summaryrefslogtreecommitdiff
path: root/devices/gdevxcf.c
blob: 40b6ee52dcf0bfef22e43359ab57fbca6dc6b4a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Gimp (XCF) export device, supporting DeviceN color models. */

#include "math_.h"
#include "gdevprn.h"
#include "gsparam.h"
#include "gscrd.h"
#include "gscrdp.h"
#include "gxlum.h"
#include "gdevdcrd.h"
#include "gstypes.h"
#include "gxdcconv.h"
#include "gsicc_cache.h"
#include "gsicc_manage.h"
#include "gsicc_cms.h"
#include "gdevdevn.h"

#ifndef MAX_CHAN
#   define MAX_CHAN 8
#endif

/* Define the device parameters. */
#ifndef X_DPI
#  define X_DPI 72
#endif
#ifndef Y_DPI
#  define Y_DPI 72
#endif

/* The device descriptor */
static dev_proc_get_params(xcf_get_params);
static dev_proc_close_device(xcf_prn_close);
static dev_proc_put_params(xcf_put_params);
static dev_proc_print_page(xcf_print_page);
static dev_proc_map_color_rgb(xcf_map_color_rgb);
static dev_proc_get_color_mapping_procs(get_spotrgb_color_mapping_procs);
#if 0
static dev_proc_get_color_mapping_procs(get_spotcmyk_color_mapping_procs);
#endif
static dev_proc_get_color_mapping_procs(get_xcf_color_mapping_procs);
static dev_proc_get_color_comp_index(xcf_get_color_comp_index);
static dev_proc_encode_color(xcf_encode_color);
static dev_proc_decode_color(xcf_decode_color);

/*
 * Structure for holding SeparationNames and SeparationOrder elements.
 */
typedef struct gs_separation_names_s {
    int num_names;
    const gs_param_string * names[GX_DEVICE_COLOR_MAX_COMPONENTS];
} gs_separation_names;

/* This is redundant with color_info.cm_name. We may eliminate this
   typedef and use the latter string for everything. */
typedef enum {
    XCF_DEVICE_GRAY,
    XCF_DEVICE_RGB,
    XCF_DEVICE_CMYK,
    XCF_DEVICE_N
} xcf_color_model;

/*
 * A structure definition for a DeviceN type device
 */
typedef struct xcf_device_s {
    gx_device_common;
    gx_prn_device_common;

    /*        ... device-specific parameters ... */

    xcf_color_model color_model;

    /*
     * Bits per component (device colorant).  Currently only 1 and 8 are
     * supported.
     */
    int bitspercomponent;

    /*
     * Pointer to the colorant names for the color model.  This will be
     * null if we have DeviceN type device.  The actual possible colorant
     * names are those in this list plus those in the separation_names
     * list (below).
     */
    fixed_colorant_names_list std_colorant_names;
    int num_std_colorant_names;	/* Number of names in list */

    /*
    * Separation names (if any).
    */
    gs_separation_names separation_names;

    /*
     * Separation Order (if specified).
     */
    gs_separation_names separation_order;

    /* ICC color profile objects, for color conversion.
       These are all device link profiles.  At least that
       is how it appears looking at how this code
       was written to work with the old icclib.  Just
       doing minimal updates here so that it works
       with the new CMM API.  I would be interested
       to hear how people are using this. */

    char profile_rgb_fn[256];
    cmm_profile_t *rgb_profile;
    gcmmhlink_t rgb_icc_link;

    char profile_cmyk_fn[256];
    cmm_profile_t *cmyk_profile;
    gcmmhlink_t cmyk_icc_link;

    char profile_out_fn[256];
    cmm_profile_t *output_profile;
    gcmmhlink_t output_icc_link;

} xcf_device;

/*
 * Macro definition for DeviceN procedures
 */
static void
xcf_initialize_device_procs(gx_device *dev)
{
    set_dev_proc(dev, open_device, gdev_prn_open);
    set_dev_proc(dev, output_page, gdev_prn_bg_output_page);
    set_dev_proc(dev, close_device, xcf_prn_close);
    set_dev_proc(dev, map_color_rgb, xcf_map_color_rgb);
    set_dev_proc(dev, get_params, xcf_get_params);
    set_dev_proc(dev, put_params, xcf_put_params);
    set_dev_proc(dev, get_page_device, gx_page_device_get_page_device);
    set_dev_proc(dev, get_color_comp_index, xcf_get_color_comp_index);
    set_dev_proc(dev, encode_color, xcf_encode_color);
    set_dev_proc(dev, decode_color, xcf_decode_color);
}

static void
spot_rgb_initialize_device_procs(gx_device *dev)
{
    set_dev_proc(dev, get_color_mapping_procs, get_spotrgb_color_mapping_procs);

    xcf_initialize_device_procs(dev);
}

/*
 * Example device with RGB and spot color support
 */
const xcf_device gs_xcf_device =
{
    prn_device_body_extended(xcf_device,
         spot_rgb_initialize_device_procs, "xcf",
         DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS,
         X_DPI, Y_DPI,		/* X and Y hardware resolution */
         0, 0, 0, 0,		/* margins */
         GX_DEVICE_COLOR_MAX_COMPONENTS, 3,	/* MaxComponents, NumComp */
         GX_CINFO_POLARITY_ADDITIVE,		/* Polarity */
         24, 0,			/* Depth, Gray_index, */
         255, 255, 256, 256,	/* MaxGray, MaxColor, DitherGray, DitherColor */
         GX_CINFO_UNKNOWN_SEP_LIN, /* Let check_device_separable set up values */
         "DeviceN",		/* Process color model name */
         xcf_print_page),	/* Printer page print routine */
    /* DeviceN device specific parameters */
    XCF_DEVICE_RGB,		/* Color model */
    8,				/* Bits per color - must match ncomp, depth, etc. above */
    DeviceRGBComponents,	/* Names of color model colorants */
    3,				/* Number colorants for RGB */
    {0},			/* SeparationNames */
    {0}				/* SeparationOrder names */
};

static void
spot_cmyk_initialize_device_procs(gx_device *dev)
{
    set_dev_proc(dev, get_color_mapping_procs, get_xcf_color_mapping_procs);

    xcf_initialize_device_procs(dev);
}

const xcf_device gs_xcfcmyk_device =
{
    prn_device_body_extended(xcf_device,
         spot_cmyk_initialize_device_procs, "xcfcmyk",
         DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS,
         X_DPI, Y_DPI,		/* X and Y hardware resolution */
         0, 0, 0, 0,		/* margins */
         GX_DEVICE_COLOR_MAX_COMPONENTS, 4,	/* MaxComponents, NumComp */
         GX_CINFO_POLARITY_SUBTRACTIVE,		/* Polarity */
         32, 0,			/* Depth, Gray_index, */
         255, 255, 256, 256,	/* MaxGray, MaxColor, DitherGray, DitherColor */
         GX_CINFO_UNKNOWN_SEP_LIN, /* Let check_device_separable set up values */
         "DeviceN",		/* Process color model name */
         xcf_print_page),	/* Printer page print routine */
    /* DeviceN device specific parameters */
    XCF_DEVICE_CMYK,		/* Color model */
    8,				/* Bits per color - must match ncomp, depth, etc. above */
    DeviceCMYKComponents,	/* Names of color model colorants */
    4,				/* Number colorants for RGB */
    {0},			/* SeparationNames */
    {0}				/* SeparationOrder names */
};

/*
 * The following procedures are used to map the standard color spaces into
 * the color components for the spotrgb device.
 */
static void
gray_cs_to_spotrgb_cm(const gx_device * dev, frac gray, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    int i = ((xcf_device *)dev)->separation_names.num_names;

    out[0] = out[1] = out[2] = gray;
    for(; i>0; i--)			/* Clear spot colors */
        out[2 + i] = 0;
}

static void
rgb_cs_to_spotrgb_cm(const gx_device * dev, const gs_gstate *pgs,
                                  frac r, frac g, frac b, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    int i = ((xcf_device *)dev)->separation_names.num_names;

    out[0] = r;
    out[1] = g;
    out[2] = b;
    for(; i>0; i--)			/* Clear spot colors */
        out[2 + i] = 0;
}

static void
cmyk_cs_to_spotrgb_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    int i = ((xcf_device *)dev)->separation_names.num_names;

    color_cmyk_to_rgb(c, m, y, k, NULL, out, dev->memory);
    for(; i>0; i--)			/* Clear spot colors */
        out[2 + i] = 0;
}

static void
gray_cs_to_spotcmyk_cm(const gx_device * dev, frac gray, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    int i = ((xcf_device *)dev)->separation_names.num_names;

    out[0] = out[1] = out[2] = 0;
    out[3] = frac_1 - gray;
    for(; i>0; i--)			/* Clear spot colors */
        out[3 + i] = 0;
}

static void
rgb_cs_to_spotcmyk_cm(const gx_device * dev, const gs_gstate *pgs,
                                   frac r, frac g, frac b, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    xcf_device *xdev = (xcf_device *)dev;
    int n = xdev->separation_names.num_names;
    int i;

    color_rgb_to_cmyk(r, g, b, pgs, out, dev->memory);
    for(i = 0; i < n; i++)			/* Clear spot colors */
        out[4 + i] = 0;
}

static void
cmyk_cs_to_spotcmyk_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    xcf_device *xdev = (xcf_device *)dev;
    int n = xdev->separation_names.num_names;
    int i;

    out[0] = c;
    out[1] = m;
    out[2] = y;
    out[3] = k;
    for(i = 0; i < n; i++)			/* Clear spot colors */
        out[4 + i] = 0;
}

static void
cmyk_cs_to_spotn_cm(const gx_device * dev, frac c, frac m, frac y, frac k, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    xcf_device *xdev = (xcf_device *)dev;
    int n = xdev->separation_names.num_names;

    gcmmhlink_t link = xdev->cmyk_icc_link;
    int i;

    if (link != NULL) {
        unsigned short in[4];
        unsigned short tmp[MAX_CHAN];
        int outn = xdev->cmyk_profile->num_comps_out;

        in[0] = frac2ushort(c);
        in[1] = frac2ushort(m);
        in[2] = frac2ushort(y);
        in[3] = frac2ushort(k);

        gscms_transform_color_const(dev, link, &(in[0]), &(tmp[0]), 2);
        for (i = 0; i < outn; i++)
            out[i] = ushort2frac(tmp[i]);
        for (; i < n + 4; i++)
            out[i] = 0;

    } else {
        /* If no profile given, assume CMYK */
        out[0] = c;
        out[1] = m;
        out[2] = y;
        out[3] = k;
        for(i = 0; i < n; i++)			/* Clear spot colors */
            out[4 + i] = 0;
    }
}

static void
gray_cs_to_spotn_cm(const gx_device * dev, frac gray, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */

    cmyk_cs_to_spotn_cm(dev, 0, 0, 0, frac_1 - gray, out);
}

static void
rgb_cs_to_spotn_cm(const gx_device * dev, const gs_gstate *pgs,
                                   frac r, frac g, frac b, frac out[])
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    xcf_device *xdev = (xcf_device *)dev;
    int n = xdev->separation_names.num_names;
    gcmmhlink_t link = xdev->rgb_icc_link;
    int i;

    if (link != NULL) {
        unsigned short in[3];
        unsigned short tmp[MAX_CHAN];
        int outn = xdev->rgb_profile->num_comps_out;

        in[0] = frac2ushort(r);
        in[1] = frac2ushort(g);
        in[2] = frac2ushort(b);

        gscms_transform_color_const(dev, link, &(in[0]), &(tmp[0]), 2);

        for (i = 0; i < outn; i++)
            out[i] = ushort2frac(tmp[i]);
        for (; i < n + 4; i++)
            out[i] = 0;
    } else {
        frac cmyk[4];

        color_rgb_to_cmyk(r, g, b, pgs, cmyk, dev->memory);
        cmyk_cs_to_spotn_cm(dev, cmyk[0], cmyk[1], cmyk[2], cmyk[3],
                            out);
    }
}

static const gx_cm_color_map_procs spotRGB_procs = {
    gray_cs_to_spotrgb_cm, rgb_cs_to_spotrgb_cm, cmyk_cs_to_spotrgb_cm
};

static const gx_cm_color_map_procs spotCMYK_procs = {
    gray_cs_to_spotcmyk_cm, rgb_cs_to_spotcmyk_cm, cmyk_cs_to_spotcmyk_cm
};

static const gx_cm_color_map_procs spotN_procs = {
    gray_cs_to_spotn_cm, rgb_cs_to_spotn_cm, cmyk_cs_to_spotn_cm
};

/*
 * These are the handlers for returning the list of color space
 * to color model conversion routines.
 */
static const gx_cm_color_map_procs *
get_spotrgb_color_mapping_procs(const gx_device * dev, const gx_device **tdev)
{
    *tdev = dev;
    return &spotRGB_procs;
}

#if 0
static const gx_cm_color_map_procs *
get_spotcmyk_color_mapping_procs(const gx_device * dev, const gx_device **tdev)
{
    *tdev = dev;
    return &spotCMYK_procs;
}
#endif

static const gx_cm_color_map_procs *
get_xcf_color_mapping_procs(const gx_device * dev, const gx_device **tdev)
{
    const xcf_device *xdev = (const xcf_device *)dev;

    *tdev = dev;
    if (xdev->color_model == XCF_DEVICE_RGB)
        return &spotRGB_procs;
    else if (xdev->color_model == XCF_DEVICE_CMYK)
        return &spotCMYK_procs;
    else if (xdev->color_model == XCF_DEVICE_N)
        return &spotN_procs;
    else
        return NULL;
}

/*
 * Encode a list of colorant values into a gx_color_index_value.
 */
static gx_color_index
xcf_encode_color(gx_device *dev, const gx_color_value colors[])
{
    int bpc = ((xcf_device *)dev)->bitspercomponent;
    gx_color_index color = 0;
    int i = 0;
    int ncomp = dev->color_info.num_components;
    COLROUND_VARS;

    COLROUND_SETUP(bpc);
    for (; i<ncomp; i++) {
        color <<= bpc;
        color |= COLROUND_ROUND(colors[i]);
    }
    return (color == gx_no_color_index ? color ^ 1 : color);
}

/*
 * Decode a gx_color_index value back to a list of colorant values.
 */
static int
xcf_decode_color(gx_device * dev, gx_color_index color, gx_color_value * out)
{
    int bpc = ((xcf_device *)dev)->bitspercomponent;
    int mask = (1 << bpc) - 1;
    int i = 0;
    int ncomp = dev->color_info.num_components;
    COLDUP_VARS;

    COLDUP_SETUP(bpc);
    for (; i<ncomp; i++) {
        out[ncomp - i - 1] = COLDUP_DUP(color & mask);
        color >>= bpc;
    }
    return 0;
}

/*
 * Convert a gx_color_index to RGB.
 */
static int
xcf_map_color_rgb(gx_device *dev, gx_color_index color, gx_color_value rgb[3])
{
    xcf_device *xdev = (xcf_device *)dev;

    if (xdev->color_model == XCF_DEVICE_RGB)
        return xcf_decode_color(dev, color, rgb);
    /* TODO: return reasonable values. */
    rgb[0] = 0;
    rgb[1] = 0;
    rgb[2] = 0;
    return 0;
}

/*
 * This routine will extract a specified set of bits from a buffer and pack
 * them into a given buffer.
 *
 * Parameters:
 *   source - The source of the data
 *   dest - The destination for the data
 *   depth - The size of the bits per pixel - must be a multiple of 8
 *   first_bit - The location of the first data bit (LSB).
 *   bit_width - The number of bits to be extracted.
 *   npixel - The number of pixels.
 *
 * Returns:
 *   Length of the output line (in bytes)
 *   Data in dest.
 */
#if 0
static int
repack_data(byte * source, byte * dest, int depth, int first_bit,
                int bit_width, int npixel)
{
    int in_nbyte = depth >> 3;		/* Number of bytes per input pixel */
    int out_nbyte = bit_width >> 3;	/* Number of bytes per output pixel */
    gx_color_index mask = 1;
    gx_color_index data;
    int i, j, length = 0;
    int in_byte_loc = 0, out_byte_loc = 0;
    byte temp;
    byte * out = dest;
    int max_bit_byte = 8 - bit_width;

    mask = (mask << bit_width) - 1;
    for (i=0; i<npixel; i++) {
        /* Get the pixel data */
        if (!in_nbyte) {		/* Multiple pixels per byte */
            data = *source;
            data >>= in_byte_loc;
            in_byte_loc += depth;
            if (in_byte_loc >= 8) {	/* If finished with byte */
                in_byte_loc = 0;
                source++;
            }
        }
        else {				/* One or more bytes per pixel */
            data = *source++;
            for (j=1; j<in_nbyte; j++)
                data = (data << 8) + *source++;
        }
        data >>= first_bit;
        data &= mask;

        /* Put the output data */
        if (!out_nbyte) {		/* Multiple pixels per byte */
            temp = *out & ~(mask << out_byte_loc);
            *out = temp | (data << out_byte_loc);
            out_byte_loc += bit_width;
            if (out_byte_loc > max_bit_byte) {	/* If finished with byte */
                out_byte_loc = 0;
                out++;
            }
        }
        else {				/* One or more bytes per pixel */
            *out++ = data >> ((out_nbyte - 1) * 8);
            for (j=1; j<out_nbyte; j++) {
                *out++ = data >> ((out_nbyte - 1 - j) * 8);
            }
        }
    }
    /* Return the number of bytes in the destination buffer. */
    length = out - dest;
    if (out_byte_loc)		 	/* If partially filled last byte */
        length++;
    return length;
}
#endif /* 0 */

static int
xcf_open_profile(const char *profile_out_fn, cmm_profile_t *icc_profile, gcmmhlink_t icc_link, gs_memory_t *memory)
{

    gsicc_rendering_param_t rendering_params;

    icc_profile = gsicc_get_profile_handle_file(profile_out_fn,
                    strlen(profile_out_fn), memory);

    if (icc_profile == NULL)
        return gs_throw(-1, "Could not create profile for xcf device");

    /* Set up the rendering parameters */

    rendering_params.black_point_comp = gsBPNOTSPECIFIED;
    rendering_params.graphics_type_tag = GS_UNKNOWN_TAG;  /* Already rendered */
    rendering_params.rendering_intent = gsPERCEPTUAL;

    /* Call with a NULL destination profile since we are using a device link profile here */
    icc_link = gscms_get_link(icc_profile,
                              NULL, &rendering_params, 0, memory);

    if (icc_link == NULL)
        return gs_throw(-1, "Could not create link handle for xdev device");

    return(0);

}

static int
xcf_open_profiles(xcf_device *xdev)
{
    int code = 0;

    if (xdev->output_icc_link == NULL && xdev->profile_out_fn[0]) {

        code = xcf_open_profile(xdev->profile_out_fn, xdev->output_profile,
            xdev->output_icc_link, xdev->memory);

    }

    if (code >= 0 && xdev->rgb_icc_link == NULL && xdev->profile_rgb_fn[0]) {

        code = xcf_open_profile(xdev->profile_rgb_fn, xdev->rgb_profile,
            xdev->rgb_icc_link, xdev->memory);

    }

    if (code >= 0 && xdev->cmyk_icc_link == NULL && xdev->profile_cmyk_fn[0]) {

        code = xcf_open_profile(xdev->profile_cmyk_fn, xdev->cmyk_profile,
            xdev->cmyk_icc_link, xdev->memory);

    }

    return code;
}

#define set_param_array(a, d, s)\
  (a.data = d, a.size = s, a.persistent = false);

/* Get parameters.  We provide a default CRD. */
static int
xcf_get_params(gx_device * pdev, gs_param_list * plist)
{
    xcf_device *xdev = (xcf_device *)pdev;
    int code;
    bool seprs = false;
    gs_param_string_array scna;
    gs_param_string pos;
    gs_param_string prgbs;
    gs_param_string pcmyks;

    set_param_array(scna, NULL, 0);

    if ( (code = gdev_prn_get_params(pdev, plist)) < 0 ||
         (code = sample_device_crd_get_params(pdev, plist, "CRDDefault")) < 0 ||
         (code = param_write_name_array(plist, "SeparationColorNames", &scna)) < 0 ||
         (code = param_write_bool(plist, "Separations", &seprs)) < 0)
        return code;

    pos.data = (const byte *)xdev->profile_out_fn,
        pos.size = strlen(xdev->profile_out_fn),
        pos.persistent = false;
    code = param_write_string(plist, "ProfileOut", &pos);
    if (code < 0)
        return code;

    prgbs.data = (const byte *)xdev->profile_rgb_fn,
        prgbs.size = strlen(xdev->profile_rgb_fn),
        prgbs.persistent = false;
    code = param_write_string(plist, "ProfileRgb", &prgbs);
    if (code < 0)
        return code;

    pcmyks.data = (const byte *)xdev->profile_cmyk_fn,
        pcmyks.size = strlen(xdev->profile_cmyk_fn),
        pcmyks.persistent = false;
    code = param_write_string(plist, "ProfileCmyk", &pcmyks);

    return code;
}
#undef set_param_array

#define compare_color_names(name, name_size, str, str_size) \
    (name_size == str_size && \
        (strncmp((const char *)name, (const char *)str, name_size) == 0))

/*
 * This routine will check if a name matches any item in a list of process model
 * color component names.
 */
static bool
check_process_color_names(fixed_colorant_names_list plist,
                          const gs_param_string * pstring)
{
    if (plist) {
        uint size = pstring->size;

        while( *plist) {
            if (compare_color_names(*plist, strlen(*plist), pstring->data, size)) {
                return true;
            }
            plist++;
        }
    }
    return false;
}

#define BEGIN_ARRAY_PARAM(pread, pname, pa, psize, e)\
    BEGIN\
    switch (code = pread(plist, (param_name = pname), &(pa))) {\
      case 0:\
        if ((pa).size != psize) {\
          ecode = gs_note_error(gs_error_rangecheck);\
          (pa).data = 0;	/* mark as not filled */\
        } else
#define END_ARRAY_PARAM(pa, e)\
        goto e;\
      default:\
        ecode = code;\
e:	param_signal_error(plist, param_name, ecode);\
      case 1:\
        (pa).data = 0;		/* mark as not filled */\
    }\
    END

static int
xcf_param_read_fn(gs_param_list *plist, const char *name,
                  gs_param_string *pstr, int max_len)
{
    int code = param_read_string(plist, name, pstr);

    if (code == 0) {
        if (pstr->size >= max_len)
            param_signal_error(plist, name, code = gs_error_rangecheck);
    } else {
        pstr->data = 0;
    }
    return code;
}

/* Compare a C string and a gs_param_string. */
static bool
param_string_eq(const gs_param_string *pcs, const char *str)
{
    return (strlen(str) == pcs->size &&
            !strncmp(str, (const char *)pcs->data, pcs->size));
}

static int
xcf_set_color_model(xcf_device *xdev, xcf_color_model color_model)
{
    xdev->color_model = color_model;
    if (color_model == XCF_DEVICE_GRAY) {
        xdev->std_colorant_names = DeviceGrayComponents;
        xdev->num_std_colorant_names = 1;
        xdev->color_info.cm_name = "DeviceGray";
        xdev->color_info.polarity = GX_CINFO_POLARITY_ADDITIVE;
    } else if (color_model == XCF_DEVICE_RGB) {
        xdev->std_colorant_names = DeviceRGBComponents;
        xdev->num_std_colorant_names = 3;
        xdev->color_info.cm_name = "DeviceRGB";
        xdev->color_info.polarity = GX_CINFO_POLARITY_ADDITIVE;
    } else if (color_model == XCF_DEVICE_CMYK) {
        xdev->std_colorant_names = DeviceCMYKComponents;
        xdev->num_std_colorant_names = 4;
        xdev->color_info.cm_name = "DeviceCMYK";
        xdev->color_info.polarity = GX_CINFO_POLARITY_SUBTRACTIVE;
    } else if (color_model == XCF_DEVICE_N) {
        xdev->std_colorant_names = DeviceCMYKComponents;
        xdev->num_std_colorant_names = 4;
        xdev->color_info.cm_name = "DeviceN";
        xdev->color_info.polarity = GX_CINFO_POLARITY_SUBTRACTIVE;
    } else {
        return -1;
    }

    return 0;
}

/*
 * Close device and clean up ICC structures.
 */

static int
xcf_prn_close(gx_device *dev)
{
    xcf_device * const xdev = (xcf_device *) dev;

    if (xdev->cmyk_icc_link != NULL) {
        gscms_release_link(xdev->cmyk_icc_link);
        rc_decrement(xdev->cmyk_profile, "xcf_prn_close");
    }

    if (xdev->rgb_icc_link != NULL) {
        gscms_release_link(xdev->rgb_icc_link);
        rc_decrement(xdev->rgb_profile, "xcf_prn_close");
    }

    if (xdev->output_icc_link != NULL) {
        gscms_release_link(xdev->output_icc_link);
        rc_decrement(xdev->output_profile, "xcf_prn_close");
    }

    return gdev_prn_close(dev);
}

/* Set parameters.  We allow setting the number of bits per component. */
static int
xcf_put_params(gx_device * pdev, gs_param_list * plist)
{
    xcf_device * const pdevn = (xcf_device *) pdev;
    gx_device_color_info save_info;
    gs_param_name param_name;
    int npcmcolors;
    int num_spot = pdevn->separation_names.num_names;
    int ecode = 0;
    int code;
    gs_param_string_array scna;
    gs_param_string po;
    gs_param_string prgb;
    gs_param_string pcmyk;
    gs_param_string pcm;
    xcf_color_model color_model = pdevn->color_model;

    BEGIN_ARRAY_PARAM(param_read_name_array, "SeparationColorNames", scna, scna.size, scne) {
        break;
    } END_ARRAY_PARAM(scna, scne);

    if (code >= 0)
        code = xcf_param_read_fn(plist, "ProfileOut", &po,
                                 sizeof(pdevn->profile_out_fn));
    if (code >= 0)
        code = xcf_param_read_fn(plist, "ProfileRgb", &prgb,
                                 sizeof(pdevn->profile_rgb_fn));
    if (code >= 0)
        code = xcf_param_read_fn(plist, "ProfileCmyk", &pcmyk,
                                 sizeof(pdevn->profile_cmyk_fn));

    if (code >= 0)
        code = param_read_name(plist, "ProcessColorModel", &pcm);
    if (code == 0) {
        if (param_string_eq (&pcm, "DeviceGray"))
            color_model = XCF_DEVICE_GRAY;
        else if (param_string_eq (&pcm, "DeviceRGB"))
            color_model = XCF_DEVICE_RGB;
        else if (param_string_eq (&pcm, "DeviceCMYK"))
            color_model = XCF_DEVICE_CMYK;
        else if (param_string_eq (&pcm, "DeviceN"))
            color_model = XCF_DEVICE_N;
        else {
            param_signal_error(plist, "ProcessColorModel",
                               code = gs_error_rangecheck);
        }
    }
    if (code < 0)
        return code;

    /*
     * Save the color_info in case gdev_prn_put_params fails, and for
     * comparison.
     */
    save_info = pdevn->color_info;
    ecode = xcf_set_color_model(pdevn, color_model);
    if (ecode == 0)
        ecode = gdev_prn_put_params(pdev, plist);
    if (ecode < 0) {
        pdevn->color_info = save_info;
        return ecode;
    }

    /* Separations are only valid with a subrtractive color model */
    if (pdev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) {
        /*
         * Process the separation color names.  Remove any names that already
         * match the process color model colorant names for the device.
         */
        if (scna.data != 0) {
            int i;
            int num_names = scna.size;
            fixed_colorant_names_list pcomp_names =
                                ((xcf_device *)pdev)->std_colorant_names;

            for (i = num_spot = 0; i < num_names; i++) {
                if (!check_process_color_names(pcomp_names, &scna.data[i]))
                    pdevn->separation_names.names[num_spot++] = &scna.data[i];
            }
            pdevn->separation_names.num_names = num_spot;
            if (pdevn->is_open)
                gs_closedevice(pdev);
        }
        npcmcolors = pdevn->num_std_colorant_names;
        pdevn->color_info.num_components = npcmcolors + num_spot;
        /*
         * The DeviceN device can have zero components if nothing has been
         * specified.  This causes some problems so force at least one
         * component until something is specified.
         */
        if (!pdevn->color_info.num_components)
            pdevn->color_info.num_components = 1;
        pdevn->color_info.depth = bpc_to_depth(pdevn->color_info.num_components,
                                                pdevn->bitspercomponent);
        if (pdevn->color_info.depth != save_info.depth) {
            gs_closedevice(pdev);
        }
    }

    if (po.data != 0) {
        memcpy(pdevn->profile_out_fn, po.data, po.size);
        pdevn->profile_out_fn[po.size] = 0;
    }
    if (prgb.data != 0) {
        memcpy(pdevn->profile_rgb_fn, prgb.data, prgb.size);
        pdevn->profile_rgb_fn[prgb.size] = 0;
    }
    if (pcmyk.data != 0) {
        memcpy(pdevn->profile_cmyk_fn, pcmyk.data, pcmyk.size);
        pdevn->profile_cmyk_fn[pcmyk.size] = 0;
    }
    code = xcf_open_profiles(pdevn);

    return code;
}

/*
 * This routine will check to see if the color component name  match those
 * that are available amoung the current device's color components.
 *
 * Parameters:
 *   dev - pointer to device data structure.
 *   pname - pointer to name (zero termination not required)
 *   nlength - length of the name
 *
 * This routine returns a positive value (0 to n) which is the device colorant
 * number if the name is found.  It returns a negative value if not found.
 */
static int
xcf_get_color_comp_index(gx_device * dev, const char * pname, int name_size,
                                        int component_type)
{
/* TO_DO_DEVICEN  This routine needs to include the effects of the SeparationOrder array */
    fixed_colorant_name * pcolor = ((const xcf_device *)dev)->std_colorant_names;
    int color_component_number = 0;
    int i;

    /* Check if the component is in the implied list. */
    if (pcolor) {
        while( *pcolor) {
            if (compare_color_names(pname, name_size, *pcolor, strlen(*pcolor)))
                return color_component_number;
            pcolor++;
            color_component_number++;
        }
    }

    /* Check if the component is in the separation names list. */
    {
        const gs_separation_names * separations = &((const xcf_device *)dev)->separation_names;
        int num_spot = separations->num_names;

        for (i=0; i<num_spot; i++) {
            if (compare_color_names((const char *)separations->names[i]->data,
                  separations->names[i]->size, pname, name_size)) {
                return color_component_number;
            }
            color_component_number++;
        }
    }

    return -1;
}

/* ------ Private definitions ------ */

/* All two-byte quantities are stored MSB-first! */
#if ARCH_IS_BIG_ENDIAN
#  define assign_u16(a,v) a = (v)
#  define assign_u32(a,v) a = (v)
#else
#  define assign_u16(a,v) a = ((v) >> 8) + ((v) << 8)
#  define assign_u32(a,v) a = (((v) >> 24) & 0xff) + (((v) >> 8) & 0xff00) + (((v) & 0xff00) << 8) + (((v) & 0xff) << 24)
#endif

typedef struct {
    gp_file *f;
    int offset;

    int width;
    int height;
    int base_bytes_pp; /* almost always 3 (rgb) */
    int n_extra_channels;

    int n_tiles_x;
    int n_tiles_y;
    int n_tiles;
    int n_levels;

    /* byte offset of image data */
    int image_data_off;
} xcf_write_ctx;

#define TILE_WIDTH 64
#define TILE_HEIGHT 64

static int
xcf_calc_levels(int size, int tile_size)
{
    int levels = 1;
    while (size > tile_size) {
        size >>= 1;
        levels++;
    }
    return levels;
}

static int
xcf_setup_tiles(xcf_write_ctx *xc, xcf_device *dev)
{
    xc->base_bytes_pp = 3;
    xc->n_extra_channels = dev->separation_names.num_names;
    xc->width = dev->width;
    xc->height = dev->height;
    xc->n_tiles_x = (dev->width + TILE_WIDTH - 1) / TILE_WIDTH;
    xc->n_tiles_y = (dev->height + TILE_HEIGHT - 1) / TILE_HEIGHT;
    xc->n_tiles = xc->n_tiles_x * xc->n_tiles_y;
    xc->n_levels = max(xcf_calc_levels(dev->width, TILE_WIDTH),
                       xcf_calc_levels(dev->height, TILE_HEIGHT));

    return 0;
}

/* Return value: Size of tile in pixels. */
static int
xcf_tile_sizeof(xcf_write_ctx *xc, int tile_idx)
{
    int tile_i = tile_idx % xc->n_tiles_x;
    int tile_j = tile_idx / xc->n_tiles_x;
    int tile_size_x = min(TILE_WIDTH, xc->width - tile_i * TILE_WIDTH);
    int tile_size_y = min(TILE_HEIGHT, xc->height - tile_j * TILE_HEIGHT);
    return tile_size_x * tile_size_y;
}

static int
xcf_write(xcf_write_ctx *xc, const byte *buf, int size) {
    int code;

    code = gp_fwrite(buf, 1, size, xc->f);
    if (code < 0)
        return code;
    xc->offset += code;
    return 0;
}

static int
xcf_write_32(xcf_write_ctx *xc, bits32 v)
{
    bits32 buf;

    assign_u32(buf, v);
    return xcf_write(xc, (byte *)&buf, 4);
}

static int
xcf_write_image_props(xcf_write_ctx *xc)
{
    int code = 0;

    xcf_write_32(xc, 0);
    xcf_write_32(xc, 0);

    return code;
}

/**
 * Return value: Number of bytes needed to write layer.
 **/
static int
xcf_base_size(xcf_write_ctx *xc, const char *layer_name)
{
    int bytes_pp = xc->base_bytes_pp + xc->n_extra_channels;

    return 17 + strlen (layer_name) +		/* header and name */
        8 +					/* layer props */
        12 + xc->n_levels * 16 +		/* layer tile hierarchy */
        12 + xc->n_tiles * 4 +			/* tile offsets */
        xc->width * xc->height * bytes_pp;	/* image data */
}

static int
xcf_channel_size(xcf_write_ctx *xc, int name_size)
{
    return 17 + name_size +			/* header and name */
        8 +					/* channel props */
        4 + xc->n_levels * 16 +			/* channel tile hiearchy */
        12 + xc->n_tiles * 4;			/* tile offsets */
}

static int
xcf_write_header(xcf_write_ctx *xc, xcf_device *pdev)
{
    int code = 0;
    const char *layer_name = "Background";
    int level;
    int tile_offset;
    int tile_idx;
    int n_extra_channels = xc->n_extra_channels;
    int bytes_pp = xc->base_bytes_pp + n_extra_channels;
    int channel_idx;

    xcf_write(xc, (const byte *)"gimp xcf file", 14);
    xcf_write_32(xc, xc->width);
    xcf_write_32(xc, xc->height);
    xcf_write_32(xc, 0);

    xcf_write_image_props(xc);

    /* layer offsets */
    xcf_write_32(xc, xc->offset + 12 + 4 * n_extra_channels);
    xcf_write_32(xc, 0);

    /* channel offsets */
    tile_offset = xc->offset + 4 + 4 * n_extra_channels +
        xcf_base_size(xc, layer_name);
    for (channel_idx = 0; channel_idx < n_extra_channels; channel_idx++) {
        const gs_param_string *separation_name =
            pdev->separation_names.names[channel_idx];
        dmlprintf1(pdev->memory, "tile offset: %d\n", tile_offset);
        xcf_write_32(xc, tile_offset);
        tile_offset += xcf_channel_size(xc, separation_name->size);
    }
    xcf_write_32(xc, 0);

    /* layer */
    xcf_write_32(xc, xc->width);
    xcf_write_32(xc, xc->height);
    xcf_write_32(xc, 0);
    xcf_write_32(xc, strlen(layer_name) + 1);
    xcf_write(xc, (const byte *)layer_name, strlen(layer_name) + 1);

    /* layer props */
    xcf_write_32(xc, 0);
    xcf_write_32(xc, 0);

    /* layer tile hierarchy */
    xcf_write_32(xc, xc->offset + 8);
    xcf_write_32(xc, 0);

    xcf_write_32(xc, xc->width);
    xcf_write_32(xc, xc->height);
    xcf_write_32(xc, xc->base_bytes_pp);
    xcf_write_32(xc, xc->offset + (1 + xc->n_levels) * 4);
    tile_offset = xc->offset + xc->width * xc->height * bytes_pp +
        xc->n_tiles * 4 + 12;
    for (level = 1; level < xc->n_levels; level++) {
        xcf_write_32(xc, tile_offset);
        tile_offset += 12;
    }
    xcf_write_32(xc, 0);

    /* layer tile offsets */
    xcf_write_32(xc, xc->width);
    xcf_write_32(xc, xc->height);
    tile_offset = xc->offset + (xc->n_tiles + 1) * 4;
    for (tile_idx = 0; tile_idx < xc->n_tiles; tile_idx++) {
        xcf_write_32(xc, tile_offset);
        tile_offset += xcf_tile_sizeof(xc, tile_idx) * bytes_pp;
    }
    xcf_write_32(xc, 0);

    xc->image_data_off = xc->offset;

    return code;
}

static void
xcf_shuffle_to_tile(xcf_write_ctx *xc, byte **tile_data, const byte *row,
                    int y)
{
    int tile_j = y / TILE_HEIGHT;
    int yrem = y % TILE_HEIGHT;
    int tile_i;
    int base_bytes_pp = xc->base_bytes_pp;
    int n_extra_channels = xc->n_extra_channels;
    int row_idx = 0;

    for (tile_i = 0; tile_i < xc->n_tiles_x; tile_i++) {
        int x;
        int tile_width = min(TILE_WIDTH, xc->width - tile_i * TILE_WIDTH);
        int tile_height = min(TILE_HEIGHT, xc->height - tile_j * TILE_HEIGHT);
        byte *base_ptr = tile_data[tile_i] +
            yrem * tile_width * base_bytes_pp;
        int extra_stride = tile_width * tile_height;
        byte *extra_ptr = tile_data[tile_i] + extra_stride * base_bytes_pp +
            yrem * tile_width;

        int base_idx = 0;

        for (x = 0; x < tile_width; x++) {
            int plane_idx;
            for (plane_idx = 0; plane_idx < base_bytes_pp; plane_idx++)
                base_ptr[base_idx++] = row[row_idx++];
            for (plane_idx = 0; plane_idx < n_extra_channels; plane_idx++)
                extra_ptr[plane_idx * extra_stride + x] = 255 ^ row[row_idx++];
        }
    }
}

static void
xcf_icc_to_tile(gx_device_printer *pdev, xcf_write_ctx *xc, byte **tile_data, const byte *row,
                    int y, gcmmhlink_t link)
{
    int tile_j = y / TILE_HEIGHT;
    int yrem = y % TILE_HEIGHT;
    int tile_i;
    int base_bytes_pp = xc->base_bytes_pp;
    int n_extra_channels = xc->n_extra_channels;
    int row_idx = 0;

    for (tile_i = 0; tile_i < xc->n_tiles_x; tile_i++) {
        int x;
        int tile_width = min(TILE_WIDTH, xc->width - tile_i * TILE_WIDTH);
        int tile_height = min(TILE_HEIGHT, xc->height - tile_j * TILE_HEIGHT);
        byte *base_ptr = tile_data[tile_i] +
            yrem * tile_width * base_bytes_pp;
        int extra_stride = tile_width * tile_height;
        byte *extra_ptr = tile_data[tile_i] + extra_stride * base_bytes_pp +
            yrem * tile_width;

        int base_idx = 0;

        for (x = 0; x < tile_width; x++) {

            int plane_idx;

                /* This loop could be optimized.  I don't quite
                   understand what is going on in the loop
                   with the 255^row[row_idx++] operation */

            gscms_transform_color((gx_device*) pdev, link,
                                  (void *) (&(row[row_idx])),
                                   &(base_ptr[base_idx]), 1);

            for (plane_idx = 0; plane_idx < n_extra_channels; plane_idx++)
                extra_ptr[plane_idx * extra_stride + x] = 255 ^ row[row_idx++];
        }
    }
}

static int
xcf_write_image_data(xcf_write_ctx *xc, gx_device_printer *pdev)
{
    int code = 0;
    int raster = gdev_prn_raster(pdev);
    int tile_i, tile_j;
    byte **tile_data;
    byte *line;
    int base_bytes_pp = xc->base_bytes_pp;
    int n_extra_channels = xc->n_extra_channels;
    int bytes_pp = base_bytes_pp + n_extra_channels;
    int chan_idx;
    xcf_device *xdev = (xcf_device *)pdev;
    gcmmhlink_t link = xdev->output_icc_link;

    line = gs_alloc_bytes(pdev->memory, raster, "xcf_write_image_data");
    tile_data = (byte **)gs_alloc_bytes(pdev->memory,
                                        xc->n_tiles_x * sizeof(byte *),
                                        "xcf_write_image_data");
    if (line == NULL || tile_data ==  NULL) {
        code = gs_error_VMerror;
        goto xit;
    }
    memset(tile_data, 0, xc->n_tiles_x * sizeof(byte *));
    for (tile_i = 0; tile_i < xc->n_tiles_x; tile_i++) {
        int tile_bytes = xcf_tile_sizeof(xc, tile_i) * bytes_pp;

        tile_data[tile_i] = gs_alloc_bytes(pdev->memory, tile_bytes,
                                           "xcf_write_image_data");
        if (tile_data[tile_i] == NULL)
            goto xit;
    }
    for (tile_j = 0; tile_j < xc->n_tiles_y; tile_j++) {
        int y0, y1;
        int y;
        byte *row;

        y0 = tile_j * TILE_HEIGHT;
        y1 = min(xc->height, y0 + TILE_HEIGHT);
        for (y = y0; y < y1; y++) {
            code = gdev_prn_get_bits(pdev, y, line, &row);
            if (code < 0)
                goto xit;
            if (link == NULL)
                xcf_shuffle_to_tile(xc, tile_data, row, y);
            else
                xcf_icc_to_tile(pdev, xc, tile_data, row, y, link);
        }
        for (tile_i = 0; tile_i < xc->n_tiles_x; tile_i++) {
            int tile_idx = tile_j * xc->n_tiles_x + tile_i;
            int tile_size = xcf_tile_sizeof(xc, tile_idx);
            int base_size = tile_size * base_bytes_pp;

            xcf_write(xc, tile_data[tile_i], base_size);
            for (chan_idx = 0; chan_idx < n_extra_channels; chan_idx++) {
                xcf_write(xc, tile_data[tile_i] + base_size +
                          tile_size * chan_idx, tile_size);
            }
        }
    }

xit:
    if (tile_data != NULL) {
        for (tile_i = 0; tile_i < xc->n_tiles_x; tile_i++) {
            gs_free_object(pdev->memory, tile_data[tile_i],
                    "xcf_write_image_data");
        }
    }
    gs_free_object(pdev->memory, tile_data, "xcf_write_image_data");
    gs_free_object(pdev->memory, line, "xcf_write_image_data");
    return code;
}

static int
xcf_write_fake_hierarchy(xcf_write_ctx *xc)
{
    int widthf = xc->width, heightf = xc->height;
    int i;

    for (i = 1; i < xc->n_levels; i++) {
        widthf >>= 1;
        heightf >>= 1;
        xcf_write_32(xc, widthf);
        xcf_write_32(xc, heightf);
        xcf_write_32(xc, 0);
    }
    return 0;
}

static int
xcf_write_footer(xcf_write_ctx *xc, xcf_device *pdev)
{
    int code = 0;
    int base_bytes_pp = xc->base_bytes_pp;
    int n_extra_channels = xc->n_extra_channels;
    int bytes_pp = base_bytes_pp + n_extra_channels;
    int chan_idx;

    xcf_write_fake_hierarchy(xc);

    for (chan_idx = 0; chan_idx < xc->n_extra_channels; chan_idx++) {
        const gs_param_string *separation_name =
            pdev->separation_names.names[chan_idx];
        byte nullbyte[] = { 0 };
        int level;
        int offset;
        int tile_idx;

        dmlprintf2(pdev->memory, "actual tile offset: %d %d\n", xc->offset, (int)ARCH_SIZEOF_COLOR_INDEX);
        xcf_write_32(xc, xc->width);
        xcf_write_32(xc, xc->height);
        xcf_write_32(xc, separation_name->size + 1);
        xcf_write(xc, separation_name->data, separation_name->size);
        xcf_write(xc, nullbyte, 1);

        /* channel props */
        xcf_write_32(xc, 0);
        xcf_write_32(xc, 0);

        /* channel tile hierarchy */
        xcf_write_32(xc, xc->offset + 4);

        xcf_write_32(xc, xc->width);
        xcf_write_32(xc, xc->height);
        xcf_write_32(xc, 1);
        xcf_write_32(xc, xc->offset + xc->n_levels * 16 - 8);
        offset = xc->offset + xc->n_levels * 4;
        for (level = 1; level < xc->n_levels; level++) {
            xcf_write_32(xc, offset);
            offset += 12;
        }
        xcf_write_32(xc, 0);
        xcf_write_fake_hierarchy(xc);

        /* channel tile offsets */
        xcf_write_32(xc, xc->width);
        xcf_write_32(xc, xc->height);
        offset = xc->image_data_off;
        for (tile_idx = 0; tile_idx < xc->n_tiles; tile_idx++) {
            int tile_size = xcf_tile_sizeof(xc, tile_idx);

            xcf_write_32(xc, offset + (base_bytes_pp + chan_idx) * tile_size);
            offset += bytes_pp * tile_size;
        }
        xcf_write_32(xc, 0);

    }
    return code;
}

static int
xcf_print_page(gx_device_printer *pdev, gp_file *file)
{
    xcf_write_ctx xc;

    xc.f = file;
    xc.offset = 0;

    xcf_setup_tiles(&xc, (xcf_device *)pdev);
    xcf_write_header(&xc, (xcf_device *)pdev);
    xcf_write_image_data(&xc, pdev);
    xcf_write_footer(&xc, (xcf_device *)pdev);

    return 0;
}