summaryrefslogtreecommitdiff
path: root/base/gxhintn1.c
blob: 484001217e40472bb0ddaa91e228aab4cc6ea946 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* A stuff for reconnizing and fixing wrong contour signs. */

#include "memory_.h"
#include "math_.h"
#include "gx.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gstypes.h"
#include "gxmatrix.h"
#include "gxhintn.h"
#include "gzpath.h"

#define CURVE_FLATTENING (fixed_1) /* Design units in 'fixed'. */

static double inline line_area_2(fixed p0x, fixed p0y, fixed p1x, fixed p1y)
{   /* Returns area * 2.*/
    return ((double)p0x*p1y - (double)p0y*p1x);
}

static double inline bezier_area_2(fixed p0x, fixed p0y, fixed p1x, fixed p1y,
                                  fixed p2x, fixed p2y, fixed p3x, fixed p3y)
{   /* Returns area * 2.*/
    return (-(p0y*(6.0*p1x + 3.0*p2x + p3x)) + p0x*(6.0*p1y + 3.0*p2y + p3y) -
     3*((double)p1y*p2x + (double)p1y*p3x + 2.0*p2y*p3x - 2.0*p2x*p3y - (double)p1x*(p2y + p3y)))/10;
}

static void t1_hinter__reverse_contour(t1_hinter * self, int c)
{
    int b = self->contour[c];
    int e = self->contour[c + 1] - 1; /* Skip 'close'. */
    int e2 = (b + e + 1) / 2;
    int i;
    t1_pole p;

    /* Reverse all except endpoint ('close') : */
    for (i = b + 1; i < e2; i++) {
        int j = e - (i - b);

        p = self->pole[i];
        self->pole[i] = self->pole[j];
        self->pole[j] = p;
    }
}

#define CONTACT_SIGNAL -100000.0

static double inline bar_winding_angle(fixed x0, fixed y0, fixed x1, fixed y1)
{
    double vp = (double)x0 * y1 - (double)y0 * x1;
    double sp = (double)x0 * x1 + (double)y0 * y1;
    double A;

    if (sp == 0) {
        if (vp == 0)
            return CONTACT_SIGNAL; /* Contours contact. */
        A = 1.57079632679489661923; /* pi/2. */
        if (vp < 0)
            A = -A;
    } else
        A = atan2(vp, sp);
    return A;
}

static double
curve_winding_angle_rec(int k, fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
    if (k <= 1)
        return bar_winding_angle(x0, y0, x3, y3);
    else {
        /* Assuming the trapezoid is not self-intersecting and
           the curve is inside the trapezoid
           due to Type 1 constraints. */
        double a0 = bar_winding_angle(x0, y0, x1, y1);
        double a1 = bar_winding_angle(x1, y1, x2, y2);
        double a2 = bar_winding_angle(x2, y2, x3, y3);
        double a3 = bar_winding_angle(x3, y3, x0, y0);
        double a = a0 + a1 + a2 + a3;

        if (any_abs(a) < 0.1 && a0 != CONTACT_SIGNAL &&
                a1 != CONTACT_SIGNAL &&
                a2 != CONTACT_SIGNAL &&
                a3 != CONTACT_SIGNAL) {
            /* The center is outside the trapezoid. */
            return -a3;
        } else {
            fixed x01 = (x0 + x1) / 2, y01 = (y0 + y1) / 2;
            fixed x12 = (x1 + x2) / 2, y12 = (y1 + y2) / 2;
            fixed x23 = (x2 + x3) / 2, y23 = (y2 + y3) / 2;
            fixed x012 = (x01 + x12) / 2, y012 = (y01 + y12) / 2;
            fixed x123 = (x12 + x23) / 2, y123 = (y12 + y23) / 2;
            fixed x0123 = (x012 + x123) / 2, y0123 = (y012 + y123) / 2;
            double A0, A1;

            A0 = curve_winding_angle_rec(k - 1, x0, y0, x01, y01, x012, y012, x0123, y0123);
            if (A0 == CONTACT_SIGNAL)
                return CONTACT_SIGNAL;
            A1 = curve_winding_angle_rec(k - 1, x0123, y0123, x123, y123, x23, y23, x3, y3);
            if (A1 == CONTACT_SIGNAL)
                return CONTACT_SIGNAL;
            return A0 + A1;
        }
    }
}

static int curve_log2_samples(fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
    curve_segment s;

    s.p1.x = x1;
    s.p1.y = y1;
    s.p2.x = x2;
    s.p2.y = y2;
    s.pt.x = x3;
    s.pt.y = y3;
    return gx_curve_log2_samples(x0, y0, &s, (fixed)CURVE_FLATTENING);
}

static double curve_winding_angle(fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
    int k = curve_log2_samples(x0, y0, x1, y1, x2, y2, x3, y3);

    return curve_winding_angle_rec(k, x0, y0, x1, y1, x2, y2, x3, y3);
}

static int t1_hinter__is_inside(t1_hinter * self, t1_glyph_space_coord gx, t1_glyph_space_coord gy, int c)
{
    int b = self->contour[c];
    int e = self->contour[c + 1] - 1;
    double a = 0, A;
    int i;

    for (i = b; i < e;) {
        if (self->pole[i + 1].type != offcurve) {  /* line or close. */
            A = bar_winding_angle(self->pole[i + 0].gx - gx, self->pole[i + 0].gy - gy,
                                    self->pole[i + 1].gx - gx, self->pole[i + 1].gy - gy);
            i++;
        } else {
            A = curve_winding_angle(self->pole[i + 0].gx - gx, self->pole[i + 0].gy - gy,
                                    self->pole[i + 1].gx - gx, self->pole[i + 1].gy - gy,
                                    self->pole[i + 2].gx - gx, self->pole[i + 2].gy - gy,
                                    self->pole[i + 3].gx - gx, self->pole[i + 3].gy - gy);
            i += 3;
        }
        if (A == CONTACT_SIGNAL)
            return -1;
        a += A;
    }
    if (any_abs(a) < 0.1)
        return 0;
    return 1;
}

static inline bool
intersect_bar_bar(fixed q0x, fixed q0y, fixed q1x, fixed q1y, fixed q2x, fixed q2y, fixed q3x, fixed q3y)
{
    if (q1x == q0x && q1y == q0y)
        return false;
    if (q1x == q2x && q1y == q2y)
        return false;
    if (q0x == q2x && q0y == q2y)
        return true;
    if (q0x == q3x && q0y == q3y)
        return true;
    if (q1x == q2x && q1y == q2y)
        return true;
    if (q1x == q3x && q1y == q3y)
        return true;
    else {
        fixed dx1 = q1x - q0x;
        fixed dy1 = q1y - q0y;
        fixed dx2 = q2x - q0x;
        fixed dy2 = q2y - q0y;
        fixed dx3 = q3x - q0x;
        fixed dy3 = q3y - q0y;
        fixed dx1a = any_abs(dx1);
        fixed dy1a = any_abs(dy1);
        fixed dx2a = any_abs(dx2);
        fixed dy2a = any_abs(dy2);
        fixed dx3a = any_abs(dx3);
        fixed dy3a = any_abs(dy3);
        fixed d = dx1a | dy1a | dx2a | dy2a | dx3a | dy3a;
        fixed ry, ey; /* stubs only - don't use them, they are whong here. */

        /* gx_intersect_small_bars needs cubes of distances to fit into 62 bits,
           Drop extra bits here.
           We don't need ry, so don't bother with absolute coordinates. */
        while (d >= (1 << (60 / 3))) {
            d >>= 1;
            dx1 = (dx1 + 1) / 2;
            dy1 = (dy1 + 1) / 2;
            dx2 = (dy2 + 1) / 2;
            dy2 = (dy2 + 1) / 2;
            dx3 = (dy3 + 1) / 2;
            dy3 = (dy3 + 1) / 2;
        }
        /* Well, when we drop bits, the intersection isn't precise.
           But it happens with big characters only,
           which unlikely have close oncurve poles
           which belong to different contours.
           Due to that we believe the boolean result is precise
           with a very high probablility. */
        return gx_intersect_small_bars(0, 0, dx1, dy1, dx2, dy2, dx3, dy3, &ry, &ey);
    }
}

static inline bool
t1_hinter__intersect_bar_bar(t1_hinter * self, int i, int j)
{
    fixed q0x = self->pole[i + 0].gx;
    fixed q0y = self->pole[i + 0].gy;
    fixed q1x = self->pole[i + 1].gx;
    fixed q1y = self->pole[i + 1].gy;
    fixed q2x = self->pole[j + 0].gx;
    fixed q2y = self->pole[j + 0].gy;
    fixed q3x = self->pole[j + 1].gx;
    fixed q3y = self->pole[j + 1].gy;

    return intersect_bar_bar(q0x, q0y, q1x, q1y, q2x, q2y, q3x, q3y);
}

static bool intersect_curve_bar_rec(int m, int k, fixed X1, fixed Y1,
                                     fixed x0, fixed y0, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3)
{
    if (m <= 1)
        return intersect_bar_bar(0, 0, X1, Y1, x0, y0, x3, y3);
    else {
        gs_rect box0, box1;

        if (X1 < 0)
            box0.p.x = X1, box0.q.x = 0;
        else
            box0.p.x = 0, box0.q.x = X1;
        if (Y1 < 0)
            box0.p.y = Y1, box0.q.y = 0;
        else
            box0.p.y = 0, box0.q.y = Y1;

        box1.p.x = box1.q.x = x0;
        box1.p.y = box1.q.y = y0;
        if (box1.p.x > x1)
            box1.p.x = x1;
        if (box1.q.x < x1)
            box1.q.x = x1;
        if (box1.p.y > y1)
            box1.p.y = y1;
        if (box1.q.y < y1)
            box1.q.y = y1;
        if (box1.p.x > x2)
            box1.p.x = x2;
        if (box1.q.x < x2)
            box1.q.x = x2;
        if (box1.p.y > y2)
            box1.p.y = y2;
        if (box1.q.y < y2)
            box1.q.y = y2;
        if (box1.p.x > x3)
            box1.p.x = x3;
        if (box1.q.x < x3)
            box1.q.x = x3;
        if (box1.p.y > y3)
            box1.p.y = y3;
        if (box1.q.y < y3)
            box1.q.y = y3;
        if (box0.p.x > box1.q.x)
            return false;
        if (box0.q.x < box1.p.x)
            return false;
        if (box0.p.y > box1.q.y)
            return false;
        if (box0.q.y < box1.p.y)
            return false;
    }
    {	fixed x01 = (x0 + x1) / 2, y01 = (y0 + y1) / 2;
        fixed x12 = (x1 + x2) / 2, y12 = (y1 + y2) / 2;
        fixed x23 = (x2 + x3) / 2, y23 = (y2 + y3) / 2;
        fixed x012 = (x01 + x12) / 2, y012 = (y01 + y12) / 2;
        fixed x123 = (x12 + x23) / 2, y123 = (y12 + y23) / 2;
        fixed x0123 = (x012 + x123) / 2, y0123 = (y012 + y123) / 2;

        if (k <= 1) {
            if (intersect_curve_bar_rec(m - 1, k, X1, Y1, x0, y0, x01, y01, x012, y012, x0123, y0123))
                return true;
            if (intersect_curve_bar_rec(m - 1, k, X1, Y1, x0123, y0123, x123, y123, x23, y23, x3, y3))
                return true;
        } else {
            fixed X01 = X1 / 2;
            fixed Y01 = Y1 / 2;

            if (intersect_curve_bar_rec(m - 1, k - 1, X01, Y01, x0, y0, x01, y01, x012, y012, x0123, y0123))
                return true;
            if (intersect_curve_bar_rec(m - 1, k - 1, X01, Y01, x0123, y0123, x123, y123, x23, y23, x3, y3))
                return true;
            if (intersect_curve_bar_rec(m - 1, k - 1, X1 - X01, Y1 - Y01, x0 - X01, y0 - Y01, x01 - X01, y01 - Y01,
                                                x012 - X01, y012 - Y01, x0123 - X01, y0123 - Y01))
                return true;
            if (intersect_curve_bar_rec(m - 1, k - 1, X1 - X01, Y1 - Y01, x0123 - X01, y0123 - Y01,
                                                x123 - X01, y123 - Y01, x23 - X01, y23 - Y01, x3 - X01, y3 - Y01))
                return true;
        }
    }
    return false;
}

static int bar_samples(fixed dx, fixed dy)
{
    int l = (any_abs(dx) | any_abs(dy)) / CURVE_FLATTENING, m = 0;
    while (l) {
        l >>= 1;
        m++;
    }
    return m;
}

static bool t1_hinter__intersect_curve_bar(t1_hinter * self, int i, int j)
{
    fixed X0 = self->pole[j].gx;
    fixed Y0 = self->pole[j].gy;
    fixed X1 = self->pole[j + 1].gx - X0;
    fixed Y1 = self->pole[j + 1].gy - Y0;
    fixed x0 = self->pole[i].gx - X0;
    fixed y0 = self->pole[i].gy - Y0;
    fixed x1 = self->pole[i + 1].gx - X0;
    fixed y1 = self->pole[i + 1].gy - Y0;
    fixed x2 = self->pole[i + 2].gx - X0;
    fixed y2 = self->pole[i + 2].gy - Y0;
    fixed x3 = self->pole[i + 3].gx - X0;
    fixed y3 = self->pole[i + 3].gy - Y0;
    int k = curve_log2_samples(0, 0, x1, y1, x2, y2, x3, y3);
    int m = bar_samples(X1, Y1);

    return intersect_curve_bar_rec(m, k, X1, Y1, x0, y0, x1, y1, x2, y2, x3, y3);
}

static bool intersect_curve_curve_rec(int ka, int kb,
                                     fixed ax0, fixed ay0, fixed ax1, fixed ay1, fixed ax2, fixed ay2, fixed ax3, fixed ay3,
                                     fixed bx0, fixed by0, fixed bx1, fixed by1, fixed bx2, fixed by2, fixed bx3, fixed by3)
{
    if (ka <= 1 && kb <= 1)
        return intersect_bar_bar(ax0, ay0, ax3, ay3, bx0, by0, bx3, by3);
    else if (ka <= 1) {
        int m = bar_samples(ax3 - ax0, ay3 - ay0);

        return intersect_curve_bar_rec(m, kb, ax3 - ax0, ay3 - ay0,
                                     bx0 - ax0, by0 - ay0, bx1 - ax0, by1 - ay0, bx2 - ax0, by2 - ay0, bx3 - ax0, by3 - ay0);
    } else if (kb <= 1) {
        int m = bar_samples(bx3 - bx0, by3 - by0);

        return intersect_curve_bar_rec(m, ka, bx3 - bx0, by3 - by0,
                                     ax0 - bx0, ay0 - by0, ax1 - bx0, ay1 - by0, ax2 - bx0, ay2 - by0, ax3 - bx0, ay3 - by0);
    } else {
        gs_rect box0, box1;

        box0.p.x = box0.q.x = ax0;
        box0.p.y = box0.q.y = ay0;
        if (box0.p.x > ax1)
            box0.p.x = ax1;
        if (box0.q.x < ax1)
            box0.q.x = ax1;
        if (box0.p.y > ay1)
            box0.p.y = ay1;
        if (box0.q.y < ay1)
            box0.q.y = ay1;
        if (box0.p.x > ax2)
            box0.p.x = ax2;
        if (box0.q.x < ax2)
            box0.q.x = ax2;
        if (box0.p.y > ay2)
            box0.p.y = ay2;
        if (box0.q.y < ay2)
            box0.q.y = ay2;
        if (box0.p.x > ax3)
            box0.p.x = ax3;
        if (box0.q.x < ax3)
            box0.q.x = ax3;
        if (box0.p.y > ay3)
            box0.p.y = ay3;
        if (box0.q.y < ay3)
            box0.q.y = ay3;
        box1.p.x = box1.q.x = bx0;
        box1.p.y = box1.q.y = by0;
        if (box1.p.x > bx1)
            box1.p.x = bx1;
        if (box1.q.x < bx1)
            box1.q.x = bx1;
        if (box1.p.y > by1)
            box1.p.y = by1;
        if (box1.q.y < by1)
            box1.q.y = by1;
        if (box1.p.x > bx2)
            box1.p.x = bx2;
        if (box1.q.x < bx2)
            box1.q.x = bx2;
        if (box1.p.y > by2)
            box1.p.y = by2;
        if (box1.q.y < by2)
            box1.q.y = by2;
        if (box1.p.x > bx3)
            box1.p.x = bx3;
        if (box1.q.x < bx3)
            box1.q.x = bx3;
        if (box1.p.y > by3)
            box1.p.y = by3;
        if (box1.q.y < by3)
            box1.q.y = by3;
        if (box0.p.x > box1.q.x)
            return false;
        if (box0.q.x < box1.p.x)
            return false;
        if (box0.p.y > box1.q.y)
            return false;
        if (box0.q.y < box1.p.y)
            return false;
    }
    { 	fixed ax01 = (ax0 + ax1) / 2, ay01 = (ay0 + ay1) / 2;
        fixed ax12 = (ax1 + ax2) / 2, ay12 = (ay1 + ay2) / 2;
        fixed ax23 = (ax2 + ax3) / 2, ay23 = (ay2 + ay3) / 2;
        fixed ax012 = (ax01 + ax12) / 2, ay012 = (ay01 + ay12) / 2;
        fixed ax123 = (ax12 + ax23) / 2, ay123 = (ay12 + ay23) / 2;
        fixed ax0123 = (ax012 + ax123) / 2, ay0123 = (ay012 + ay123) / 2;
        fixed bx01 = (bx0 + bx1) / 2, by01 = (by0 + by1) / 2;
        fixed bx12 = (bx1 + bx2) / 2, by12 = (by1 + by2) / 2;
        fixed bx23 = (bx2 + bx3) / 2, by23 = (by2 + by3) / 2;
        fixed bx012 = (bx01 + bx12) / 2, by012 = (by01 + by12) / 2;
        fixed bx123 = (bx12 + bx23) / 2, by123 = (by12 + by23) / 2;
        fixed bx0123 = (bx012 + bx123) / 2, by0123 = (by012 + by123) / 2;

        if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0, ay0, ax01, ay01, ax012, ay012, ax0123, ay0123,
                                                      bx0, by0, bx01, by01, bx012, by012, bx0123, by0123))
            return true;
        if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0, ay0, ax01, ay01, ax012, ay012, ax0123, ay0123,
                                                      bx0123, by0123, bx123, by123, bx23, by23, bx3, by3))
            return true;
        if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0123, ay0123, ax123, ay123, ax23, ay23, ax3, ay3,
                                                      bx0, by0, bx01, by01, bx012, by012, bx0123, by0123))
            return true;
        if (intersect_curve_curve_rec(ka - 1, kb - 1, ax0123, ay0123, ax123, ay123, ax23, ay23, ax3, ay3,
                                                      bx0123, by0123, bx123, by123, bx23, by23, bx3, by3))
            return true;

    }
    return false;
}

static bool t1_hinter__intersect_curve_curve(t1_hinter * self, int i, int j)
{
    fixed ax0 = self->pole[i].gx;
    fixed ay0 = self->pole[i].gy;
    fixed ax1 = self->pole[i + 1].gx;
    fixed ay1 = self->pole[i + 1].gy;
    fixed ax2 = self->pole[i + 2].gx;
    fixed ay2 = self->pole[i + 2].gy;
    fixed ax3 = self->pole[i + 3].gx;
    fixed ay3 = self->pole[i + 3].gy;
    fixed bx0 = self->pole[j].gx;
    fixed by0 = self->pole[j].gy;
    fixed bx1 = self->pole[j + 1].gx;
    fixed by1 = self->pole[j + 1].gy;
    fixed bx2 = self->pole[j + 2].gx;
    fixed by2 = self->pole[j + 2].gy;
    fixed bx3 = self->pole[j + 3].gx;
    fixed by3 = self->pole[j + 3].gy;
    int ka = curve_log2_samples(ax0, ay0, ax1, ay1, ax2, ay2, ax3, ay3);
    int kb = curve_log2_samples(bx0, by0, bx1, by1, bx2, by2, bx3, by3);

    return intersect_curve_curve_rec(ka, kb,
                                     ax0, ay0, ax1, ay1, ax2, ay2, ax3, ay3,
                                     bx0, by0, bx1, by1, bx2, by2, bx3, by3);
}

static bool t1_hinter__contour_intersection(t1_hinter * self, int c0, int c1)
{
    int b0 = self->contour[c0];
    int e0 = self->contour[c0 + 1] - 1;
    int b1 = self->contour[c1];
    int e1 = self->contour[c1 + 1] - 1;
    int i, j;

    for (i = b0; i < e0;) {
        if (self->pole[i + 1].type != offcurve) {  /* line or close. */
            for (j = b1; j < e1;) {
                if (self->pole[j + 1].type != offcurve) {  /* line or close. */
                    if (t1_hinter__intersect_bar_bar(self, i, j))
                        return true;
                    j++;
                } else {
                    if (t1_hinter__intersect_curve_bar(self, j, i))
                        return true;
                    j += 3;
                }
            }
            i++;
        } else {
            for (j = b1; j < e1;) {
                if (self->pole[j + 1].type != offcurve) {  /* line or close. */
                    if (t1_hinter__intersect_curve_bar(self, i, j))
                        return true;
                    j++;
                } else {
                    if (t1_hinter__intersect_curve_curve(self, j, i))
                        return true;
                    j += 3;
                }
            }
            i += 3;
        }
    }
    return false;
}

#define MAX_NORMALIZING_CONTOURS 5

static void t1_hinter__fix_subglyph_contour_signs(t1_hinter * self, int first_contour, int last_contour)
{
    double area[MAX_NORMALIZING_CONTOURS];
    int i, j, k, l, m;
    double a = 0;
    byte inside[MAX_NORMALIZING_CONTOURS][MAX_NORMALIZING_CONTOURS];
    int nesting[MAX_NORMALIZING_CONTOURS];
    gs_rect bbox[MAX_NORMALIZING_CONTOURS];
    byte isolated[MAX_NORMALIZING_CONTOURS];
    int nesting_sum;

    if (first_contour == last_contour) {
        /* Don't fix a single contour. */
        return;
    }
    /* Compute contour bboxes : */
    k = 0;
    for(i =  first_contour; i <= last_contour; i++) {
        int b = self->contour[i];
        int e = self->contour[i + 1] - 1;

        bbox[k].p.x = bbox[k].q.x = self->pole[b].gx;
        bbox[k].p.y = bbox[k].q.y = self->pole[b].gy;
        /* 'close' has same coords as the starting point. */
        for (j = b; j < e; j++) {
            t1_glyph_space_coord x = self->pole[j].gx;
            t1_glyph_space_coord y = self->pole[j].gy;

            if (bbox[k].p.x > x)
                bbox[k].p.x = x;
            if (bbox[k].q.x < x)
                bbox[k].q.x = x;
            if (bbox[k].p.y > y)
                bbox[k].p.y = y;
            if (bbox[k].q.y < y)
                bbox[k].q.y = y;
        }
        k++;
    }
    /* mark contacting bboxes : */
    memset(isolated, 0, sizeof(isolated));
    for (i = 0; i < k; i++) {
        for (j = i + 1; j < k; j++) {
            if (bbox[i].p.x > bbox[j].q.x)
                continue;
            if (bbox[i].q.x < bbox[j].p.x)
                continue;
            if (bbox[i].p.y > bbox[j].q.y)
                continue;
            if (bbox[i].q.y < bbox[j].p.y)
                continue;
            isolated[i] = isolated[j] = 1; /* mark not isolated. */
        }
    }
    /* Make a list of non-isolated contours : */
    j = 0;
    for (i = 0; i < k; i++) {
        if (isolated[i]) {
            isolated[j] = first_contour + i;
            j++;
        }
    }
    k = j;
    /* So far we skip isolated contours. */
    if (k <= 1)
        return; /* Nothing to fix. */
    /* Compute contour signes : */
    for(i = 0; i < k; i++) {
        int c = isolated[i];
        int b = self->contour[c];
        int e = self->contour[c + 1] - 1;

        a = 0;
        /* 'close' has same coords as the starting point. */
        for (j = b; j < e; ) {
            if (self->pole[j + 1].type != offcurve) { /* line or close. */
                a += line_area_2(self->pole[j + 0].gx, self->pole[j + 0].gy,
                                 self->pole[j + 1].gx, self->pole[j + 1].gy);
                j++;
            } else {
                a += bezier_area_2(self->pole[j + 0].gx, self->pole[j + 0].gy,
                                   self->pole[j + 1].gx, self->pole[j + 1].gy,
                                   self->pole[j + 2].gx, self->pole[j + 2].gy,
                                   self->pole[j + 3].gx, self->pole[j + 3].gy);
                j += 3;
            }
        }
        area[i] = a;
    }
    /* If contours have different signs, don't adjust. */
    for (i = 1; i < k; i++) {
        if (area[0] * area[i] < 0)
            return;
    }
    /* Compute the insideness matrix :
       For any contoor pair A, B,
       check if some point of A is inside B. */
    for (i = 0; i < k; i++) {
        inside[i][i] = 0;
        for (j = 0; j < k; j++) {
            if (i != j) {
                int b = self->contour[isolated[i]];
                int code = t1_hinter__is_inside(self, self->pole[b].gx, self->pole[b].gy, isolated[j]);

                if (code < 0) {
                    /* Contours have a common point - don't fix. */
                    return;
                }
                inside[i][j] = (byte)code;
                if (i > j && inside[j][i]) {
                    /* Contours intersect, don't fix. */
                    return;
                }
            }
        }
    }
    /* Transitive closure : */
    do {
        m = 0;
        for (i = 0; i < k; i++) {
            for (j = 0; j < k; j++) {
                if (i != j) {
                    for (l = 0; l < k; l++) {
                        if (j != l && inside[i][j] && inside[j][l]) {
                            if (inside[l][i]) {
                                /* Cycled - don't fix. */
                                return;
                            }
                            if (!inside[i][l])
                                m = 1;
                            inside[i][l] = 1;
                        }
                    }
                }
            }
        }
    } while(m);
    /* Compute nesting numbers : */
    nesting_sum = 0;
    memset(nesting, 0, sizeof(nesting));
    for (i = 0; i < k; i++) {
        for (j = 0; j < k; j++) {
            if (inside[i][j]) {
                nesting[i]++;
                nesting_sum++;
            }
        }
    }
    if (nesting_sum == 0) {
        /* No nesting contours - don't fix.
           We want to save time from computing contour intersections. */
        return;
    }
    /* Check contour intersections : */
    for (i = 0; i < k; i++) {
        for (j = 0; j < k; j++) {
            if (inside[i][j]) {
                if (t1_hinter__contour_intersection(self, isolated[i], isolated[j])) {
                    /* Contours intersect - don't fix. */
                    return;
                }
            }
        }
    }
    /* Fix signs : */
    for (i = 0; i < k; i++) {
        if ((nesting[i] & 1) != (area[i] < 0))
            t1_hinter__reverse_contour(self, isolated[i]);
    }
    /* Note we didn't fix negative isolated contours.
       We never meet such cases actually. */
}

void t1_hinter__fix_contour_signs(t1_hinter * self)
{
    int i;

    if (self->subglyph_count >= 3) {
        /* 3 or more subglyphs.
           We didn't meet so complex characters with wrong contours signs.
           Skip it for saving the CPU time. */
        return;
    }
    for (i = 1; i <= self->subglyph_count; i++) {
        int first_contour = self->subglyph[i - 1];
        int last_contour  = self->subglyph[i] - 1;

        if (last_contour - first_contour >= MAX_NORMALIZING_CONTOURS) {
            /* 4 or more contours.
               We didn't meet so complex characters with wrong contours signs.
               Skip it for saving the CPU time. */
            continue;
        }
        t1_hinter__fix_subglyph_contour_signs(self, first_contour, last_contour);
    }
}