summaryrefslogtreecommitdiff
path: root/psi/iutil.c
blob: 405869666f10dbebef3615711658d9b17ccde8f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Utilities for Ghostscript interpreter */
#include "math_.h"		/* for fabs */
#include "memory_.h"
#include "string_.h"
#include "ghost.h"
#include "ierrors.h"
#include "gsccode.h"		/* for gxfont.h */
#include "gsmatrix.h"
#include "gsutil.h"
#include "gxfont.h"
#include "strimpl.h"
#include "sstring.h"
#include "idict.h"
#include "ifont.h"		/* for FontID equality */
#include "imemory.h"
#include "iname.h"
#include "ipacked.h"		/* for array_get */
#include "iutil.h"		/* for checking prototypes */
#include "ivmspace.h"
#include "oper.h"
#include "store.h"

/*
 * By design choice, none of the procedures in this file take a context
 * pointer (i_ctx_p).  Since a number of them require a gs_dual_memory_t
 * for store checking or save bookkeeping, we need to #undef idmemory.
 */
#undef idmemory

/* ------ Object utilities ------ */

/* Define the table of ref type properties. */
const byte ref_type_properties[] = {
    REF_TYPE_PROPERTIES_DATA
};

/* Copy refs from one place to another. */
int
refcpy_to_old(ref * aref, uint index, const ref * from,
              uint size, gs_dual_memory_t *idmemory, client_name_t cname)
{
    ref *to = aref->value.refs + index;
    int code = refs_check_space(from, size, r_space(aref));

    if (code < 0)
        return code;
    /* We have to worry about aliasing.... */
    if (to <= from || from + size <= to)
        while (size--)
            ref_assign_old(aref, to, from, cname), to++, from++;
    else
        for (from += size, to += size; size--;)
            from--, to--, ref_assign_old(aref, to, from, cname);
    return 0;
}
void
refcpy_to_new(ref * to, const ref * from, uint size,
              gs_dual_memory_t *idmemory)
{
    while (size--)
        ref_assign_new(to, from), to++, from++;
}

/* Fill a new object with nulls. */
void
refset_null_new(ref * to, uint size, uint new_mask)
{
    for (; size--; ++to)
        make_ta(to, t_null, new_mask);
}

/* Compare two objects for equality. */
static bool fid_eq(const gs_memory_t *mem, const gs_font *pfont1,
                    const gs_font *pfont2);
bool
obj_eq(const gs_memory_t *mem, const ref * pref1, const ref * pref2)
{
    ref nref;

    if (r_type(pref1) != r_type(pref2)) {
        /*
         * Only a few cases need be considered here:
         * integer/real (and vice versa), name/string (and vice versa),
         * arrays, and extended operators.
         */
        switch (r_type(pref1)) {
            case t_integer:
                return (r_has_type(pref2, t_real) &&
                        pref2->value.realval == pref1->value.intval);
            case t_real:
                return (r_has_type(pref2, t_integer) &&
                        pref2->value.intval == pref1->value.realval);
            case t_name:
                if (!r_has_type(pref2, t_string))
                    return false;
                name_string_ref(mem, pref1, &nref);
                pref1 = &nref;
                break;
            case t_string:
                if (!r_has_type(pref2, t_name))
                    return false;
                name_string_ref(mem, pref2, &nref);
                pref2 = &nref;
                break;
                /*
                 * Differing implementations of packedarray can be eq,
                 * if the length is zero, but an array is never eq to a
                 * packedarray.
                 */
            case t_mixedarray:
            case t_shortarray:
                /*
                 * Since r_type(pref1) is one of the above, this is a
                 * clever fast check for r_type(pref2) being the other.
                 */
                return ((int)r_type(pref1) + (int)r_type(pref2) ==
                        t_mixedarray + t_shortarray) &&
                    r_size(pref1) == 0 && r_size(pref2) == 0;
            default:
                if (r_btype(pref1) != r_btype(pref2))
                    return false;
        }
    }
    /*
     * Now do a type-dependent comparison.  This would be very simple if we
     * always filled in all the bytes of a ref, but we currently don't.
     */
    switch (r_btype(pref1)) {
        case t_array:
            return ((pref1->value.refs == pref2->value.refs ||
                     r_size(pref1) == 0) &&
                    r_size(pref1) == r_size(pref2));
        case t_mixedarray:
        case t_shortarray:
            return ((pref1->value.packed == pref2->value.packed ||
                     r_size(pref1) == 0) &&
                    r_size(pref1) == r_size(pref2));
        case t_boolean:
            return (pref1->value.boolval == pref2->value.boolval);
        case t_dictionary:
            return (pref1->value.pdict == pref2->value.pdict);
        case t_file:
            return (pref1->value.pfile == pref2->value.pfile &&
                    r_size(pref1) == r_size(pref2));
        case t_integer:
            return (pref1->value.intval == pref2->value.intval);
        case t_mark:
        case t_null:
            return true;
        case t_name:
            return (pref1->value.pname == pref2->value.pname);
        case t_oparray:
        case t_operator:
            return (op_index(pref1) == op_index(pref2));
        case t_real:
            return (pref1->value.realval == pref2->value.realval);
        case t_save:
            return (pref2->value.saveid == pref1->value.saveid);
        case t_string:
            return (!bytes_compare(pref1->value.bytes, r_size(pref1),
                                   pref2->value.bytes, r_size(pref2)));
        case t_device:
            return (pref1->value.pdevice->device == pref2->value.pdevice->device);
        case t_struct:
        case t_astruct:
        case t_pdfctx:
            return (pref1->value.pstruct == pref2->value.pstruct);
        case t_fontID:
            /* This is complicated enough to deserve a separate procedure. */
            return fid_eq(mem, r_ptr(pref1, gs_font), r_ptr(pref2, gs_font));
    }
    return false;		/* shouldn't happen! */
}

/*
 * Compare two FontIDs for equality.  In the Adobe implementations,
 * different scalings of a font have "equal" FIDs, so we do the same.
 * Furthermore, in more recent Adobe interpreters, different *copies* of a
 * font have equal FIDs -- at least for Type 1 and Type 3 fonts -- as long
 * as the "contents" of the font are the same.  We aren't sure that the
 * following matches the Adobe algorithm, but it's close enough to pass the
 * Genoa CET.
 */
/* (This is a single-use procedure, for clearer code.) */
static bool
fid_eq(const gs_memory_t *mem, const gs_font *pfont1, const gs_font *pfont2)
{
    while (pfont1->base != pfont1)
        pfont1 = pfont1->base;
    while (pfont2->base != pfont2)
        pfont2 = pfont2->base;
    if (pfont1 == pfont2)
        return true;
    switch (pfont1->FontType) {
    case 1: case 3:
        if (pfont1->FontType == pfont2->FontType)
            break;
    default:
        return false;
    }
    /* The following, while peculiar, appears to match CPSI. */
    {
        const gs_uid *puid1 = &((const gs_font_base *)pfont1)->UID;
        const gs_uid *puid2 = &((const gs_font_base *)pfont2)->UID;
    if (uid_is_UniqueID(puid1) || uid_is_UniqueID(puid2) ||
        ((uid_is_XUID(puid1) || uid_is_XUID(puid2)) &&
         !uid_equal(puid1, puid2)))
        return false;
    }
    {
        const font_data *pfd1 = (const font_data *)pfont1->client_data;
        const font_data *pfd2 = (const font_data *)pfont2->client_data;

        if (!(obj_eq(mem, &pfd1->BuildChar, &pfd2->BuildChar) &&
              obj_eq(mem, &pfd1->BuildGlyph, &pfd2->BuildGlyph) &&
              obj_eq(mem, &pfd1->Encoding, &pfd2->Encoding) &&
              obj_eq(mem, &pfd1->CharStrings, &pfd2->CharStrings)))
            return false;
        if (pfont1->FontType == 1) {
            ref *ppd1, *ppd2;

            if (dict_find_string(&pfd1->dict, "Private", &ppd1) > 0 &&
                dict_find_string(&pfd2->dict, "Private", &ppd2) > 0 &&
                !obj_eq(mem, ppd1, ppd2))
                return false;
        }
    }
    return true;
}

/* Compare two objects for identity. */
bool
obj_ident_eq(const gs_memory_t *mem, const ref * pref1, const ref * pref2)
{
    if (r_type(pref1) != r_type(pref2))
        return false;
    if (r_has_type(pref1, t_string))
        return (pref1->value.bytes == pref2->value.bytes &&
                r_size(pref1) == r_size(pref2));
    return obj_eq(mem, pref1, pref2);
}

/*
 * Set *pchars and *plen to point to the data of a name or string, and
 * return 0.  If the object isn't a name or string, return gs_error_typecheck.
 * If the object is a string without read access, return gs_error_invalidaccess.
 */
int
obj_string_data(const gs_memory_t *mem, const ref *op, const byte **pchars, uint *plen)
{
    switch (r_type(op)) {
    case t_name: {
        ref nref;

        name_string_ref(mem, op, &nref);
        *pchars = nref.value.bytes;
        *plen = r_size(&nref);
        return 0;
    }
    case t_string:
        check_read(*op);
        *pchars = op->value.bytes;
        *plen = r_size(op);
        return 0;
    default:
        return_error(gs_error_typecheck);
    }
}

/*
 * Create a printable representation of an object, a la cvs and =
 * (full_print = 0), == (full_print = 1), or === (full_print = 2).  Return 0
 * if OK, 1 if the destination wasn't large enough, gs_error_invalidaccess if the
 * object's contents weren't readable.  If the return value is 0 or 1,
 * *prlen contains the amount of data returned.  start_pos is the starting
 * output position -- the first start_pos bytes of output are discarded.
 *
 * When (restart = false) return gs_error_rangecheck the when destination wasn't
 * large enough without modifying the destination. This is needed for
 * compatibility with Adobe implementation of cvs and cvrs, which don't
 * change the destination string on failure.
 *
 * The mem argument is only used for getting the type of structures,
 * not for allocating; if it is NULL and full_print != 0, structures will
 * print as --(struct)--.
 *
 * This rather complex API is needed so that a client can call obj_cvp
 * repeatedly to print on a stream, which may require suspending at any
 * point to handle stream callouts.
 */
static void ensure_dot(char *, size_t);
int
obj_cvp(const ref * op, byte * str, uint len, uint * prlen,
        int full_print, uint start_pos, const gs_memory_t *mem, bool restart)
{
    char buf[256];  /* big enough for any float, double, or struct name */
    const byte *data = (const byte *)buf;
    uint size;
    int code;
    ref nref;

    if (full_print) {
        static const char * const type_strings[] = { REF_TYPE_PRINT_STRINGS };

        switch (r_btype(op)) {
        case t_boolean:
        case t_integer:
            break;
        case t_real: {
            /*
             * To get fully accurate output results for IEEE
             * single-precision floats (24 bits of mantissa), the ANSI %g
             * default of 6 digits is not enough; 9 are needed.
             * Unfortunately, using %.9g for floats (as opposed to doubles)
             * produces unfortunate artifacts such as 0.01 5 mul printing as
             * 0.049999997.  Therefore, we print using %g, and if the result
             * isn't accurate enough, print again using %.9g.
             * Unfortunately, a few PostScript programs 'know' that the
             * printed representation of floats fits into 6 digits (e.g.,
             * with cvs).  We resolve this by letting cvs, cvrs, and = do
             * what the Adobe interpreters appear to do (use %g), and only
             * produce accurate output for ==, for which there is no
             * analogue of cvs.  What a hack!
             */
            float value = op->value.realval;
            float scanned;
            code = gs_snprintf(buf, sizeof(buf), "%g", value);
            if (code <= 0)
                return_error(gs_error_undefinedresult);
            code = sscanf(buf, "%f", &scanned);
            if (code <= 0)
                return_error(gs_error_undefinedresult);
            if (scanned != value)
                gs_snprintf(buf, sizeof(buf), "%.9g", value);
            ensure_dot(buf, 256);
            goto rs;
        }
        case t_operator:
        case t_oparray:
            code = obj_cvp(op, (byte *)buf + 2, sizeof(buf) - 4, &size, 0, 0, mem, restart);
            if (code < 0)
                return code;
            buf[0] = buf[1] = buf[size + 2] = buf[size + 3] = '-';
            size += 4;
            goto nl;
        case t_name:
            if (r_has_attr(op, a_executable)) {
                code = obj_string_data(mem, op, &data, &size);
                if (code < 0)
                    return code;
                goto nl;
            }
            if (start_pos > 0)
                return obj_cvp(op, str, len, prlen, 0, start_pos - 1, mem, restart);
            if (len < 1)
                return_error(gs_error_rangecheck);
            code = obj_cvp(op, str + 1, len - 1, prlen, 0, 0, mem, restart);
            if (code < 0)
                return code;
            str[0] = '/';
            ++*prlen;
            return code;
        case t_null:
            data = (const byte *)"null";
            goto rs;
        case t_string:
            if (!r_has_attr(op, a_read))
                goto other;
            size = r_size(op);
            {
                bool truncate = (full_print == 1 && size > CVP_MAX_STRING);
                stream_cursor_read r;
                stream_cursor_write w;
                uint skip;
                byte *wstr;
                uint len1;
                int status = 1;

                if (start_pos == 0) {
                    if (len < 1)
                        return_error(gs_error_rangecheck);
                    str[0] = '(';
                    skip = 0;
                    wstr = str + 1;
                } else {
                    skip = start_pos - 1;
                    wstr = str;
                }
                len1 = len + (str - wstr);
                stream_cursor_read_init(&r, op->value.const_bytes, truncate ? CVP_MAX_STRING : size);

                while (skip && status == 1) {
                    uint written;

                    stream_cursor_write_init(&w, (byte *)buf, min(skip + len1, sizeof(buf)));
                    status = s_PSSE_template.process(NULL, &r, &w, false);
                    /* +1 accounts for crazy w.ptr initialisation - see stream_cursor_write_init() */
                    written = (w.ptr - ((byte *)buf)) + 1;
                    if (written > skip) {
                        written -= skip;
                        memcpy(wstr, buf + skip, written);
                        wstr += written;
                        skip = 0;
                        break;
                    }
                    skip -= written;
                }
                /*
                 * We can reach here with status == 0 (and skip != 0) if
                 * start_pos lies within the trailing ")" or  "...)".
                 */
                if (status == 0) {
#ifdef DEBUG
                    if (skip > (truncate ? 4 : 1)) {
                        return_error(gs_error_Fatal);
                    }
#endif
                }
                stream_cursor_write_init(&w, (byte *)wstr, (size_t)((str + len) - wstr));
                if (status == 1)
                    status = s_PSSE_template.process(NULL, &r, &w, false);
                *prlen = w.ptr - (str - 1);
                if (status != 0)
                    return 1;
                if (truncate) {
                    if (len - *prlen < 4 - skip)
                        return 1;
                    memcpy(w.ptr + 1, &"...)"[skip], 4 - skip);
                    *prlen += 4 - skip;
                } else {
                    if (len - *prlen < 1 - skip)
                        return 1;
                    if (!skip) {
                        w.ptr[1] = ')';
                        *prlen += 1;
                    }
                }
            }
            return 0;
        case t_astruct:
        case t_struct:
            if (r_is_foreign(op)) {
                /* gs_object_type may not work. */
                data = (const byte *)"-foreign-struct-";
                goto rs;
            }
            if (!mem) {
                data = (const byte *)"-(struct)-";
                goto rs;
            }
            data = (const byte *)
                gs_struct_type_name_string(
                                gs_object_type(mem,
                                    (const obj_header_t *)op->value.pstruct));
            size = strlen((const char *)data);
            if (size > 4 && !memcmp(data + size - 4, "type", 4))
                size -= 4;
            if (size > sizeof(buf) - 3)
                return_error(gs_error_rangecheck);
            buf[0] = '-';
            memcpy(buf + 1, data, size);
            buf[size + 1] = '-';
            size += 2;
            data = (const byte *)buf;
            goto nl;
        case t_pdfctx:
            data = (const byte *)"-pdfcontext-";
            goto rs;
        default:
other:
            {
                int rtype = r_btype(op);

                if (rtype >= countof(type_strings))
                    return_error(gs_error_rangecheck);
                data = (const byte *)type_strings[rtype];
                if (data == 0)
                    return_error(gs_error_rangecheck);
            }
            goto rs;
        }
    }
    /* full_print = 0 */
    switch (r_btype(op)) {
    case t_boolean:
        data = (const byte *)(op->value.boolval ? "true" : "false");
        break;
    case t_integer:
        gs_snprintf(buf, sizeof(buf), "%"PRIpsint, op->value.intval);
        break;
    case t_string:
        check_read(*op);
        /* falls through */
    case t_name:
        code = obj_string_data(mem, op, &data, &size);
        if (code < 0)
            return code;
        goto nl;
    case t_oparray: {
        uint index = op_index(op);
        const op_array_table *opt = get_op_array(mem, index);

        name_index_ref(mem, opt->nx_table[index - opt->base_index], &nref);
        name_string_ref(mem, &nref, &nref);
        code = obj_string_data(mem, &nref, &data, &size);
        if (code < 0)
            return code;
        goto nl;
    }
    case t_operator: {
        /* Recover the name from the initialization table. */
        uint index = op_index(op);

        /*
         * Check the validity of the index.  (An out-of-bounds index
         * is only possible when examining an invalid object using
         * the debugger.)
         */
        if (index > 0 && index < op_def_count) {
            data = (const byte *)(op_index_def(index)->oname + 1);
            break;
        }
        /* Internal operator, no name. */
        gs_snprintf(buf, sizeof(buf), "@"PRI_INTPTR, (intptr_t) op->value.opproc);
        break;
    }
    case t_real:
        /*
         * The value 0.0001 is a boundary case that the Adobe interpreters
         * print in f-format but at least some gs versions print in
         * e-format, presumably because of differences in the underlying C
         * library implementation.  Work around this here.
         */
        if (op->value.realval == (float)0.0001) {
            strncpy(buf, "0.0001", 256);
        } else {
            gs_snprintf(buf, sizeof(buf), "%g", op->value.realval);
        }
        ensure_dot(buf, 256);
        break;
    default:
        data = (const byte *)"--nostringval--";
    }
rs: size = strlen((const char *)data);
nl: if (size < start_pos)
        return_error(gs_error_rangecheck);
    if (!restart && size > len)
        return_error(gs_error_rangecheck);
    size -= start_pos;
    *prlen = min(size, len);
    memmove(str, data + start_pos, *prlen);
    return (size > len);
}
/*
 * Make sure the converted form of a real number has at least one of an 'e'
 * or a decimal point, so it won't be mistaken for an integer.
 * Re-format the exponent to satisfy Genoa CET test.
 */
static void
ensure_dot(char *buf, size_t buflen)
{
    char *pe = strchr(buf, 'e');
    if (pe) {
        int i;
        (void)sscanf(pe + 1, "%d", &i);
        buflen -= (size_t)(pe - buf);
        /* MSVC .net 2005 express doesn't support "%+02d" */
        if (i >= 0)
            gs_snprintf(pe + 1, buflen, "+%02d", i);
        else
            gs_snprintf(pe + 1, buflen, "-%02d", -i);
    } else if (strchr(buf, '.') == NULL) {
        strcat(buf, ".0");
    }
}

/*
 * Create a printable representation of an object, a la cvs and =.  Return 0
 * if OK, gs_error_rangecheck if the destination wasn't large enough,
 * gs_error_invalidaccess if the object's contents weren't readable.  If pchars !=
 * NULL, then if the object was a string or name, store a pointer to its
 * characters in *pchars even if it was too large; otherwise, set *pchars =
 * str.  In any case, store the length in *prlen.
 */
int
obj_cvs(const gs_memory_t *mem, const ref * op, byte * str, uint len, uint * prlen,
        const byte ** pchars)
{
    int code = obj_cvp(op, str, len, prlen, 0, 0, mem, false);  /* NB: NULL memptr */

    if (code == 1) {
        if (pchars)
            obj_string_data(mem, op, pchars, prlen);
        return gs_note_error(gs_error_rangecheck);
    } else {
        if (pchars)
          *pchars = str;
        return code;
    }
}

/* Find the index of an operator that doesn't have one stored in it. */
ushort
op_find_index(const ref * pref /* t_operator */ )
{
    op_proc_t proc = real_opproc(pref);
    const op_def *const *opp = op_defs_all;
    const op_def *const *opend = opp + (op_def_count / OP_DEFS_MAX_SIZE);

    for (; opp < opend; ++opp) {
        const op_def *def = *opp;

        for (; def->oname != 0; ++def)
            if (def->proc == proc)
                return (opp - op_defs_all) * OP_DEFS_MAX_SIZE + (def - *opp);
    }
    /* Lookup failed!  This isn't possible.... */
    return 0;
}

/*
 * Convert an operator index to an operator or oparray ref.
 * This is only used for debugging and for 'get' from packed arrays,
 * so it doesn't have to be very fast.
 */
void
op_index_ref(const gs_memory_t *mem, uint index, ref * pref)
{
    const op_array_table *opt;

    if (op_index_is_operator(index)) {
        make_oper(pref, index, op_index_proc(index));
        return;
    }
    opt = get_op_array(mem, index);
    make_tasv(pref, t_oparray, opt->attrs, index,
              const_refs, (opt->table.value.const_refs
                           + index - opt->base_index));
}

/* Get an element from an array of some kind. */
/* This is also used to index into Encoding vectors, */
/* the error name vector, etc. */
int
array_get(const gs_memory_t *mem, const ref * aref, long index_long, ref * pref)
{
    if ((ulong)index_long >= r_size(aref))
        return_error(gs_error_rangecheck);
    switch (r_type(aref)) {
        case t_array:
            {
                const ref *pvalue = aref->value.refs + index_long;

                ref_assign(pref, pvalue);
            }
            break;
        case t_mixedarray:
            {
                const ref_packed *packed = aref->value.packed;
                uint index = (uint)index_long;

                for (; index--;)
                    packed = packed_next(packed);
                packed_get(mem, packed, pref);
            }
            break;
        case t_shortarray:
            {
                const ref_packed *packed = aref->value.packed + index_long;

                packed_get(mem, packed, pref);
            }
            break;
        default:
            return_error(gs_error_typecheck);
    }
    return 0;
}

/* Get an element from a packed array. */
/* (This works for ordinary arrays too.) */
/* Source and destination are allowed to overlap if the source is packed, */
/* or if they are identical. */
void
packed_get(const gs_memory_t *mem, const ref_packed * packed, ref * pref)
{
    const ref_packed elt = *packed;
    uint value = elt & packed_value_mask;

    switch (elt >> r_packed_type_shift) {
        default:		/* (shouldn't happen) */
            make_null(pref);
            break;
        case pt_executable_operator:
            op_index_ref(mem, value, pref);
            break;
        case pt_integer:
            make_int(pref, (ps_int)value + packed_min_intval);
            break;
        case pt_literal_name:
            name_index_ref(mem, value, pref);
            break;
        case pt_executable_name:
            name_index_ref(mem, value, pref);
            r_set_attrs(pref, a_executable);
            break;
        case pt_full_ref:
        case pt_full_ref + 1:
            ref_assign(pref, (const ref *)packed);
    }
}

/* Check to make sure an interval contains no object references */
/* to a space younger than a given one. */
/* Return 0 or gs_error_invalidaccess. */
int
refs_check_space(const ref * bot, uint size, uint space)
{
    for (; size--; bot++)
        store_check_space(space, bot);
    return 0;
}

/* ------ String utilities ------ */

/* Convert a C string to a Ghostscript string */
int
string_to_ref(const char *cstr, ref * pref, gs_ref_memory_t * mem,
              client_name_t cname)
{
    uint size = strlen(cstr);
    int code = gs_alloc_string_ref(mem, pref, a_all, size, cname);

    if (code < 0)
        return code;
    memcpy(pref->value.bytes, cstr, size);
    return 0;
}

/* Convert a Ghostscript string to a C string. */
/* Return 0 iff the buffer can't be allocated. */
char *
ref_to_string(const ref * pref, gs_memory_t * mem, client_name_t cname)
{
    uint size = r_size(pref);
    char *str = (char *)gs_alloc_string(mem, size + 1, cname);

    if (str == 0)
        return 0;
    memcpy(str, (const char *)pref->value.bytes, size);
    str[size] = 0;
    return str;
}

/* ------ Operand utilities ------ */

/* Get N numeric operands from the stack or an array. */
/* Return a bit-mask indicating which ones are integers, */
/* or a (negative) error indication. */
/* The 1-bit in the bit-mask refers to the first operand. */
/* Store float versions of the operands at pval. */
/* The stack underflow check (check for t__invalid) is harmless */
/* if the operands come from somewhere other than the stack. */
int
num_params(const ref * op, int count, double *pval)
{
    int mask = 0;

    pval += count;
    while (--count >= 0) {
        mask <<= 1;
        switch (r_type(op)) {
            case t_real:
                *--pval = op->value.realval;
                break;
            case t_integer:
                *--pval = (double)op->value.intval;
                mask++;
                break;
            case t__invalid:
                return_error(gs_error_stackunderflow);
            default:
                return_error(gs_error_typecheck);
        }
        op--;
    }
    /* If count is very large, mask might overflow. */
    /* In this case we clearly don't care about the value of mask. */
    return (mask < 0 ? 0 : mask);
}
/* float_params doesn't bother to keep track of the mask. */
int
float_params(const ref * op, int count, float *pval)
{
    for (pval += count; --count >= 0; --op)
        switch (r_type(op)) {
            case t_real:
                *--pval = op->value.realval;
                break;
            case t_integer:
                *--pval = (float)op->value.intval;
                break;
            case t__invalid:
                return_error(gs_error_stackunderflow);
            default:
                return_error(gs_error_typecheck);
        }
    return 0;
}

/* Get N numeric parameters (as floating point numbers) from an array */
int
process_float_array(const gs_memory_t *mem, const ref * parray, int count, float * pval)
{
    int         code = 0, indx0 = 0;

    /* we assume parray is an array of some type, of adequate length */
    if (r_has_type(parray, t_array))
        return float_params(parray->value.refs + count - 1, count, pval);

    /* short/mixed array; convert the entries to refs */
    while (count > 0 && code >= 0) {
        int     i, subcount;
        ref     ref_buff[20];   /* 20 is arbitrary */

        subcount = (count > countof(ref_buff) ? countof(ref_buff) : count);
        for (i = 0; i < subcount && code >= 0; i++)
            code = array_get(mem, parray, (long)(i + indx0), &ref_buff[i]);
        if (code >= 0)
            code = float_params(ref_buff + subcount - 1, subcount, pval);
        count -= subcount;
        pval += subcount;
        indx0 += subcount;
    }

    return code;
}

/* Get a single real parameter. */
/* The only possible errors are gs_error_typecheck and gs_error_stackunderflow. */
/* If an error is returned, the return value is not updated. */
int
real_param(const ref * op, double *pparam)
{
    switch (r_type(op)) {
        case t_integer:
            *pparam = (double)op->value.intval;
            break;
        case t_real:
            *pparam = op->value.realval;
            break;
        case t__invalid:
            return_error(gs_error_stackunderflow);
        default:
            return_error(gs_error_typecheck);
    }
    return 0;
}
int
float_param(const ref * op, float *pparam)
{
    double dval;
    int code = real_param(op, &dval);

    if (code >= 0)
        *pparam = (float)dval;	/* can't overflow */
    return code;
}

/* Get an integer parameter in a given range. */
int
int_param(const ref * op, int max_value, int *pparam)
{
    check_int_leu(*op, max_value);
    *pparam = (int)op->value.intval;
    return 0;
}

/* Make real values on the operand stack. */
int
make_reals(ref * op, const double *pval, int count)
{
    /* This should return gs_error_limitcheck if any real is too large */
    /* to fit into a float on the stack. */
    for (; count--; op++, pval++)
        make_real(op, *pval);
    return 0;
}
int
make_floats(ref * op, const float *pval, int count)
{
    /* This should return gs_error_undefinedresult for infinities. */
    for (; count--; op++, pval++)
        make_real(op, *pval);
    return 0;
}

/* Compute the error code when check_proc fails. */
/* Note that the client, not this procedure, uses return_error. */
/* The stack underflow check is harmless in the off-stack case. */
int
check_proc_failed(const ref * pref)
{
    if (r_is_array(pref)) {
        if (r_has_attr(pref, a_executable))
            return gs_error_invalidaccess;
        else
            return gs_error_typecheck;
    } else {
        if (r_has_type(pref, t__invalid))
            return gs_error_stackunderflow;
        else
            return gs_error_typecheck;
    }
}

/* Compute the error code when a type check on the stack fails. */
/* Note that the client, not this procedure, uses return_error. */
int
check_type_failed(const ref * op)
{
    return (r_has_type(op, t__invalid) ? gs_error_stackunderflow : gs_error_typecheck);
}

/* ------ Matrix utilities ------ */

/* Read a matrix operand. */
/* Return 0 if OK, error code if not. */
int
read_matrix(const gs_memory_t *mem, const ref * op, gs_matrix * pmat)
{
    int code;
    ref values[6];
    const ref *pvalues;

    switch (r_type(op)) {
        case t_array:
            pvalues = op->value.refs;
            break;
        case t_mixedarray:
        case t_shortarray:
            {
                int i;

                for (i = 0; i < 6; ++i) {
                    code = array_get(mem, op, (long)i, &values[i]);
                    if (code < 0)
                        return code;
                }
                pvalues = values;
            }
            break;
        default:
            return_op_typecheck(op);
    }
    check_read(*op);
    if (r_size(op) != 6)
        return_error(gs_error_rangecheck);
    code = float_params(pvalues + 5, 6, (float *)pmat);
    return (code < 0 ? code : 0);
}

/* Write a matrix operand. */
/* Return 0 if OK, error code if not. */
int
write_matrix_in(ref * op, const gs_matrix * pmat, gs_dual_memory_t *idmemory,
                gs_ref_memory_t *imem)
{
    ref *aptr;
    const float *pel;
    int i;

    check_write_type(*op, t_array);
    if (r_size(op) != 6)
        return_error(gs_error_rangecheck);
    aptr = op->value.refs;
    pel = (const float *)pmat;
    for (i = 5; i >= 0; i--, aptr++, pel++) {
        if (idmemory) {
            ref_save(op, aptr, "write_matrix");
            make_real_new(aptr, *pel);
        } else {
            make_tav(aptr, t_real, imemory_new_mask(imem), realval, *pel);
        }
    }
    return 0;
}