NOTHING
#else
#  define last_bits(n) (-1L << ((ARCH_SIZEOF_LONG * 8) - (n)))
#  define shift_out_last(x,n) ((x) <<= (n))
#  define right_justify_last(x,n) (x) >>= ((ARCH_SIZEOF_LONG * 8) - (n))
#endif

        left <<= ARCH_LOG2_SIZEOF_LONG + 3;
#if ARCH_SIZEOF_LONG == 8
        if (llong & ~last_bits(32))
            shift_out_last(llong, 32);
        else
            left += 32;
#endif
        if (llong & ~last_bits(16))
            shift_out_last(llong, 16);
        else
            left += 16;
        if (llong & ~last_bits(8))
            shift_out_last(llong, 8);
        else
            left += 8;
        right_justify_last(llong, 8);
        if (llong & 0xf0)
            left += first_1[(byte) llong >> 4];
        else
            left += first_1[(byte) llong] + 4;

        right <<= ARCH_LOG2_SIZEOF_LONG + 3;
#if ARCH_SIZEOF_LONG == 8
        if (!(rlong & last_bits(32)))
            shift_out_last(rlong, 32);
        else
            right += 32;
#endif
        if (!(rlong & last_bits(16)))
            shift_out_last(rlong, 16);
        else
            right += 16;
        if (!(rlong & last_bits(8)))
            shift_out_last(rlong, 8);
        else
            right += 8;
        right_justify_last(rlong, 8);
        if (!(rlong & 0xf))
            right += last_1[(byte) rlong >> 4];
        else
            right += last_1[(uint) rlong & 0xf] + 4;

        pbox->p.x = left;
        pbox->q.x = right;
    }
}

/* Extract a plane from a pixmap. */
int
bits_extract_plane(const bits_plane_t *dest /*write*/,
    const bits_plane_t *source /*read*/, int shift, int width, int height)
{
    int source_depth = source->depth;
    int source_bit = source->x * source_depth;
    const byte *source_row = source->data.read + (source_bit >> 3);
    int dest_depth = dest->depth;
    uint plane_mask = (1 << dest_depth) - 1;
    int dest_bit = dest->x * dest_depth;
    byte *dest_row = dest->data.write + (dest_bit >> 3);
    enum {
        EXTRACT_SLOW = 0,
        EXTRACT_4_TO_1,
        EXTRACT_32_TO_8
    } loop_case = EXTRACT_SLOW;
    int y;

    source_bit &= 7;
    dest_bit &= 7;
    /* Check for the fast CMYK cases. */
    if (!(source_bit | dest_bit)) {
        switch (source_depth) {
        case 4:
            loop_case =
                (dest_depth == 1 && !(source->raster & 3) &&
                 !(source->x & 1) ? EXTRACT_4_TO_1 :
                 EXTRACT_SLOW);
            break;
        case 32:
            if (dest_depth == 8 && !(shift & 7)) {
                loop_case = EXTRACT_32_TO_8;
                source_row += 3 - (shift >> 3);
            }
            break;
        }
    }
    for (y = 0; y < height;
         ++y, source_row += source->raster, dest_row += dest->raster
        ) {
        int x;

        switch (loop_case) {
        case EXTRACT_4_TO_1: {
            const byte *src = source_row;
            byte *dst = dest_row;

            /* Do groups of 8 pixels. */
            for (x = width; x >= 8; src += 4, x -= 8) {
                bits32 sword =
                    (*(const bits32 *)src >> shift) & 0x11111111;

                *dst++ =
                    byte_acegbdfh_to_abcdefgh[(
#if ARCH_IS_BIG_ENDIAN
                    (sword >> 21) | (sword >> 14) | (sword >> 7) | sword
#else
                    (sword << 3) | (sword >> 6) | (sword >> 15) | (sword >> 24)
#endif
                                        ) & 0xff];
            }
            if (x) {
                /* Do the final 1-7 pixels. */
                uint test = 0x10 << shift, store = 0x80;

                do {
                    *dst = (*src & test ? *dst | store : *dst & ~store);
                    if (test >= 0x10)
                        test >>= 4;
                    else
                        test <<= 4, ++src;
                    store >>= 1;
                } while (--x > 0);
            }
            break;
        }
        case EXTRACT_32_TO_8: {
            const byte *src = source_row;
            byte *dst = dest_row;

            for (x = width; x > 0; src += 4, --x)
                *dst++ = *src;
            break;
        }
        default: {
            const byte *sptr = source_row;
            int sbit = source_bit;
            byte *dptr = dest_row;
            int dbit = dest_bit;
            byte dbbyte = (dbit ? (byte)(*dptr & (0xff00 >> dbit)) : 0);

            dbbyte = (dbit ? (byte)(*dptr & (0xff00 >> dbit)) : 0);
            for (x = width; x > 0; --x) {
                gx_color_index color;
                uint pixel;

                if (sizeof(color) > 4) {
                    if (sample_load_next64((uint64_t *)&color, &sptr, &sbit, source_depth) < 0)
                        return_error(gs_error_rangecheck);
                }
                else {
                    if (sample_load_next32((uint32_t *)&color, &sptr, &sbit, source_depth) < 0)
                        return_error(gs_error_rangecheck);
                }
                pixel = (color >> shift) & plane_mask;
                if (sample_store_next8(pixel, &dptr, &dbit, dest_depth, &dbbyte) < 0)
                    return_error(gs_error_rangecheck);
            }
            sample_store_flush(dptr, dbit, dbbyte);
        }
        }
    }
    return 0;
}

/* Expand a plane into a pixmap. */
int
bits_expand_plane(const bits_plane_t *dest /*write*/,
    const bits_plane_t *source /*read*/, int shift, int width, int height)
{
    /*
     * Eventually we will optimize this just like bits_extract_plane.
     */
    int source_depth = source->depth;
    int source_bit = source->x * source_depth;
    const byte *source_row = source->data.read + (source_bit >> 3);
    int dest_depth = dest->depth;
    int dest_bit = dest->x * dest_depth;
    byte *dest_row = dest->data.write + (dest_bit >> 3);
    enum {
        EXPAND_SLOW = 0,
        EXPAND_1_TO_4,
        EXPAND_8_TO_32
    } loop_case = EXPAND_SLOW;
    int y;

    source_bit &= 7;
    /* Check for the fast CMYK cases. */
    if (!(source_bit || (dest_bit & 31) || (dest->raster & 3))) {
        switch (dest_depth) {
        case 4:
            if (source_depth == 1)
                loop_case = EXPAND_1_TO_4;
            break;
        case 32:
            if (source_depth == 8 && !(shift & 7))
                loop_case = EXPAND_8_TO_32;
            break;
        }
    }
    dest_bit &= 7;
    switch (loop_case) {

    case EXPAND_8_TO_32: {
#if ARCH_IS_BIG_ENDIAN
#  define word_shift (shift)
#else
        int word_shift = 24 - shift;
#endif
        for (y = 0; y < height;
             ++y, source_row += source->raster, dest_row += dest->raster
             ) {
            int x;
            const byte *src = source_row;
            bits32 *dst = (bits32 *)dest_row;

            for (x = width; x > 0; --x)
                *dst++ = (bits32)(*src++) << word_shift;
        }
#undef word_shift
    }
        break;

    case EXPAND_1_TO_4:
    default:
        for (y = 0; y < height;
             ++y, source_row += source->raster, dest_row += dest->raster
             ) {
            int x;
            const byte *sptr = source_row;
            int sbit = source_bit;
            byte *dptr = dest_row;
            int dbit = dest_bit;
            byte dbbyte = (dbit ? (byte)(*dptr & (0xff00 >> dbit)) : 0);

            dbbyte = (dbit ? (byte)(*dptr & (0xff00 >> dbit)) : 0);
            for (x = width; x > 0; --x) {
                uint color;
                gx_color_index pixel;

                if (sample_load_next8(&color, &sptr, &sbit, source_depth) < 0)
                    return_error(gs_error_rangecheck);

                pixel = (gx_color_index)color << shift;
                if (sizeof(pixel) > 4) {
                    if (sample_store_next64(pixel, &dptr, &dbit, dest_depth, &dbbyte) < 0)
                        return_error(gs_error_rangecheck);
                }
                else {
                    if (sample_store_next32(pixel, &dptr, &dbit, dest_depth, &dbbyte) < 0)
                        return_error(gs_error_rangecheck);
                }
            }
            sample_store_flush(dptr, dbit, dbbyte);
        }
        break;

    }
    return 0;
}

/* ---------------- Byte-oriented operations ---------------- */

/* Fill a rectangle of bytes. */
void
bytes_fill_rectangle(byte * dest, uint raster,
                     byte value, int width_bytes, int height)
{
    while (height-- > 0) {
        memset(dest, value, width_bytes);
        dest += raster;
    }
}

/* Copy a rectangle of bytes. */
void
bytes_copy_rectangle(byte * dest, uint dest_raster,
             const byte * src, uint src_raster, int width_bytes, int height)
{
    while (height-- > 0) {
        memcpy(dest, src, width_bytes);
        src += src_raster;
        dest += dest_raster;
    }
}

int
bytes_rectangle_is_const(const byte * src, uint src_raster,
                         int width_bytes, int height)
{
    int i;
    char c;

    if (width_bytes == 0 || height == 0)
        return -1;
    c = *src;
    while (height-- > 0) {
        const byte *s = src;
        src += src_raster;
        for (i = width_bytes; i > 0; i--)
            if (*s++ != c)
                return -1;
    }
    return c;
}

/* Copy a rectangle of bytes zeroing any padding bytes. */
void
bytes_copy_rectangle_zero_padding(byte * dest, uint dest_raster,
             const byte * src, uint src_raster, int width_bytes, int height)
{
    int padlen = dest_raster;
    if (padlen < 0)
        padlen = -padlen;
    padlen -= width_bytes;
    if (padlen == 0)
    {
        while (height-- > 0) {
            memcpy(dest, src, width_bytes);
            src += src_raster;
            dest += dest_raster;
        }
    } else {
        while (height-- > 0) {
            memcpy(dest, src, width_bytes);
            memset(dest+width_bytes, 0, padlen);
            src += src_raster;
            dest += dest_raster;
        }
    }
}

/* Copy a rectangle of bytes zeroing any padding bytes, copying
 * the last row with no padding. */
void
bytes_copy_rectangle_zero_padding_last_short(byte * dest, uint dest_raster,
             const byte * src, uint src_raster, int width_bytes, int height)
{
    int padlen = dest_raster;
    if (padlen < 0)
        padlen = -padlen;
    padlen -= width_bytes;
    if (padlen == 0)
    {
        while (height-- > 0) {
            memcpy(dest, src, width_bytes);
            src += src_raster;
            dest += dest_raster;
        }
    } else {
        while (--height > 0) {
            memcpy(dest, src, width_bytes);
            memset(dest+width_bytes, 0, padlen);
            src += src_raster;
            dest += dest_raster;
        }
        if (height >= 0)
            memcpy(dest, src, width_bytes);
    }
}