summaryrefslogtreecommitdiff
path: root/psi/istack.c
blob: 76f4199c486c45644422f8101334448d0a2e39cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Manager for expandable stacks of refs */
#include "memory_.h"
#include "ghost.h"
#include "gsstruct.h"
#include "gsutil.h"
#include "ierrors.h"
#include "ialloc.h"
#include "istack.h"
#include "istkparm.h"
#include "istruct.h"		/* for RELOC_REF_VAR */
#include "iutil.h"
#include "ivmspace.h"		/* for local/global test */
#include "store.h"
#include "icstate.h"
#include "iname.h"
#include "dstack.h"
#include "idict.h"

/* Forward references */
static void init_block(ref_stack_t *pstack, const ref *pblock_array,
                        uint used);
static int ref_stack_push_block(ref_stack_t *pstack, uint keep, uint add);

/* GC descriptors and procedures */
private_st_ref_stack_params();
static
CLEAR_MARKS_PROC(ref_stack_clear_marks)
{
    ref_stack_t *const sptr = vptr;

    r_clear_attrs(&sptr->current, l_mark);
}
static
ENUM_PTRS_WITH(ref_stack_enum_ptrs, ref_stack_t *sptr) return 0;
case 0: ENUM_RETURN_REF(&sptr->current);
case 1: return ENUM_OBJ(sptr->params);
ENUM_PTRS_END
static RELOC_PTRS_WITH(ref_stack_reloc_ptrs, ref_stack_t *sptr)
{
    /* Note that the relocation must be a multiple of sizeof(ref_packed) */
    /* * align_packed_per_ref, but it need not be a multiple of */
    /* sizeof(ref).  Therefore, we must do the adjustments using */
    /* ref_packed pointers rather than ref pointers. */
    ref_packed *bot = (ref_packed *) sptr->current.value.refs;
    long reloc;

    RELOC_REF_VAR(sptr->current);
    r_clear_attrs(&sptr->current, l_mark);
    reloc = bot - (ref_packed *) sptr->current.value.refs;
#define RELOC_P(p)\
  sptr->p = (ref *)((ref_packed *)sptr->p - reloc);
    RELOC_P(p);
    RELOC_P(bot);
    RELOC_P(top);
#undef RELOC_P
    RELOC_OBJ_VAR(sptr->params);
} RELOC_PTRS_END
/* Structure type for a ref_stack. */
public_st_ref_stack();

/* Initialize a stack. */
int
ref_stack_init(ref_stack_t *pstack, const ref *pblock_array,
               uint bot_guard, uint top_guard, const ref *pguard_value,
               gs_ref_memory_t *mem, ref_stack_params_t *params)
{
    uint size = r_size(pblock_array);
    uint avail = size - (stack_block_refs + bot_guard + top_guard);
    ref_stack_block *pblock = (ref_stack_block *)pblock_array->value.refs;
    s_ptr body = (s_ptr)(pblock + 1);

    if (params == 0) {
        params = gs_alloc_struct((gs_memory_t *)mem, ref_stack_params_t,
                                 &st_ref_stack_params,
                                 "ref_stack_alloc(stack.params)");
        if (params == 0)
            return_error(-1);	/* avoid binding in any error codes */
    }

    pstack->bot = body + bot_guard;
    pstack->p = pstack->bot - 1;
    pstack->top = pstack->p + avail;
    pstack->current = *pblock_array;
    pstack->extension_size = 0;
    pstack->extension_used = 0;

    make_int(&pstack->max_stack, avail);
    pstack->requested = 0;
    pstack->margin = 0;
    pstack->body_size = avail;

    pstack->params = params;
    pstack->memory = mem;

    params->bot_guard = bot_guard;
    params->top_guard = top_guard;
    params->block_size = size;
    params->data_size = avail;
    if (pguard_value != 0)
        params->guard_value = *pguard_value;
    else
        make_tav(&params->guard_value, t__invalid, 0, intval, 0);
    params->underflow_error = -1;
    params->overflow_error = -1;
    params->allow_expansion = true;
    init_block(pstack, pblock_array, 0);
    refset_null_new(pstack->bot, avail, 0);
    make_empty_array(&pblock->next, 0);
    return 0;
}

/* Set whether a stack is allowed to expand.  The initial value is true. */
void
ref_stack_allow_expansion(ref_stack_t *pstack, bool expand)
{
    pstack->params->allow_expansion = expand;
}

/* Set the error codes for under- and overflow.  The initial values are -1. */
void
ref_stack_set_error_codes(ref_stack_t *pstack, int underflow_error,
                          int overflow_error)
{
    pstack->params->underflow_error = underflow_error;
    pstack->params->overflow_error = overflow_error;
}

/* Set the maximum number of elements allowed on a stack. */
int
ref_stack_set_max_count(ref_stack_t *pstack, long nmax)
{
    long nmin;

    /* Bypass checking if we're setting the amximum to -1 'no limits' */
    if (nmax == -1) {
        pstack->max_stack.value.intval = nmax;
        return 0;
    }

    /* check how many items we already have on the stack, don't allow
     * a maximum less than this.
     */
    nmin = ref_stack_count_inline(pstack);

    if (nmax < nmin)
        nmax = nmin;
    if (nmax > max_uint / sizeof(ref))
        nmax = max_uint / sizeof(ref);
    if (!pstack->params->allow_expansion) {
        uint ncur = pstack->body_size;

        if (nmax > ncur)
            nmax = ncur;
    }
    pstack->max_stack.value.intval = nmax;
    return 0;
}

/*
 * Set the margin between the limit and the top of the stack.
 * Note that this may require allocating a block.
 */
int
ref_stack_set_margin(ref_stack_t *pstack, uint margin)
{
    const ref_stack_params_t *params = pstack->params;
    uint data_size = params->data_size;

    if (margin <= pstack->margin) {
        refset_null_new(pstack->top + 1, pstack->margin - margin, 0);
    } else {
        if (margin > data_size >> 1)
            return_error(gs_error_rangecheck);
        if (pstack->top - pstack->p < margin) {
            uint used = pstack->p + 1 - pstack->bot;
            uint keep = data_size - margin;
            int code = ref_stack_push_block(pstack, keep, used - keep);

            if (code < 0)
                return code;
        }
    }
    pstack->margin = margin;
    pstack->body_size = data_size - margin;
    pstack->top = pstack->bot + pstack->body_size - 1;
    return 0;
}

/* Return the number of elements on a stack. */
uint
ref_stack_count(const ref_stack_t *pstack)
{
    return ref_stack_count_inline(pstack);
}

/*
 * Return a pointer to a given element from the stack, counting from
 * 0 as the top element.  If the index is out of range, return 0.
 */
ref *
ref_stack_index(const ref_stack_t *pstack, long idx)
{
    ref_stack_block *pblock;
    uint used = pstack->p + 1 - pstack->bot;

    if (idx < 0)
        return NULL;
    if (idx < used)		/* common case */
        return pstack->p - (uint) idx;
    pblock = (ref_stack_block *) pstack->current.value.refs;
    do {
        pblock = (ref_stack_block *) pblock->next.value.refs;
        if (pblock == 0)
            return NULL;
        idx -= used;
        used = r_size(&pblock->used);
    } while (idx >= used);
    return pblock->used.value.refs + (used - 1 - (uint) idx);
}

/*
 * Count the number of elements down to and including the first mark.
 * If no mark is found, return 0.
 */
uint
ref_stack_counttomark(const ref_stack_t *pstack)
{
    uint scanned = 0;
    ref_stack_enum_t rsenum;

    ref_stack_enum_begin(&rsenum, pstack);
    do {
        uint count = rsenum.size;
        const ref *p = rsenum.ptr + count - 1;

        for (; count; count--, p--)
            if (r_has_type(p, t_mark))
                return scanned + (rsenum.size - count + 1);
        scanned += rsenum.size;
    } while (ref_stack_enum_next(&rsenum));
    return 0;
}

/*
 * Do the store check for storing 'count' elements of a stack, starting
 * 'skip' elements below the top, into an array.  Return 0 or gs_error_invalidaccess.
 */
int
ref_stack_store_check(const ref_stack_t *pstack, ref *parray, uint count,
                      uint skip)
{
    uint space = r_space(parray);

    if (space != avm_local) {
        uint left = count, pass = skip;
        ref_stack_enum_t rsenum;

        ref_stack_enum_begin(&rsenum, pstack);
        do {
            ref *ptr = rsenum.ptr;
            uint size = rsenum.size;

            if (size <= pass)
                pass -= size;
            else {
                int code;

                if (pass != 0)
                    size -= pass, pass = 0;
                ptr += size;
                if (size > left)
                    size = left;
                left -= size;
                code = refs_check_space(ptr - size, size, space);
                if (code < 0)
                    return code;
                if (left == 0)
                    break;
            }
        } while (ref_stack_enum_next(&rsenum));
    }
    return 0;
}

int
ref_stack_array_sanitize(i_ctx_t *i_ctx_p, ref *sarr, ref *darr)
{
    int i, code;
    ref obj, arr2;
    ref *pobj2;
    gs_memory_t *mem = (gs_memory_t *)idmemory->current;

    if (!r_is_array(sarr) || !r_has_type(darr, t_array))
        return_error(gs_error_typecheck);

    for (i = 0; i < r_size(sarr); i++) {
        code = array_get(mem, sarr, i, &obj);
        if (code < 0)
            make_null(&obj);
        switch(r_type(&obj)) {
          case t_operator:
          {
            int index = op_index(&obj);

            if (index > 0 && index < op_def_count) {
                const byte *data = (const byte *)(op_index_def(index)->oname + 1);
                if (dict_find_string(systemdict, (const char *)data, &pobj2) <= 0) {
                    byte *s = gs_alloc_bytes(mem, strlen((char *)data) + 5, "ref_stack_array_sanitize");
                    if (s) {
                        s[0] =  '\0';
                        strcpy((char *)s, "--");
                        strcpy((char *)s + 2, (char *)data);
                        strcpy((char *)s + strlen((char *)data) + 2, "--");
                    }
                    else {
                        s = (byte *)data;
                    }
                    code = name_ref(imemory, s, strlen((char *)s), &obj, 1);
                    if (code < 0) make_null(&obj);
                    if (s != data)
                        gs_free_object(mem, s, "ref_stack_array_sanitize");
                }
            }
            else {
                make_null(&obj);
            }
            ref_assign(darr->value.refs + i, &obj);
            break;
          }
          case t_array:
          case t_shortarray:
          case t_mixedarray:
          {
            int attrs = r_type_attrs(&obj) & (a_write | a_read | a_execute | a_executable);
            /* We only want to copy executable arrays */
            if (attrs & (a_execute | a_executable)) {
                code = ialloc_ref_array(&arr2, attrs, r_size(&obj), "ref_stack_array_sanitize");
                if (code < 0) {
                    make_null(&arr2);
                }
                else {
                    code = ref_stack_array_sanitize(i_ctx_p, &obj, &arr2);
                    if (code < 0) {
                        ifree_ref_array(&arr2, "ref_stack_array_sanitize");
                        return code;
                    }
                }
                ref_assign(darr->value.refs + i, &arr2);
            }
            else {
                ref_assign(darr->value.refs + i, &obj);
            }
            break;
          }
          default:
            ref_assign(darr->value.refs + i, &obj);
        }
    }
    return 0;
}


/*
 * Store the top 'count' elements of a stack, starting 'skip' elements below
 * the top, into an array, with or without store/undo checking.  age=-1 for
 * no check, 0 for old, 1 for new.  May return gs_error_rangecheck or
 * gs_error_invalidaccess.
 */
#undef idmemory			/****** NOTA BENE ******/
int
ref_stack_store(const ref_stack_t *pstack, ref *parray, uint count,
                uint skip, int age, bool check, gs_dual_memory_t *idmemory,
                client_name_t cname)
{
    uint left, pass;
    ref *to;
    ref_stack_enum_t rsenum;

    if (count > ref_stack_count(pstack) || count > r_size(parray))
        return_error(gs_error_rangecheck);
    if (check) {
        int code = ref_stack_store_check(pstack, parray, count, skip);

        if (code < 0)
            return code;
    }
    to = parray->value.refs + count;
    left = count, pass = skip;
    ref_stack_enum_begin(&rsenum, pstack);
    do {
        ref *from = rsenum.ptr;
        uint size = rsenum.size;

        if (size <= pass)
            pass -= size;
        else {
            if (pass != 0)
                size -= pass, pass = 0;
            from += size;
            if (size > left)
                size = left;
            left -= size;
            switch (age) {
            case -1:		/* not an array */
                while (size--) {
                    from--, to--;
                    ref_assign(to, from);
                }
                break;
            case 0:		/* old array */
                while (size--) {
                    from--, to--;
                    ref_assign_old(parray, to, from, cname);
                }
                break;
            case 1:		/* new array */
                while (size--) {
                    from--, to--;
                    ref_assign_new(to, from);
                }
                break;
            }
            if (left == 0)
                break;
        }
    } while (ref_stack_enum_next(&rsenum));
    r_set_size(parray, count);
    return 0;
}

/*
 * Pop the top N elements off a stack.
 * The number must not exceed the number of elements in use.
 */
void
ref_stack_pop(ref_stack_t *pstack, uint count)
{
    uint used;

    while ((used = pstack->p + 1 - pstack->bot) <= count &&
            pstack->extension_used > 0) {
        count -= used;
        pstack->p = pstack->bot - 1;
        ref_stack_pop_block(pstack);
    }
    pstack->p -= count;
}

/* Pop the top block off a stack.  May return underflow_error. */
int
ref_stack_pop_block(ref_stack_t *pstack)
{
    s_ptr bot = pstack->bot;
    uint count = pstack->p + 1 - bot;
    ref_stack_block *pcur =
    (ref_stack_block *) pstack->current.value.refs;
    ref_stack_block *pnext =
    (ref_stack_block *) pcur->next.value.refs;
    uint used;
    ref *body;
    ref next;

    if (pnext == 0)
        return_error(pstack->params->underflow_error);
    used = r_size(&pnext->used);
    body = (ref *) (pnext + 1) + pstack->params->bot_guard;
    next = pcur->next;
    /*
       * If the contents of the two blocks won't fit in a single block, we
       * move up the used part of the top block, and copy up as much of
       * the contents of the next block under it as will fit.  If the
       * contents of both blocks fit in a single block, we copy the used
       * part of the top block to the top of the next block, and free the
       * top block.
     */
    if (used + count > pstack->body_size) {
        /*
         * The contents of the two blocks won't fit into a single block.
         * On the assumption that we're recovering from a local stack
         * underflow and need to increase the number of contiguous
         * elements available, move up the used part of the top block, and
         * copy up as much of the contents of the next block under it as
         * will fit.
         */
        uint moved = pstack->body_size - count;
        uint left;

        if (moved == 0)
            return_error(gs_error_Fatal);
        memmove(bot + moved, bot, count * sizeof(ref));
        left = used - moved;
        memcpy(bot, body + left, moved * sizeof(ref));
        refset_null_new(body + left, moved, 0);
        r_dec_size(&pnext->used, moved);
        pstack->p = pstack->top;
        pstack->extension_used -= moved;
    } else {
        /*
           * The contents of the two blocks will fit into a single block.
           * Copy the used part of the top block to the top of the next
           * block, and free the top block.
         */
        memcpy(body + used, bot, count * sizeof(ref));
        pstack->bot = bot = body;
        pstack->top = bot + pstack->body_size - 1;
        gs_free_ref_array(pstack->memory, &pstack->current,
                          "ref_stack_pop_block");
        pstack->current = next;
        pstack->p = bot + (used + count - 1);
        pstack->extension_size -= pstack->body_size;
        pstack->extension_used -= used;
    }
    return 0;
}

/*
 * Extend a stack to recover from an overflow condition.
 * May return overflow_error or gs_error_VMerror.
 */
int
ref_stack_extend(ref_stack_t *pstack, uint request)
{
    uint keep = (pstack->top - pstack->bot + 1) / 3;
    uint count = pstack->p - pstack->bot + 1;
    const ref_stack_params_t *params = pstack->params;

    if (request > params->data_size)
        return_error(params->overflow_error);
    if (keep + request > pstack->body_size)
        keep = pstack->body_size - request;
    if (keep > count)
        keep = count;		/* required by ref_stack_push_block */
    return ref_stack_push_block(pstack, keep, request);
}

/*
 * Push N empty slots onto a stack.  These slots are not initialized:
 * the caller must immediately fill them.  May return overflow_error
 * (if max_stack would be exceeded, or the stack has no allocator)
 * or gs_error_VMerror.
 */
int
ref_stack_push(ref_stack_t *pstack, uint count)
{
    /* Don't bother to pre-check for overflow: we must be able to */
    /* back out in the case of a VMerror anyway, and */
    /* ref_stack_push_block will make the check itself. */
    uint needed = count;
    uint added;

    for (; (added = pstack->top - pstack->p) < needed; needed -= added) {
        int code;

        pstack->p = pstack->top;
        code = ref_stack_push_block(pstack,
                                    (pstack->top - pstack->bot + 1) / 3,
                                    added);
        if (code < 0) {
            /* Back out. */
            ref_stack_pop(pstack, count - needed + added);
            pstack->requested = count;
            return code;
        }
    }
    pstack->p += needed;
    return 0;
}

/*
 * Push a block onto the stack, specifying how many elements of the current
 * top block should remain in the top block and also how many elements we
 * are trying to add.  Requires keep <= count.  May return overflow_error or
 * gs_error_VMerror.
 */
static int
ref_stack_push_block(ref_stack_t *pstack, uint keep, uint add)
{
    const ref_stack_params_t *params = pstack->params;
    uint count = pstack->p - pstack->bot + 1;
    uint move = count - keep;
    ref_stack_block *pcur = (ref_stack_block *) pstack->current.value.refs;
    ref next;
    ref_stack_block *pnext;
    ref *body;
    int code;

    if (keep > count)
        return_error(gs_error_Fatal);
    /* Check for overflowing the maximum size, */
    /* or expansion not allowed.  */
    /* Or specifically allowing unlimited expansion */
    if (pstack->max_stack.value.intval > 0) {
        if (pstack->extension_used + (pstack->top - pstack->bot) + add >=
            pstack->max_stack.value.intval ||
            !params->allow_expansion
            )
            return_error(params->overflow_error);
    }
    code = gs_alloc_ref_array(pstack->memory, &next, 0,
                              params->block_size, "ref_stack_push_block");
    if (code < 0)
        return code;
    pnext = (ref_stack_block *) next.value.refs;
    body = (ref *) (pnext + 1);
    /* Copy the top keep elements into the new block, */
    /* and make the new block the top block. */
    init_block(pstack, &next, keep);
    body += params->bot_guard;
    memcpy(body, pstack->bot + move, keep * sizeof(ref));
    /* Clear the elements above the top of the new block. */
    refset_null_new(body + keep, params->data_size - keep, 0);
    /* Clear the elements above the top of the old block. */
    refset_null_new(pstack->bot + move, keep, 0);
    pnext->next = pstack->current;
    pcur->used.value.refs = pstack->bot;
    r_set_size(&pcur->used, move);
    pstack->current = next;
    pstack->bot = body;
    pstack->top = pstack->bot + pstack->body_size - 1;
    pstack->p = pstack->bot + keep - 1;
    pstack->extension_size += pstack->body_size;
    pstack->extension_used += move;
    return 0;
}

/* Begin enumerating the blocks of a stack. */
void
ref_stack_enum_begin(ref_stack_enum_t *prse, const ref_stack_t *pstack)
{
    prse->block = (ref_stack_block *)pstack->current.value.refs;
    prse->ptr = pstack->bot;
    prse->size = pstack->p + 1 - pstack->bot;
}

bool
ref_stack_enum_next(ref_stack_enum_t *prse)
{
    ref_stack_block *block =
        prse->block = (ref_stack_block *)prse->block->next.value.refs;

    if (block == 0)
        return false;
    prse->ptr = block->used.value.refs;
    prse->size = r_size(&block->used);
    return true;
}

/* Clean up a stack for garbage collection. */
void
ref_stack_cleanup(ref_stack_t *pstack)
{
    ref_stack_block *pblock =
        (ref_stack_block *) pstack->current.value.refs;

    refset_null_new(pstack->p + 1, pstack->top - pstack->p, 0);
    pblock->used = pstack->current;	/* set attrs */
    pblock->used.value.refs = pstack->bot;
    r_set_size(&pblock->used, pstack->p + 1 - pstack->bot);
}

/*
 * Free the entire contents of a stack, including the bottom block.
 * The client must still call ref_stack_free.  Note that after calling
 * ref_stack_release, the stack is no longer usable.
 */
void
ref_stack_release(ref_stack_t *pstack)
{
    gs_ref_memory_t *mem = pstack->memory;

    ref_stack_clear(pstack);
    /* Free the parameter structure. */
    gs_free_object((gs_memory_t *)mem, pstack->params,
                   "ref_stack_release(stack.params)");
    /* Free the original (bottom) block. */
    gs_free_ref_array(mem, &pstack->current, "ref_stack_release");
}

/*
 * Release a stack and then free the ref_stack object.
 */
void
ref_stack_free(ref_stack_t *pstack)
{
    gs_memory_t *mem = (gs_memory_t *)pstack->memory;

    ref_stack_release(pstack);
    gs_free_object(mem, pstack, "ref_stack_free");
}

/* ------ Internal routines ------ */

/* Initialize the guards and body of a stack block. */
static void
init_block(ref_stack_t *pstack, const ref *psb, uint used)
{
    ref_stack_params_t *params = pstack->params;
    ref *brefs = psb->value.refs;
    uint i;
    ref *p;

    for (i = params->bot_guard, p = brefs + stack_block_refs;
         i != 0; i--, p++
        )
        ref_assign(p, &params->guard_value);
    /* The top guard elements will never be read, */
    /* but we need to initialize them for the sake of the GC. */
    /* We can use refset_null for this, because even though it uses */
    /* make_null_new and stack elements must not be marked new, */
    /* these slots will never actually be read or written. */
    if (params->top_guard) {
        ref *top = brefs + r_size(psb);
        int top_guard = params->top_guard;

        refset_null_new(top - top_guard, top_guard, 0);
    } {
        ref_stack_block *const pblock = (ref_stack_block *) brefs;

        pblock->used = *psb;
        pblock->used.value.refs = brefs + stack_block_refs + params->bot_guard;
        r_set_size(&pblock->used, 0);
    }
}