summaryrefslogtreecommitdiff
path: root/base/gxht.c
blob: 26514023383fe9132cbe06b30bd5c21ea8d98eb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Halftone rendering for imaging library */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gsbitops.h"
#include "gsutil.h"		/* for gs_next_ids */
#include "gxdcolor.h"
#include "gxfixed.h"
#include "gxdevice.h"		/* for gzht.h */
#include "gxgstate.h"
#include "gzht.h"
#include "gsserial.h"

/* Define the binary halftone device color type. */
/* The type descriptor must be public for Pattern types. */
gs_public_st_composite(st_dc_ht_binary, gx_device_color, "dc_ht_binary",
                       dc_ht_binary_enum_ptrs, dc_ht_binary_reloc_ptrs);
static dev_color_proc_save_dc(gx_dc_ht_binary_save_dc);
static dev_color_proc_get_dev_halftone(gx_dc_ht_binary_get_dev_halftone);
static dev_color_proc_load(gx_dc_ht_binary_load);
static dev_color_proc_fill_rectangle(gx_dc_ht_binary_fill_rectangle);
static dev_color_proc_fill_masked(gx_dc_ht_binary_fill_masked);
static dev_color_proc_equal(gx_dc_ht_binary_equal);
static dev_color_proc_write(gx_dc_ht_binary_write);
static dev_color_proc_read(gx_dc_ht_binary_read);
const gx_device_color_type_t
      gx_dc_type_data_ht_binary =
{&st_dc_ht_binary,
 gx_dc_ht_binary_save_dc, gx_dc_ht_binary_get_dev_halftone,
 gx_dc_ht_get_phase,
 gx_dc_ht_binary_load, gx_dc_ht_binary_fill_rectangle,
 gx_dc_ht_binary_fill_masked, gx_dc_ht_binary_equal,
 gx_dc_ht_binary_write, gx_dc_ht_binary_read,
 gx_dc_ht_binary_get_nonzero_comps
};

#undef gx_dc_type_ht_binary
const gx_device_color_type_t *const gx_dc_type_ht_binary =
&gx_dc_type_data_ht_binary;

#define gx_dc_type_ht_binary (&gx_dc_type_data_ht_binary)
/* GC procedures */
static
ENUM_PTRS_WITH(dc_ht_binary_enum_ptrs, gx_device_color *cptr) return 0;
ENUM_PTR(0, gx_device_color, colors.binary.b_ht);
case 1:
{
    gx_ht_tile *tile = cptr->colors.binary.b_tile;

    ENUM_RETURN(tile ? tile - tile->index : 0);
}
ENUM_PTRS_END
static RELOC_PTRS_WITH(dc_ht_binary_reloc_ptrs, gx_device_color *cptr)
{
    gx_ht_tile *tile = cptr->colors.binary.b_tile;
    uint index = tile ? tile->index : 0;

    RELOC_PTR(gx_device_color, colors.binary.b_ht);
    RELOC_TYPED_OFFSET_PTR(gx_device_color, colors.binary.b_tile, index);
}
RELOC_PTRS_END
#undef cptr

/* Other GC procedures */
private_st_ht_tiles();
static
ENUM_PTRS_BEGIN_PROC(ht_tiles_enum_ptrs)
{
    return 0;
}
ENUM_PTRS_END_PROC
static RELOC_PTRS_BEGIN(ht_tiles_reloc_ptrs)
{
    /* Reset the bitmap pointers in the tiles. */
    /* We know the first tile points to the base of the bits. */
    gx_ht_tile *ht_tiles = vptr;
    byte *bits = ht_tiles->tiles.data;
    uint diff;

    if (bits == 0)
        return;
    RELOC_VAR(bits);
    if (size == size_of(gx_ht_tile)) {	/* only 1 tile */
        ht_tiles->tiles.data = bits;
        return;
    }
    diff = ht_tiles[1].tiles.data - ht_tiles[0].tiles.data;
    for (; size; ht_tiles++, size -= size_of(gx_ht_tile), bits += diff) {
        ht_tiles->tiles.data = bits;
    }
}
RELOC_PTRS_END
private_st_ht_cache();

/* Return the default sizes of the halftone cache. */
uint
gx_ht_cache_default_tiles(void)
{
#ifdef DEBUG
    return (gs_debug_c('.') ? max_ht_cached_tiles_SMALL :
            max_ht_cached_tiles);
#else
    return max_ht_cached_tiles;
#endif
}
uint
gx_ht_cache_default_bits_size(void)
{
#ifdef DEBUG
    return (gs_debug_c('.') ? max_ht_cache_bits_size_SMALL :
            max_ht_cache_bits_size);
#else
    return max_ht_cache_bits_size;
#endif
}

/* Allocate a halftone cache. max_bits_size is number of bytes */
gx_ht_cache *
gx_ht_alloc_cache(gs_memory_t * mem, uint max_tiles, uint max_bits_size)
{
    gx_ht_cache *pcache =
    gs_alloc_struct(mem, gx_ht_cache, &st_ht_cache,
                    "alloc_ht_cache(struct)");
    byte *tbits =
        gs_alloc_bytes(mem, max_bits_size, "alloc_ht_cache(bits)");
    gx_ht_tile *ht_tiles =
        gs_alloc_struct_array(mem, max_tiles, gx_ht_tile, &st_ht_tiles,
                              "alloc_ht_cache(ht_tiles)");

    if (pcache == 0 || tbits == 0 || ht_tiles == 0) {
        gs_free_object(mem, ht_tiles, "alloc_ht_cache(ht_tiles)");
        gs_free_object(mem, tbits, "alloc_ht_cache(bits)");
        gs_free_object(mem, pcache, "alloc_ht_cache(struct)");
        return 0;
    }
    pcache->bits = tbits;
    pcache->bits_size = max_bits_size;
    pcache->ht_tiles = ht_tiles;
    pcache->num_tiles = max_tiles;
    pcache->order.cache = pcache;
    pcache->order.transfer = 0;
    gx_ht_clear_cache(pcache);
    return pcache;
}

/* Free a halftone cache. */
void
gx_ht_free_cache(gs_memory_t * mem, gx_ht_cache * pcache)
{
    gs_free_object(mem, pcache->ht_tiles, "free_ht_cache(ht_tiles)");
    gs_free_object(mem, pcache->bits, "free_ht_cache(bits)");
    gs_free_object(mem, pcache, "free_ht_cache(struct)");
}

/* Render a given level into a halftone cache. */
static int render_ht(gx_ht_tile *, int, const gx_ht_order *,
                      gx_bitmap_id);
static gx_ht_tile *
gx_render_ht_default(gx_ht_cache * pcache, int b_level)
{
    const gx_ht_order *porder = &pcache->order;
    int level = porder->levels[b_level];
    gx_ht_tile *bt;

    if (pcache->num_cached < porder->num_levels )
        bt = &pcache->ht_tiles[level / pcache->levels_per_tile];
    else
        bt =  &pcache->ht_tiles[b_level];	/* one tile per b_level */

    if (bt->level != level) {
        int code = render_ht(bt, level, porder, pcache->base_id + b_level);

        if (code < 0)
            return 0;
    }
    return bt;
}

/* save information about the operand binary halftone color */
static void
gx_dc_ht_binary_save_dc(const gx_device_color * pdevc,
                        gx_device_color_saved * psdc)
{
    psdc->type = pdevc->type;
    psdc->colors.binary.b_color[0] = pdevc->colors.binary.color[0];
    psdc->colors.binary.b_color[1] = pdevc->colors.binary.color[1];
    psdc->colors.binary.b_level = pdevc->colors.binary.b_level;
    psdc->colors.binary.b_index = pdevc->colors.binary.b_index;
    psdc->phase = pdevc->phase;
}

/* get the halftone used for a binary halftone color */
static const gx_device_halftone *
gx_dc_ht_binary_get_dev_halftone(const gx_device_color * pdevc)
{
    return pdevc->colors.binary.b_ht;
}

/* Load the device color into the halftone cache if needed. */
static int
gx_dc_ht_binary_load(gx_device_color * pdevc, const gs_gstate * pgs,
                     gx_device * dev, gs_color_select_t select)
{
    int component_index = pdevc->colors.binary.b_index;
    const gx_ht_order *porder =
        (component_index < 0 ?
         &pdevc->colors.binary.b_ht->order :
         &pdevc->colors.binary.b_ht->components[component_index].corder);
    gx_ht_cache *pcache = porder->cache;

    if (pcache->order.bit_data != porder->bit_data)
        gx_ht_init_cache(pgs->memory, pcache, porder);
    /*
     * We do not load the cache now.  Instead we wait until we are ready
     * to actually render the color.  This allows multiple colors to be
     * loaded without cache conflicts.  (Cache conflicts can occur when
     * if two device colors use the same cache elements.  This can occur
     * when the tile size is large enough that we do not have a separate
     * tile for each half tone level.)  See gx_dc_ht_binary_load_cache.
     */
    pdevc->colors.binary.b_tile = NULL;
    return 0;
}

/*
 * Load the half tone tile in the halftone cache.
 */
static int
gx_dc_ht_binary_load_cache(const gx_device_color * pdevc)
{
    int component_index = pdevc->colors.binary.b_index;
    const gx_ht_order *porder =
         &pdevc->colors.binary.b_ht->components[component_index].corder;
    gx_ht_cache *pcache = porder->cache;
    int b_level = pdevc->colors.binary.b_level;
    int level = porder->levels[b_level];
    gx_ht_tile *bt;

    if (pcache->num_cached < porder->num_levels )
        bt = &pcache->ht_tiles[level / pcache->levels_per_tile];
    else
        bt =  &pcache->ht_tiles[b_level];	/* one tile per b_level */

    if (bt->level != level) {
        int code = render_ht(bt, level, porder, pcache->base_id + b_level);

        if (code < 0)
            return_error(gs_error_Fatal);
    }
    ((gx_device_color *)pdevc)->colors.binary.b_tile = bt;
    return 0;
}

/* Fill a rectangle with a binary halftone. */
/* Note that we treat this as "texture" for RasterOp. */
static int
gx_dc_ht_binary_fill_rectangle(const gx_device_color * pdevc, int x, int y,
                  int w, int h, gx_device * dev, gs_logical_operation_t lop,
                               const gx_rop_source_t * source)
{
    gx_rop_source_t no_source;

    fit_fill(dev, x, y, w, h);
    /* Load the halftone cache for the color */
    gx_dc_ht_binary_load_cache(pdevc);
    /*
     * Observation of H-P devices and documentation yields confusing
     * evidence about whether white pixels in halftones are always
     * opaque.  It appears that for black-and-white devices, these
     * pixels are *not* opaque.
     */
    if (dev->color_info.depth > 1)
        lop &= ~lop_T_transparent;
    if (source == NULL && lop_no_S_is_T(lop))
        return (*dev_proc(dev, strip_tile_rectangle)) (dev,
                                        &pdevc->colors.binary.b_tile->tiles,
                                  x, y, w, h, pdevc->colors.binary.color[0],
                                              pdevc->colors.binary.color[1],
                                            pdevc->phase.x, pdevc->phase.y);
    /* Adjust the logical operation per transparent colors. */
    if (pdevc->colors.binary.color[0] == gx_no_color_index)
        lop = rop3_use_D_when_T_0(lop);
    if (pdevc->colors.binary.color[1] == gx_no_color_index)
        lop = rop3_use_D_when_T_1(lop);
    if (source == NULL)
        set_rop_no_source(source, no_source, dev);
    return (*dev_proc(dev, strip_copy_rop2))
                             (dev, source->sdata,
                              source->sourcex, source->sraster, source->id,
                              (source->use_scolors ? source->scolors : NULL),
                              &pdevc->colors.binary.b_tile->tiles,
                              pdevc->colors.binary.color,
                              x, y, w, h, pdevc->phase.x, pdevc->phase.y,
                              lop, source->planar_height);
}

static int
gx_dc_ht_binary_fill_masked(const gx_device_color * pdevc, const byte * data,
        int data_x, int raster, gx_bitmap_id id, int x, int y, int w, int h,
                   gx_device * dev, gs_logical_operation_t lop, bool invert)
{
    /*
     * Load the halftone cache for the color.  We do not do it earlier
     * because for small halftone caches, each cache tile may be used for
     * for more than one halftone level.  This can cause conflicts if more
     * than one device color has been set and they use the same cache
     * entry.
     */
    int code = gx_dc_ht_binary_load_cache(pdevc);

    if (code < 0)
        return code;
    return gx_dc_default_fill_masked(pdevc, data, data_x, raster, id,
                                        x, y, w, h, dev, lop, invert);
}

/* Compare two binary halftones for equality. */
static bool
gx_dc_ht_binary_equal(const gx_device_color * pdevc1,
                      const gx_device_color * pdevc2)
{
    return pdevc2->type == pdevc1->type &&
        pdevc1->phase.x == pdevc2->phase.x &&
        pdevc1->phase.y == pdevc2->phase.y &&
        gx_dc_binary_color0(pdevc1) == gx_dc_binary_color0(pdevc2) &&
        gx_dc_binary_color1(pdevc1) == gx_dc_binary_color1(pdevc2) &&
        pdevc1->colors.binary.b_level == pdevc2->colors.binary.b_level;
}

/*
 * Flags to indicate the pieces of a binary halftone that are included
 * in its string representation. The first byte of the string holds this
 * set of flags.
 *
 * The binary halftone tile is never transmitted as part of the string
 * representation, so there is also no flag bit for it.
 */
enum {
    dc_ht_binary_has_color0 = 0x01,
    dc_ht_binary_has_color1 = 0x02,
    dc_ht_binary_has_level = 0x04,
    dc_ht_binary_has_index = 0x08,
    dc_ht_binary_has_phase_x = 0x10,
    dc_ht_binary_has_phase_y = 0x20,
};

/*
 * Serialize a binany halftone device color.
 *
 * Operands:
 *
 *  pdevc       pointer to device color to be serialized
 *
 *  psdc        pointer ot saved version of last serialized color (for
 *              this band)
 *
 *  dev         pointer to the current device, used to retrieve process
 *              color model information
 *
 *  pdata       pointer to buffer in which to write the data
 *
 *  psize       pointer to a location that, on entry, contains the size of
 *              the buffer pointed to by pdata; on return, the size of
 *              the data required or actually used will be written here.
 *
 * Returns:
 *  1, with *psize set to 0, if *psdc and *pdevc represent the same color
 *
 *  0, with *psize set to the amount of data written, if everything OK
 *
 *  gs_error_rangecheck, with *psize set to the size of buffer required,
 *  if *psize was not large enough
 *
 *  < 0, != gs_error_rangecheck, in the event of some other error; in this
 *  case *psize is not changed.
 */
static int
gx_dc_ht_binary_write(
    const gx_device_color *         pdevc,
    const gx_device_color_saved *   psdc0,
    const gx_device *               dev,
    int64_t			    offset,
    byte *                          pdata,
    uint *                          psize )
{
    int                             req_size = 1;   /* flag bits */
    int                             flag_bits = 0;
    uint                            tmp_size;
    byte *                          pdata0 = pdata;
    const gx_device_color_saved *   psdc = psdc0;
    int                             code;

    if (offset != 0)
        return_error(gs_error_unregistered); /* Not implemented yet. */

    /* check if operand and saved colors are the same type */
    if (psdc != 0 && psdc->type != pdevc->type)
        psdc = 0;

    /* check for the information that must be transmitted */
    if ( psdc == 0                                                      ||
         pdevc->colors.binary.color[0] != psdc->colors.binary.b_color[0]  ) {
        flag_bits |= dc_ht_binary_has_color0;
        tmp_size = 0;
        (void)gx_dc_write_color( pdevc->colors.binary.color[0],
                                 dev,
                                 pdata,
                                 &tmp_size );
        req_size += tmp_size;
    }
    if ( psdc == NULL ||
         pdevc->colors.binary.color[1] != psdc->colors.binary.b_color[1]  ) {
        flag_bits |= dc_ht_binary_has_color1;
        tmp_size = 0;
        (void)gx_dc_write_color( pdevc->colors.binary.color[1],
                                 dev,
                                 pdata,
                                 &tmp_size );
        req_size += tmp_size;
    }

    if ( psdc == NULL ||
         pdevc->colors.binary.b_level != psdc->colors.binary.b_level  ) {
        flag_bits |= dc_ht_binary_has_level;
        req_size += enc_u_sizew(pdevc->colors.binary.b_level);
    }

    if ( psdc == NULL ||
         pdevc->colors.binary.b_index != psdc->colors.binary.b_index  ) {
        flag_bits |= dc_ht_binary_has_index;
        req_size += 1;
    }

    if ( psdc == NULL ||
         pdevc->phase.x != psdc->phase.x ) {
        flag_bits |= dc_ht_binary_has_phase_x;
        req_size += enc_u_sizew(pdevc->phase.x);
    }

    if ( psdc == NULL ||
         pdevc->phase.y != psdc->phase.y ) {
        flag_bits |= dc_ht_binary_has_phase_y;
        req_size += enc_u_sizew(pdevc->phase.y);
    }

    /* check if there is anything to be done */
    if (flag_bits == 0) {
        *psize = 0;
        return 1;
    }

    /* check if sufficient space has been provided */
    if (req_size > *psize) {
        *psize = req_size;
        return_error(gs_error_rangecheck);
    }

    /* write out the flag byte */
    *pdata++ = (byte)flag_bits;

    /* write out such other parts of the device color as are required */
    if ((flag_bits & dc_ht_binary_has_color0) != 0) {
        tmp_size = req_size - (pdata - pdata0);
        code = gx_dc_write_color( pdevc->colors.binary.color[0],
                                  dev,
                                  pdata,
                                  &tmp_size );
        if (code < 0)
            return code;
        pdata += tmp_size;
    }
    if ((flag_bits & dc_ht_binary_has_color1) != 0) {
        tmp_size = req_size - (pdata - pdata0);
        code = gx_dc_write_color( pdevc->colors.binary.color[1],
                                  dev,
                                  pdata,
                                  &tmp_size );
        if (code < 0)
            return code;
        pdata += tmp_size;
    }
    if ((flag_bits & dc_ht_binary_has_level) != 0)
        enc_u_putw(pdevc->colors.binary.b_level, pdata);
    if ((flag_bits & dc_ht_binary_has_index) != 0)
        *pdata++ = pdevc->colors.binary.b_index;
    if ((flag_bits & dc_ht_binary_has_phase_x) != 0)
        enc_u_putw(pdevc->phase.x, pdata);
    if ((flag_bits & dc_ht_binary_has_phase_y) != 0)
        enc_u_putw(pdevc->phase.y, pdata);

    *psize = pdata - pdata0;
    return 0;
}

/*
 * Reconstruct a binary halftone device color from its serial representation.
 *
 * Operands:
 *
 *  pdevc       pointer to the location in which to write the
 *              reconstructed device color
 *
 *  pgs         pointer to the current gs_gstate (to access the
 *              current halftone)
 *
 *  prior_devc  pointer to the current device color (this is provided
 *              separately because the device color is not part of the
 *              gs_gstate)
 *
 *  dev         pointer to the current device, used to retrieve process
 *              color model information
 *
 *  pdata       pointer to the buffer to be read
 *
 *  size        size of the buffer to be read; this should be large
 *              enough to hold the entire color description
 *
 *  mem         pointer to the memory to be used for allocations
 *              (ignored here)
 *
 * Returns:
 *
 *  # of bytes read if everthing OK, < 0 in the event of an error
 */
static int
gx_dc_ht_binary_read(
    gx_device_color *       pdevc,
    const gs_gstate        * pgs,
    const gx_device_color * prior_devc,
    const gx_device *       dev,        /* ignored */
    int64_t		    offset,
    const byte *            pdata,
    uint                    size,
    gs_memory_t *           mem,        /* ignored */
    int                     x0,
    int                     y0)
{
    gx_device_color         devc;
    const byte *            pdata0 = pdata;
    int                     code, flag_bits;

    if (offset != 0)
        return_error(gs_error_unregistered); /* Not implemented yet. */

    /* if prior information is available, use it */
    if (prior_devc != 0 && prior_devc->type == gx_dc_type_ht_binary)
        devc = *prior_devc;
    else
        memset(&devc, 0, sizeof(devc));   /* clear pointers */
    devc.type = gx_dc_type_ht_binary;

    /* the halftone is always taken from the gs_gstate */
    devc.colors.binary.b_ht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];

    /* cache is not provided until the device color is used */
    devc.colors.binary.b_tile = 0;

    /* verify the minimum amount of information */
    if (size == 0)
        return_error(gs_error_rangecheck);
    size --;
    flag_bits = *pdata++;

    /* read the other information provided */
    if ((flag_bits & dc_ht_binary_has_color0) != 0) {
        code = gx_dc_read_color( &devc.colors.binary.color[0],
                                 dev,
                                 pdata,
                                 size );
        if (code < 0)
            return code;
        size -= code;
        pdata += code;
    }
    if ((flag_bits & dc_ht_binary_has_color1) != 0) {
        code = gx_dc_read_color( &devc.colors.binary.color[1],
                                 dev,
                                 pdata,
                                 size );
        if (code < 0)
            return code;
        size -= code;
        pdata += code;
    }
    if ((flag_bits & dc_ht_binary_has_level) != 0) {
        const byte *pdata_start = pdata;

        if (size < 1)
            return_error(gs_error_rangecheck);
        enc_u_getw(devc.colors.binary.b_level, pdata);
        size -= pdata - pdata_start;
    }
    if ((flag_bits & dc_ht_binary_has_index) != 0) {
        if (size == 0)
            return_error(gs_error_rangecheck);
        --size;
        devc.colors.binary.b_index = *pdata++;
    }
    if ((flag_bits & dc_ht_binary_has_phase_x) != 0) {
        const byte *pdata_start = pdata;

        if (size < 1)
            return_error(gs_error_rangecheck);
        enc_u_getw(devc.phase.x, pdata);
        devc.phase.x += x0;
        size -= pdata - pdata_start;
    }
    if ((flag_bits & dc_ht_binary_has_phase_y) != 0) {
        const byte *pdata_start = pdata;

        if (size < 1)
            return_error(gs_error_rangecheck);
        enc_u_getw(devc.phase.y, pdata);
        devc.phase.y += y0;
        size -= pdata - pdata_start;
    }

    /* everything looks good */
    *pdevc = devc;
    return pdata - pdata0;
}

/*
 * Get the nonzero components of a binary halftone. This is used to
 * distinguish components that are given zero intensity due to halftoning
 * from those for which the original color intensity was in fact zero.
 *
 * Since this device color type involves only a single halftone component,
 * we can reasonably assume that b_level != 0. Hence, we need to check
 * for components with identical intensities in color[0] and color[1].
 */
int
gx_dc_ht_binary_get_nonzero_comps(
    const gx_device_color * pdevc,
    const gx_device *       dev,
    gx_color_index *        pcomp_bits )
{
    int                     code;
    gx_color_value          cvals_0[GX_DEVICE_COLOR_MAX_COMPONENTS],
                            cvals_1[GX_DEVICE_COLOR_MAX_COMPONENTS];

    if ( (code = dev_proc(dev, decode_color)( (gx_device *)dev,
                                              pdevc->colors.binary.color[0],
                                              cvals_0 )) >= 0 &&
         (code = dev_proc(dev, decode_color)( (gx_device *)dev,
                                              pdevc->colors.binary.color[1],
                                              cvals_1 )) >= 0   ) {
        int     i, ncomps = dev->color_info.num_components;
        int     mask = 0x1, comp_bits = 0;

        for (i = 0; i < ncomps; i++, mask <<= 1) {
            if (cvals_0[i] != 0 || cvals_1[i] != 0)
                comp_bits |= mask;
        }
        *pcomp_bits = comp_bits;
        code = 0;
    }

    return code;
}

/* Initialize the tile cache for a given screen. */
/* Cache as many different levels as will fit. */
void
gx_ht_init_cache(const gs_memory_t *mem, gx_ht_cache * pcache, const gx_ht_order * porder)
{
    uint width = porder->width;
    uint height = porder->height;
    uint size = width * height + 1;
    int width_unit =
    (width <= ht_mask_bits / 2 ? ht_mask_bits / width * width :
     width);
    int height_unit = height;
    uint raster = porder->raster;
    uint tile_bytes = raster * height;
    uint shift = porder->shift;
    int num_cached;
    int i;
    byte *tbits = pcache->bits;

    /* Non-monotonic halftones may have more bits than size. */
    if (porder->num_bits >= size)
        size = porder->num_bits + 1;
    /* Make sure num_cached is within bounds */
    num_cached = pcache->bits_size / tile_bytes;
    if (num_cached > size)
        num_cached = size;
    if (num_cached > pcache->num_tiles)
        num_cached = pcache->num_tiles;
    if (num_cached == size &&
        tile_bytes * num_cached <= pcache->bits_size / 2
        ) {
        /*
         * We can afford to replicate every tile in the cache,
         * which will reduce breakage when tiling.  Since
         * horizontal breakage is more expensive than vertical,
         * and since wide shallow fills are more common than
         * narrow deep fills, we replicate the tile horizontally.
         * We do have to be careful not to replicate the tile
         * to an absurdly large size, however.
         */
        uint rep_raster =
        ((pcache->bits_size / num_cached) / height) &
        ~(align_bitmap_mod - 1);
        uint rep_count = rep_raster * 8 / width;

        /*
         * There's no real value in replicating the tile
         * beyond the point where the byte width of the replicated
         * tile is a multiple of a long.
         */
        if (rep_count > sizeof(ulong) * 8)
            rep_count = sizeof(ulong) * 8;
        width_unit = width * rep_count;
        raster = bitmap_raster(width_unit);
        tile_bytes = raster * height;
    }
    pcache->base_id = gs_next_ids(mem, porder->num_levels + 1);
    pcache->order = *porder;
    /* The transfer function is irrelevant, and might become dangling. */
    pcache->order.transfer = 0;
    pcache->num_cached = num_cached;
    pcache->levels_per_tile = (size + num_cached - 1) / num_cached;
    pcache->tiles_fit = -1;
    memset(tbits, 0, pcache->bits_size);
    for (i = 0; i < num_cached; i++, tbits += tile_bytes) {
        register gx_ht_tile *bt = &pcache->ht_tiles[i];

        bt->level = 0;
        bt->index = i;
        bt->tiles.data = tbits;
        bt->tiles.raster = raster;
        bt->tiles.size.x = width_unit;
        bt->tiles.size.y = height_unit;
        bt->tiles.rep_width = width;
        bt->tiles.rep_height = height;
        bt->tiles.shift = bt->tiles.rep_shift = shift;
        bt->tiles.num_planes = 1;
    }
    pcache->render_ht = gx_render_ht_default;
}

/*
 * Compute and save the rendering of a given gray level
 * with the current halftone.  The cache holds multiple tiles,
 * where each tile covers a range of possible levels.
 * We adjust the tile whose range includes the desired level incrementally;
 * this saves a lot of time for the average image, where gray levels
 * don't change abruptly.  Note that the "level" is the number of bits,
 * not the index in the levels vector.
 */
static int
render_ht(gx_ht_tile * pbt, int level /* [1..num_bits-1] */ ,
          const gx_ht_order * porder, gx_bitmap_id new_id)
{
    byte *data = pbt->tiles.data;
    int code;

    if_debug7('H', "[H]Halftone cache slot "PRI_INTPTR": old=%d, new=%d, w=%d(%d), h=%d(%d):\n",
              (intptr_t)data, pbt->level, level,
              pbt->tiles.size.x, porder->width,
              pbt->tiles.size.y, porder->num_bits / porder->width);
#ifdef DEBUG
    if (level < 0 || level > porder->num_bits) {
        lprintf3("Error in render_ht: level=%d, old level=%d, num_bits=%d\n",
                 level, pbt->level, porder->num_bits);
        return_error(gs_error_Fatal);
    }
#endif
    code = porder->procs->render(pbt, level, porder);
    if (code < 0)
        return code;
    pbt->level = level;
    pbt->tiles.id = new_id;
    pbt->tiles.num_planes = 1;
    /*
     * Check whether we want to replicate the tile in the cache.
     * Since we only do this when all the renderings will fit
     * in the cache, we only do it once per level, and it doesn't
     * have to be very efficient.
     */
        /****** TEST IS WRONG if width > rep_width but tile.raster ==
         ****** order raster.
         ******/
    if (pbt->tiles.raster > porder->raster)
        bits_replicate_horizontally(data, pbt->tiles.rep_width,
                                    pbt->tiles.rep_height, porder->raster,
                                    pbt->tiles.size.x, pbt->tiles.raster);
    if (pbt->tiles.size.y > pbt->tiles.rep_height &&
        pbt->tiles.shift == 0
        )
        bits_replicate_vertically(data, pbt->tiles.rep_height,
                                  pbt->tiles.raster, pbt->tiles.size.y);
#ifdef DEBUG
    if (gs_debug_c('H')) {
        const byte *p = pbt->tiles.data;
        int wb = pbt->tiles.raster;
        const byte *ptr = p + wb * pbt->tiles.size.y;

        while (p < ptr) {
            dmprintf8(porder->data_memory, " %d%d%d%d%d%d%d%d",
                      *p >> 7, (*p >> 6) & 1, (*p >> 5) & 1,
                      (*p >> 4) & 1, (*p >> 3) & 1, (*p >> 2) & 1,
                      (*p >> 1) & 1, *p & 1);
            if ((++p - data) % wb == 0)
                dmputc(porder->data_memory, '\n');
        }
    }
#endif
    return 0;
}