summaryrefslogtreecommitdiff
path: root/psi/isave.c
blob: bb8b74ecf32d89680fca1a55ae3960828898f40c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Save/restore manager for Ghostscript interpreter */
#include "ghost.h"
#include "memory_.h"
#include "ierrors.h"
#include "gsexit.h"
#include "gsstruct.h"
#include "stream.h"		/* for linking for forgetsave */
#include "iastate.h"
#include "inamedef.h"
#include "iname.h"
#include "ipacked.h"
#include "isave.h"
#include "isstate.h"
#include "gsstate.h"
#include "store.h"		/* for ref_assign */
#include "ivmspace.h"
#include "igc.h"
#include "gsutil.h"		/* gs_next_ids prototype */
#include "icstate.h"

/* Structure descriptor */
private_st_alloc_save();

/* Define the maximum amount of data we are willing to scan repeatedly -- */
/* see below for details. */
static const long max_repeated_scan = 100000;

/* Define the minimum space for creating an inner clump. */
/* Must be at least sizeof(clump_head_t). */
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;

/*
 * The logic for saving and restoring the state is complex.
 * Both the changes to individual objects, and the overall state
 * of the memory manager, must be saved and restored.
 */

/*
 * To save the state of the memory manager:
 *      Save the state of the current clump in which we are allocating.
 *      Shrink all clumps to their inner unallocated region.
 *      Save and reset the free block chains.
 * By doing this, we guarantee that no object older than the save
 * can be freed.
 *
 * To restore the state of the memory manager:
 *      Free all clumps newer than the save, and the descriptors for
 *        the inner clumps created by the save.
 *      Make current the clump that was current at the time of the save.
 *      Restore the state of the current clump.
 *
 * In addition to save ("start transaction") and restore ("abort transaction"),
 * we support forgetting a save ("commit transation").  To forget a save:
 *      Reassign to the next outer save all clumps newer than the save.
 *      Free the descriptors for the inners clump, updating their outer
 *        clumps to reflect additional allocations in the inner clumps.
 *      Concatenate the free block chains with those of the outer save.
 */

/*
 * For saving changes to individual objects, we add an "attribute" bit
 * (l_new) that logically belongs to the slot where the ref is stored,
 * not to the ref itself.  The bit means "the contents of this slot
 * have been changed, or the slot was allocated, since the last save."
 * To keep track of changes since the save, we associate a chain of
 * <slot, old_contents> pairs that remembers the old contents of slots.
 *
 * When creating an object, if the save level is non-zero:
 *      Set l_new in all slots.
 *
 * When storing into a slot, if the save level is non-zero:
 *      If l_new isn't set, save the address and contents of the slot
 *        on the current contents chain.
 *      Set l_new after storing the new value.
 *
 * To do a save:
 *      If the save level is non-zero:
 *              Reset l_new in all slots on the contents chain, and in all
 *                objects created since the previous save.
 *      Push the head of the contents chain, and reset the chain to empty.
 *
 * To do a restore:
 *      Check all the stacks to make sure they don't contain references
 *        to objects created since the save.
 *      Restore all the slots on the contents chain.
 *      Pop the contents chain head.
 *      If the save level is now non-zero:
 *              Scan the newly restored contents chain, and set l_new in all
 *                the slots it references.
 *              Scan all objects created since the previous save, and set
 *                l_new in all the slots of each object.
 *
 * To forget a save:
 *      If the save level is greater than 1:
 *              Set l_new as for a restore, per the next outer save.
 *              Concatenate the next outer contents chain to the end of
 *                the current one.
 *      If the save level is 1:
 *              Reset l_new as for a save.
 *              Free the contents chain.
 */

/*
 * A consequence of the foregoing algorithms is that the cost of a save is
 * proportional to the total amount of data allocated since the previous
 * save.  If a PostScript program reads in a large amount of setup code and
 * then uses save/restore heavily, each save/restore will be expensive.  To
 * mitigate this, we check to see how much data we have scanned at this save
 * level: if it is large, we do a second, invisible save.  This greatly
 * reduces the cost of inner saves, at the expense of possibly saving some
 * changes twice that otherwise would only have to be saved once.
 */

/*
 * The presence of global and local VM complicates the situation further.
 * There is a separate save chain and contents chain for each VM space.
 * When multiple contexts are fully implemented, save and restore will have
 * the following effects, according to the privacy status of the current
 * context's global and local VM:
 *      Private global, private local:
 *              The outermost save saves both global and local VM;
 *                otherwise, save only saves local VM.
 *      Shared global, private local:
 *              Save only saves local VM.
 *      Shared global, shared local:
 *              Save only saves local VM, and suspends all other contexts
 *                sharing the same local VM until the matching restore.
 * Since we do not currently implement multiple contexts, only the first
 * case is relevant.
 *
 * Note that when saving the contents of a slot, the choice of chain
 * is determined by the VM space in which the slot is allocated,
 * not by the current allocation mode.
 */

/* Tracing printout */
static void
print_save(const char *str, uint spacen, const alloc_save_t *sav)
{
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
}

/* A link to igcref.c . */
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);

static
CLEAR_MARKS_PROC(change_clear_marks)
{
    alloc_change_t *const ptr = (alloc_change_t *)vptr;

    if (r_is_packed(&ptr->contents))
        r_clear_pmark((ref_packed *) & ptr->contents);
    else
        r_clear_attrs(&ptr->contents, l_mark);
}
static
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
ENUM_PTR(0, alloc_change_t, next);
case 1:
    if (ptr->offset >= 0)
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
    else
        if (ptr->offset != AC_OFFSET_ALLOCATED)
            ENUM_RETURN_REF(ptr->where);
        else {
            /* Don't enumerate ptr->where, because it
               needs a special processing with
               alloc_save__filter_changes. */
            ENUM_RETURN(0);
        }
case 2:
    ENUM_RETURN_REF(&ptr->contents);
ENUM_PTRS_END
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
{
    RELOC_VAR(ptr->next);
    switch (ptr->offset) {
        case AC_OFFSET_STATIC:
            break;
        case AC_OFFSET_REF:
            RELOC_REF_PTR_VAR(ptr->where);
            break;
        case AC_OFFSET_ALLOCATED:
            /* We know that ptr->where may point to an unmarked object
               because change_enum_ptrs skipped it,
               and we know it always points to same space
               because we took a special care when calling alloc_save_change_alloc.
               Therefore we must skip the check for the mark,
               which would happen if we call the regular relocation function
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
               Calling igc_reloc_ref_ptr_nocheck instead. */
            {	/* A sanity check. */
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;

                if (pre->o_type != &st_refs)
                    gs_abort(gcst->heap);
            }
            if (ptr->where != 0 && !gcst->relocating_untraced)
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
            break;
        default:
            {
                byte *obj = (byte *) ptr->where - ptr->offset;

                RELOC_VAR(obj);
                ptr->where = (ref_packed *) (obj + ptr->offset);
            }
            break;
    }
    if (r_is_packed(&ptr->contents))
        r_clear_pmark((ref_packed *) & ptr->contents);
    else {
        RELOC_REF_VAR(ptr->contents);
        r_clear_attrs(&ptr->contents, l_mark);
    }
}
RELOC_PTRS_END
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);

/* Debugging printout */
#ifdef DEBUG
static void
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
{
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
    if (r_is_packed(&cp->contents)) {
        if (print_current)
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
                      *cp->where);
        else
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
    } else {
        if (print_current)
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
                      (ulong) cp->contents.value.intval,
                      r_type_attrs((ref *) cp->where),
                      r_size((ref *) cp->where),
                      (ulong) ((ref *) cp->where)->value.intval);
        else
            dmprintf3(mem, "%x %x %lx\n",
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
                      (ulong) cp->contents.value.intval);
    }
}
#endif

/* Forward references */
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
static void restore_free(gs_ref_memory_t *);
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
static bool check_l_mark(void *obj);

/* Initialize the save/restore machinery. */
void
alloc_save_init(gs_dual_memory_t * dmem)
{
    alloc_set_not_in_save(dmem);
}

/* Record that we are in a save. */
static void
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
{
    int i;
    gs_ref_memory_t *mem;

    dmem->new_mask = new_mask;
    dmem->test_mask = test_mask;
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
            mem->new_mask = new_mask, mem->test_mask = test_mask;
            if (mem->stable_memory != (gs_memory_t *)mem) {
                mem = (gs_ref_memory_t *)mem->stable_memory;
                mem->new_mask = new_mask, mem->test_mask = test_mask;
            }
        }
}
void
alloc_set_in_save(gs_dual_memory_t *dmem)
{
    alloc_set_masks(dmem, l_new, l_new);
}

/* Record that we are not in a save. */
void
alloc_set_not_in_save(gs_dual_memory_t *dmem)
{
    alloc_set_masks(dmem, 0, ~0);
}

/* Save the state. */
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
                                       gs_dual_memory_t *dmem,
                                       ulong sid);
static void
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
{
    gs_ref_memory_t save_mem;
    save_mem = mem->saved->state;
    gs_free_object((gs_memory_t *)mem, save, scn);
    /* Free any inner clump structures.  This is the easiest way to do it. */
    restore_free(mem);
    /* Restore the 'saved' state - this pulls our object off the linked
     * list of states. Without this we hit a SEGV in the gc later. */
    *mem = save_mem;
}
int
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
{
    gs_ref_memory_t *lmem = dmem->space_local;
    gs_ref_memory_t *gmem = dmem->space_global;
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
    bool global =
        lmem->save_level == 0 && gmem != lmem &&
        gmem->num_contexts == 1;
    alloc_save_t *gsave =
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);

    if (lsave == 0 || (global && gsave == 0)) {
        /* Only 1 of lsave or gsave will have been allocated, but
         * nevertheless (in case things change in future), we free
         * lsave, then gsave, so they 'pop' correctly when restoring
         * the mem->saved states. */
        if (lsave != 0)
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
        if (gsave != 0)
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
        return_error(gs_error_VMerror);
    }
    if (gsave != 0) {
        gsave->client_data = 0;
        print_save("save", gmem->space, gsave);
        /* Restore names when we do the local restore. */
        lsave->restore_names = gsave->restore_names;
        gsave->restore_names = false;
    }
    lsave->id = sid;
    lsave->client_data = cdata;
    print_save("save", lmem->space, lsave);
    /* Reset the l_new attribute in all slots.  The only slots that */
    /* can have the attribute set are the ones on the changes chain, */
    /* and ones in objects allocated since the last save. */
    if (lmem->save_level > 1) {
        ulong scanned;
        int code = save_set_new(&lsave->state, false, true, &scanned);

        if (code < 0)
            return code;
#if 0 /* Disable invisible save levels. */
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
            /* Do a second, invisible save. */
            alloc_save_t *rsave;

            rsave = alloc_save_space(lmem, dmem, 0L);
            if (rsave != 0) {
                rsave->client_data = cdata;
#if 0 /* Bug 688153 */
                rsave->id = lsave->id;
                print_save("save", lmem->space, rsave);
                lsave->id = 0;	/* mark as invisible */
                rsave->state.save_level--; /* ditto */
                lsave->client_data = 0;
#else
                rsave->id = 0;  /* mark as invisible */
                print_save("save", lmem->space, rsave);
                rsave->state.save_level--; /* ditto */
                rsave->client_data = 0;
#endif
                /* Inherit the allocated space count -- */
                /* we need this for triggering a GC. */
                print_save("save", lmem->space, lsave);
            }
        }
#endif
    }

    alloc_set_in_save(dmem);
    *psid = sid;
    return 0;
}
/* Save the state of one space (global or local). */
static alloc_save_t *
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
{
    gs_ref_memory_t save_mem;
    alloc_save_t *save;
    clump_t *cp;
    clump_t *new_cc = NULL;
    clump_splay_walker sw;

    save_mem = *mem;
    alloc_close_clump(mem);
    mem->cc = NULL;
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
    ialloc_reset(mem);

    /* Create inner clumps wherever it's worthwhile. */

    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
            /* Create an inner clump to cover only the unallocated part. */
            clump_t *inner =
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
                                              "alloc_save_space(inner)");

            if (inner == 0)
                break;		/* maybe should fail */
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
            alloc_link_clump(inner, mem);
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
            if (cp == save_mem.cc)
                new_cc = inner;
        }
    }
    mem->cc = new_cc;
    alloc_open_clump(mem);

    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
                           &st_alloc_save, "alloc_save_space(save)");
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
               mem->space, (intptr_t) save);
    if (save == 0) {
        /* Free the inner clump structures.  This is the easiest way. */
        restore_free(mem);
        *mem = save_mem;
        return 0;
    }
    save->client_data = NULL;
    save->state = save_mem;
    save->spaces = dmem->spaces;
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
    save->is_current = (dmem->current == mem);
    save->id = sid;
    mem->saved = save;
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
               mem->space, (intptr_t) mem->streams);
    mem->streams = 0;
    mem->total_scanned = 0;
    mem->total_scanned_after_compacting = 0;
    if (sid)
        mem->save_level++;
    return save;
}

/* Record a state change that must be undone for restore, */
/* and mark it as having been saved. */
int
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
                  ref_packed * where, client_name_t cname)
{
    register alloc_change_t *cp;

    if (mem->new_mask == 0)
        return 0;		/* no saving */
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
                         &st_alloc_change, "alloc_save_change");
    if (cp == 0)
        return -1;
    cp->next = mem->changes;
    cp->where = where;
    if (pcont == NULL)
        cp->offset = AC_OFFSET_STATIC;
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
        cp->offset = AC_OFFSET_REF;
    else if (r_is_struct(pcont))
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
    else {
        lprintf3("Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
        gs_abort((const gs_memory_t *)mem);
    }
    if (r_is_packed(where))
        *(ref_packed *)&cp->contents = *where;
    else {
        ref_assign_inline(&cp->contents, (ref *) where);
        r_set_attrs((ref *) where, l_new);
    }
    mem->changes = cp;
#ifdef DEBUG
    if (gs_debug_c('U')) {
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
        alloc_save_print((const gs_memory_t *)mem, cp, false);
    }
#endif
    return 0;
}
int
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
                  ref_packed * where, client_name_t cname)
{
    gs_ref_memory_t *mem =
        (pcont == NULL ? dmem->space_local :
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);

    return alloc_save_change_in(mem, pcont, where, cname);
}

/* Allocate a structure for recording an allocation event. */
int
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
{
    register alloc_change_t *cp;

    if (mem->new_mask == 0)
        return 0;		/* no saving */
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
                         &st_alloc_change, "alloc_save_change");
    if (cp == 0)
        return_error(gs_error_VMerror);
    cp->next = mem->changes;
    cp->where = 0;
    cp->offset = AC_OFFSET_ALLOCATED;
    make_null(&cp->contents);
    *pcp = cp;
    return 1;
}

/* Remove an AC_OFFSET_ALLOCATED element. */
void
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
{
    alloc_change_t **cpp = &mem->changes;

    for (; *cpp != NULL;) {
        alloc_change_t *cp = *cpp;

        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
            if (mem->scan_limit == cp)
                mem->scan_limit = cp->next;
            *cpp = cp->next;
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
        } else
            cpp = &(*cpp)->next;
    }
}

/* Filter save change lists. */
static inline void
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
{
    /* This is a special function, which is called
       from the garbager after setting marks and before collecting
       unused space. Therefore it just resets marks for
       elements being released instead releasing them really. */
    alloc_change_t **cpp = &mem->changes;

    for (; *cpp != NULL; ) {
        alloc_change_t *cp = *cpp;

        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
            obj_header_t *pre = (obj_header_t *)cp - 1;

            *cpp = cp->next;
            cp->where = 0;
            if (mem->scan_limit == cp)
                mem->scan_limit = cp->next;
            o_set_unmarked(pre);
        } else
            cpp = &(*cpp)->next;
    }
}

/* Filter save change lists. */
void
alloc_save__filter_changes(gs_ref_memory_t *memory)
{
    gs_ref_memory_t *mem = memory;

    for  (; mem; mem = &mem->saved->state)
        alloc_save__filter_changes_in_space(mem);
}

/* Return (the id of) the innermost externally visible save object, */
/* i.e., the innermost save with a non-zero ID. */
ulong
alloc_save_current_id(const gs_dual_memory_t * dmem)
{
    const alloc_save_t *save = dmem->space_local->saved;

    while (save != 0 && save->id == 0)
        save = save->state.saved;
    if (save)
        return save->id;

    /* This should never happen, if it does, return a totally
     * impossible value.
     */
    return (ulong)-1;
}
alloc_save_t *
alloc_save_current(const gs_dual_memory_t * dmem)
{
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
}

/* Test whether a reference would be invalidated by a restore. */
bool
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
{
    /* A reference postdates a save iff it is in a clump allocated */
    /* since the save (including any carried-over inner clumps). */

    const char *const ptr = (const char *)vptr;
    register gs_ref_memory_t *mem = save->space_local;

    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
               (intptr_t) ptr, (intptr_t) save);
    if (mem->saved == 0) {	/* This is a special case, the final 'restore' from */
        /* alloc_restore_all. */
        return true;
    }
    /* Check against clumps allocated since the save. */
    /* (There may have been intermediate saves as well.) */
    for (;; mem = &mem->saved->state) {
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
        if (ptr_is_within_mem_clumps(ptr, mem)) {
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
            return true;
        }
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
        if (mem->saved == save) {	/* We've checked all the more recent saves, */
            /* must be OK. */
            break;
        }
    }

    /*
     * If we're about to do a global restore (a restore to the level 0),
     * and there is only one context using this global VM
     * (the normal case, in which global VM is saved by the
     * outermost save), we also have to check the global save.
     * Global saves can't be nested, which makes things easy.
     */
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
        (mem = save->space_global) != save->space_local &&
        save->space_global->num_contexts == 1
        ) {
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
        if (ptr_is_within_mem_clumps(ptr, mem)) {
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
            return true;
        }
    }
    return false;

#undef ptr
}

/* Test whether a name would be invalidated by a restore. */
bool
alloc_name_is_since_save(const gs_memory_t *mem,
                         const ref * pnref, const alloc_save_t * save)
{
    const name_string_t *pnstr;

    if (!save->restore_names)
        return false;
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
    if (pnstr->foreign_string)
        return false;
    return alloc_is_since_save(pnstr->string_bytes, save);
}
bool
alloc_name_index_is_since_save(const gs_memory_t *mem,
                               uint nidx, const alloc_save_t *save)
{
    const name_string_t *pnstr;

    if (!save->restore_names)
        return false;
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
    if (pnstr->foreign_string)
        return false;
    return alloc_is_since_save(pnstr->string_bytes, save);
}

/* Check whether any names have been created since a given save */
/* that might be released by the restore. */
bool
alloc_any_names_since_save(const alloc_save_t * save)
{
    return save->restore_names;
}

/* Get the saved state with a given ID. */
alloc_save_t *
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
{
    alloc_save_t *sprev = dmem->space_local->saved;

    if (sid == 0)
        return 0;		/* invalid id */
    while (sprev != 0) {
        if (sprev->id == sid)
            return sprev;
        sprev = sprev->state.saved;
    }
    return 0;
}

/* Get the client data from a saved state. */
void *
alloc_save_client_data(const alloc_save_t * save)
{
    return save->client_data;
}

/*
 * Do one step of restoring the state.  The client is responsible for
 * calling alloc_find_save to get the save object, and for ensuring that
 * there are no surviving pointers for which alloc_is_since_save is true.
 * Return true if the argument was the innermost save, in which case
 * this is the last (or only) step.
 * Note that "one step" may involve multiple internal steps,
 * if this is the outermost restore (which requires restoring both local
 * and global VM) or if we created extra save levels to reduce scanning.
 */
static void restore_finalize(gs_ref_memory_t *);
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);

int
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
{
    /* Get save->space_* now, because the save object will be freed. */
    gs_ref_memory_t *lmem = save->space_local;
    gs_ref_memory_t *gmem = save->space_global;
    gs_ref_memory_t *mem = lmem;
    alloc_save_t *sprev;
    int code;

    /* Finalize all objects before releasing resources or undoing changes. */
    do {
        ulong sid;

        sprev = mem->saved;
        sid = sprev->id;
        restore_finalize(mem);	/* finalize objects */
        mem = &sprev->state;
        if (sid != 0)
            break;
    }
    while (sprev != save);
    if (mem->save_level == 0) {
        /* This is the outermost save, which might also */
        /* need to restore global VM. */
        mem = gmem;
        if (mem != lmem && mem->saved != 0) {
            restore_finalize(mem);
        }
    }

    /* Do one (externally visible) step of restoring the state. */
    mem = lmem;
    do {
        ulong sid;

        sprev = mem->saved;
        sid = sprev->id;
        code = restore_resources(sprev, mem);	/* release other resources */
        if (code < 0)
            return code;
        restore_space(mem, dmem);	/* release memory */
        if (sid != 0)
            break;
    }
    while (sprev != save);

    if (mem->save_level == 0) {
        /* This is the outermost save, which might also */
        /* need to restore global VM. */
        mem = gmem;
        if (mem != lmem && mem->saved != 0) {
            code = restore_resources(mem->saved, mem);
            if (code < 0)
                return code;
            restore_space(mem, dmem);
        }
        alloc_set_not_in_save(dmem);
    } else {			/* Set the l_new attribute in all slots that are now new. */
        ulong scanned;

        code = save_set_new(mem, true, false, &scanned);
        if (code < 0)
            return code;
    }

    return sprev == save;
}
/* Restore the memory of one space, by undoing changes and freeing */
/* memory allocated since the save. */
static void
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
{
    alloc_save_t *save = mem->saved;
    alloc_save_t saved;

    print_save("restore", mem->space, save);

    /* Undo changes since the save. */
    {
        register alloc_change_t *cp = mem->changes;

        while (cp) {
#ifdef DEBUG
            if (gs_debug_c('U')) {
                dmlputs((const gs_memory_t *)mem, "[U]restore");
                alloc_save_print((const gs_memory_t *)mem, cp, true);
            }
#endif
            if (cp->offset == AC_OFFSET_ALLOCATED)
                DO_NOTHING;
            else
            if (r_is_packed(&cp->contents))
                *cp->where = *(ref_packed *) & cp->contents;
            else
                ref_assign_inline((ref *) cp->where, &cp->contents);
            cp = cp->next;
        }
    }

    /* Free memory allocated since the save. */
    /* Note that this frees all clumps except the inner ones */
    /* belonging to this level. */
    saved = *save;
    restore_free(mem);

    /* Restore the allocator state. */
    {
        int num_contexts = mem->num_contexts;	/* don't restore */

        *mem = saved.state;
        mem->num_contexts = num_contexts;
    }
    alloc_open_clump(mem);

    /* Make the allocator current if it was current before the save. */
    if (saved.is_current) {
        dmem->current = mem;
        dmem->current_space = mem->space;
    }
}

/* Restore to the initial state, releasing all resources. */
/* The allocator is no longer usable after calling this routine! */
int
alloc_restore_all(i_ctx_t *i_ctx_p)
{
    /*
     * Save the memory pointers, since freeing space_local will also
     * free dmem itself.
     */
    gs_ref_memory_t *lmem = idmemory->space_local;
    gs_ref_memory_t *gmem = idmemory->space_global;
    gs_ref_memory_t *smem = idmemory->space_system;

    gs_ref_memory_t *mem;
    int code;

    /* Restore to a state outside any saves. */
    while (lmem->save_level != 0) {
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
        if (vmsave->gsave) {
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
        }
        vmsave->gsave = 0;
        code = alloc_restore_step_in(idmemory, lmem->saved);

        if (code < 0)
            return code;
    }

    /* Finalize memory. */
    restore_finalize(lmem);
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
        restore_finalize(mem);
    if (gmem != lmem && gmem->num_contexts == 1) {
        restore_finalize(gmem);
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
            restore_finalize(mem);
    }
    restore_finalize(smem);

    /* Release resources other than memory, using fake */
    /* save and memory objects. */
    {
        alloc_save_t empty_save;

        empty_save.spaces = idmemory->spaces;
        empty_save.restore_names = false;	/* don't bother to release */
        code = restore_resources(&empty_save, NULL);
        if (code < 0)
            return code;
    }

    /* Finally, release memory. */
    restore_free(lmem);
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
        restore_free(mem);
    if (gmem != lmem) {
        if (!--(gmem->num_contexts)) {
            restore_free(gmem);
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
                restore_free(mem);
        }
    }
    restore_free(smem);
    return 0;
}

/*
 * Finalize objects that will be freed by a restore.
 * Note that we must temporarily disable the freeing operations
 * of the allocator while doing this.
 */
static void
restore_finalize(gs_ref_memory_t * mem)
{
    clump_t *cp;
    clump_splay_walker sw;

    alloc_close_clump(mem);
    gs_enable_free((gs_memory_t *) mem, false);
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
        SCAN_CLUMP_OBJECTS(cp)
            DO_ALL
            struct_proc_finalize((*finalize)) =
            pre->o_type->finalize;
        if (finalize != 0) {
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
                       struct_type_name_string(pre->o_type),
                       (intptr_t) (pre + 1));
            (*finalize) ((gs_memory_t *) mem, pre + 1);
        }
        END_OBJECTS_SCAN
    }
    gs_enable_free((gs_memory_t *) mem, true);
}

/* Release resources for a restore */
static int
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
{
    int code;
#ifdef DEBUG
    if (mem) {
        /* Note restoring of the file list. */
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
                   mem->space, (intptr_t)mem->streams,
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
    }
#endif

    /* Remove entries from font and character caches. */
    code = font_restore(sprev);
    if (code < 0)
        return code;

    /* Adjust the name table. */
    if (sprev->restore_names)
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
    return 0;
}

/* Release memory for a restore. */
static void
restore_free(gs_ref_memory_t * mem)
{
    /* Free clumps allocated since the save. */
    gs_free_all((gs_memory_t *) mem);
}

/* Forget a save, by merging this level with the next outer one. */
static void file_forget_save(gs_ref_memory_t *);
static void combine_space(gs_ref_memory_t *);
static void forget_changes(gs_ref_memory_t *);
int
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
{
    gs_ref_memory_t *mem = save->space_local;
    alloc_save_t *sprev;
    ulong scanned;
    int code;

    print_save("forget_save", mem->space, save);

    /* Iteratively combine the current level with the previous one. */
    do {
        sprev = mem->saved;
        if (sprev->id != 0)
            mem->save_level--;
        if (mem->save_level != 0) {
            alloc_change_t *chp = mem->changes;

            code = save_set_new(&sprev->state, true, false, &scanned);
            if (code < 0)
                return code;
            /* Concatenate the changes chains. */
            if (chp == 0)
                mem->changes = sprev->state.changes;
            else {
                while (chp->next != 0)
                    chp = chp->next;
                chp->next = sprev->state.changes;
            }
            file_forget_save(mem);
            combine_space(mem);	/* combine memory */
        } else {
            forget_changes(mem);
            code = save_set_new(mem, false, false, &scanned);
            if (code < 0)
                return code;
            file_forget_save(mem);
            combine_space(mem);	/* combine memory */
            /* This is the outermost save, which might also */
            /* need to combine global VM. */
            mem = save->space_global;
            if (mem != save->space_local && mem->saved != 0) {
                forget_changes(mem);
                code = save_set_new(mem, false, false, &scanned);
                if (code < 0)
                    return code;
                file_forget_save(mem);
                combine_space(mem);
            }
            alloc_set_not_in_save(dmem);
            break;		/* must be outermost */
        }
    }
    while (sprev != save);
    return 0;
}
/* Combine the clumps of the next outer level with those of the current one, */
/* and free the bookkeeping structures. */
static void
combine_space(gs_ref_memory_t * mem)
{
    alloc_save_t *saved = mem->saved;
    gs_ref_memory_t *omem = &saved->state;
    clump_t *cp;
    clump_splay_walker sw;

    alloc_close_clump(mem);
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
        if (cp->outer == 0)
            alloc_link_clump(cp, omem);
        else {
            clump_t *outer = cp->outer;

            outer->inner_count--;
            if (mem->cc == cp)
                mem->cc = outer;
            if (mem->cfreed.cp == cp)
                mem->cfreed.cp = outer;
            /* "Free" the header of the inner clump, */
            /* and any immediately preceding gap left by */
            /* the GC having compacted the outer clump. */
            {
                obj_header_t *hp = (obj_header_t *) outer->cbot;

                hp->o_pad = 0;
                hp->o_alone = 0;
                hp->o_size = (char *)(cp->chead + 1)
                    - (char *)(hp + 1);
                hp->o_type = &st_bytes;
                /* The following call is probably not safe. */
#if 0				/* **************** */
                gs_free_object((gs_memory_t *) mem,
                               hp + 1, "combine_space(header)");
#endif /* **************** */
            }
            /* Update the outer clump's allocation pointers. */
            outer->cbot = cp->cbot;
            outer->rcur = cp->rcur;
            outer->rtop = cp->rtop;
            outer->ctop = cp->ctop;
            outer->has_refs |= cp->has_refs;
            gs_free_object(mem->non_gc_memory, cp,
                           "combine_space(inner)");
        }
    }
    /* Update relevant parts of allocator state. */
    mem->root = omem->root;
    mem->allocated += omem->allocated;
    mem->gc_allocated += omem->allocated;
    mem->lost.objects += omem->lost.objects;
    mem->lost.refs += omem->lost.refs;
    mem->lost.strings += omem->lost.strings;
    mem->saved = omem->saved;
    mem->previous_status = omem->previous_status;
    {				/* Concatenate free lists. */
        int i;

        for (i = 0; i < num_freelists; i++) {
            obj_header_t *olist = omem->freelists[i];
            obj_header_t *list = mem->freelists[i];

            if (olist == 0);
            else if (list == 0)
                mem->freelists[i] = olist;
            else {
                while (*(obj_header_t **) list != 0)
                    list = *(obj_header_t **) list;
                *(obj_header_t **) list = olist;
            }
        }
        if (omem->largest_free_size > mem->largest_free_size)
            mem->largest_free_size = omem->largest_free_size;
    }
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
    alloc_open_clump(mem);
}
/* Free the changes chain for a level 0 .forgetsave, */
/* resetting the l_new flag in the changed refs. */
static void
forget_changes(gs_ref_memory_t * mem)
{
    register alloc_change_t *chp = mem->changes;
    alloc_change_t *next;

    for (; chp; chp = next) {
        ref_packed *prp = chp->where;

        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
        if (chp->offset == AC_OFFSET_ALLOCATED)
            DO_NOTHING;
        else
        if (!r_is_packed(prp))
            r_clear_attrs((ref *) prp, l_new);
        next = chp->next;
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
    }
    mem->changes = 0;
}
/* Update the streams list when forgetting a save. */
static void
file_forget_save(gs_ref_memory_t * mem)
{
    const alloc_save_t *save = mem->saved;
    stream *streams = mem->streams;
    stream *saved_streams = save->state.streams;

    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
               (intptr_t) save);
    if (streams == 0)
        mem->streams = saved_streams;
    else if (saved_streams != 0) {
        while (streams->next != 0)
            streams = streams->next;
        streams->next = saved_streams;
        saved_streams->prev = streams;
    }
}

static inline int
mark_allocated(void *obj, bool to_new, uint *psize)
{
    obj_header_t *pre = (obj_header_t *)obj - 1;
    uint size = pre_obj_contents_size(pre);
    ref_packed *prp = (ref_packed *) (pre + 1);
    ref_packed *next = (ref_packed *) ((char *)prp + size);
#ifdef ALIGNMENT_ALIASING_BUG
                ref *rpref;
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
#else
# define RP_REF(rp) ((ref *)rp)
#endif

    if (pre->o_type != &st_refs) {
        /* Must not happen. */
        if_debug0('u', "Wrong object type when expected a ref.\n");
        return_error(gs_error_Fatal);
    }
    /* We know that every block of refs ends with */
    /* a full-size ref, so we only need the end check */
    /* when we encounter one of those. */
    if (to_new)
        while (1) {
            if (r_is_packed(prp))
                prp++;
            else {
                RP_REF(prp)->tas.type_attrs |= l_new;
                prp += packed_per_ref;
                if (prp >= next)
                    break;
            }
    } else
        while (1) {
            if (r_is_packed(prp))
                prp++;
            else {
                RP_REF(prp)->tas.type_attrs &= ~l_new;
                prp += packed_per_ref;
                if (prp >= next)
                    break;
            }
        }
#undef RP_REF
    *psize = size;
    return 0;
}

/* Check if a block contains refs marked by garbager. */
static bool
check_l_mark(void *obj)
{
    obj_header_t *pre = (obj_header_t *)obj - 1;
    uint size = pre_obj_contents_size(pre);
    ref_packed *prp = (ref_packed *) (pre + 1);
    ref_packed *next = (ref_packed *) ((char *)prp + size);
#ifdef ALIGNMENT_ALIASING_BUG
                ref *rpref;
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
#else
# define RP_REF(rp) ((ref *)rp)
#endif

    /* We know that every block of refs ends with */
    /* a full-size ref, so we only need the end check */
    /* when we encounter one of those. */
    while (1) {
        if (r_is_packed(prp)) {
            if (r_has_pmark(prp))
                return true;
            prp++;
        } else {
            if (r_has_attr(RP_REF(prp), l_mark))
                return true;
            prp += packed_per_ref;
            if (prp >= next)
                return false;
        }
    }
#undef RP_REF
}

/* Set or reset the l_new attribute in every relevant slot. */
/* This includes every slot on the current change chain, */
/* and every (ref) slot allocated at this save level. */
/* Return the number of bytes of data scanned. */
static int
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
{
    ulong scanned = 0;
    int code;

    /* Handle the change chain. */
    code = save_set_new_changes(mem, to_new, set_limit);
    if (code < 0)
        return code;

    /* Handle newly allocated ref objects. */
    SCAN_MEM_CLUMPS(mem, cp) {
        if (cp->has_refs) {
            bool has_refs = false;

            SCAN_CLUMP_OBJECTS(cp)
                DO_ALL
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
                           (intptr_t) pre, size, to_new);
            if (pre->o_type == &st_refs) {
                /* These are refs, scan them. */
                ref_packed *prp = (ref_packed *) (pre + 1);
                uint size;
                has_refs = true && to_new;
                code = mark_allocated(prp, to_new, &size);
                if (code < 0)
                    return code;
                scanned += size;
            } else
                scanned += sizeof(obj_header_t);
            END_OBJECTS_SCAN
                cp->has_refs = has_refs;
        }
    }
    END_CLUMPS_SCAN
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
               (to_new ? "restore" : "save"), scanned);
    *pscanned = scanned;
    return 0;
}

/* Drop redundant elements from the changes list and set l_new. */
static void
drop_redundant_changes(gs_ref_memory_t * mem)
{
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;

    /* As we are trying to throw away redundant changes in an allocator instance
       that has already been "saved", the active clump has already been "closed"
       by alloc_save_space(). Using such an allocator (for example, by calling
       gs_free_object() with it) can leave it in an unstable state, causing
       problems for the garbage collector (specifically, the clump validator code).
       So, before we might use it, open the current clump, and then close it again
       when we're done.
     */
    alloc_open_clump(mem);

    /* First reverse the list and set all. */
    for (; chp; chp = chp_forth) {
        chp_forth = chp->next;
        if (chp->offset != AC_OFFSET_ALLOCATED) {
            ref_packed *prp = chp->where;

            if (!r_is_packed(prp)) {
                ref *const rp = (ref *)prp;

                rp->tas.type_attrs |= l_new;
            }
        }
        chp->next = chp_back;
        chp_back = chp;
    }
    mem->changes = chp_back;
    chp_back = NULL;
    /* Then filter, reset and reverse again. */
    for (chp = mem->changes; chp; chp = chp_forth) {
        chp_forth = chp->next;
        if (chp->offset != AC_OFFSET_ALLOCATED) {
            ref_packed *prp = chp->where;

            if (!r_is_packed(prp)) {
                ref *const rp = (ref *)prp;

                if ((rp->tas.type_attrs & l_new) == 0) {
                    if (mem->scan_limit == chp)
                        mem->scan_limit = chp_back;
                    if (mem->changes == chp)
                        mem->changes = chp_back;
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
                    continue;
                } else
                    rp->tas.type_attrs &= ~l_new;
            }
        }
        chp->next = chp_back;
        chp_back = chp;
    }
    mem->changes = chp_back;

    alloc_close_clump(mem);
}

/* Set or reset the l_new attribute on the changes chain. */
static int
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
{
    register alloc_change_t *chp;
    register uint new = (to_new ? l_new : 0);
    ulong scanned = 0;

    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
        mem->total_scanned_after_compacting = 0;
        drop_redundant_changes(mem);
    }
    for (chp = mem->changes; chp; chp = chp->next) {
        if (chp->offset == AC_OFFSET_ALLOCATED) {
            if (chp->where != 0) {
                uint size;
                int code = mark_allocated((void *)chp->where, to_new, &size);

                if (code < 0)
                    return code;
                scanned += size;
            }
        } else {
            ref_packed *prp = chp->where;

            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
                       (intptr_t)chp, (intptr_t)prp, new);
            if (!r_is_packed(prp)) {
                ref *const rp = (ref *) prp;

                rp->tas.type_attrs =
                    (rp->tas.type_attrs & ~l_new) + new;
            }
        }
        if (mem->scan_limit == chp)
            break;
    }
    if (set_limit) {
        mem->total_scanned_after_compacting += scanned;
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
            mem->scan_limit = mem->changes;
            mem->total_scanned = 0;
        } else
            mem->total_scanned += scanned;
    }
    return 0;
}

gs_memory_t *
gs_save_any_memory(const alloc_save_t *save)
{
    return((gs_memory_t *)save->space_local);
}