summaryrefslogtreecommitdiff
path: root/psi/zarith.c
blob: c4df63c66559c6ea4a8f7c8b117a79d1d4af48d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* Arithmetic operators */
#include "math_.h"
#include "ghost.h"
#include "oper.h"
#include "store.h"
#include "gsstate.h"

/*
 * Many of the procedures in this file are public only so they can be
 * called from the FunctionType 4 interpreter (zfunc4.c).
 */

static int mul_64_64_overflowcheck(int64_t abc, int64_t def, int64_t *res);

/* <num1> <num2> add <sum> */
/* We make this into a separate procedure because */
/* the interpreter will almost always call it directly. */
int
zop_add(i_ctx_t *i_ctx_p)
{
    register os_ptr op = osp;
    float result;

    switch (r_type(op)) {
    default:
        return_op_typecheck(op);
    case t_real:
        switch (r_type(op - 1)) {
        default:
            return_op_typecheck(op - 1);
        case t_real:
            result = op[-1].value.realval + op->value.realval;
#ifdef HAVE_ISINF
            if (isinf(result))
                return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
            if (isnan(result))
                return_error(gs_error_undefinedresult);
#endif
            op[-1].value.realval = result;
            break;
        case t_integer:
            make_real(op - 1, (double)op[-1].value.intval + op->value.realval);
        }
        break;
    case t_integer:
        switch (r_type(op - 1)) {
        default:
            return_op_typecheck(op - 1);
        case t_real:
            result = op[-1].value.realval + (double)op->value.intval;
#ifdef HAVE_ISINF
            if (isinf(result))
                return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
            if (isnan(result))
                return_error(gs_error_undefinedresult);
#endif
            op[-1].value.realval = result;
            break;
        case t_integer: {
            if (sizeof(ps_int) != 4 && gs_currentcpsimode(imemory)) {
                ps_int32 int1 = (ps_int32)op[-1].value.intval;
                ps_int32 int2 = (ps_int32)op->value.intval;

                if (((int1 += int2) ^ int2) < 0 &&
                    ((int1 - int2) ^ int2) >= 0
                    ) {                     /* Overflow, convert to real */
                    make_real(op - 1, (double)(int1 - int2) + int2);
                }
                else {
                    op[-1].value.intval = (ps_int)int1;
                }
            }
            else {
                ps_int int2 = op->value.intval;

                if (((op[-1].value.intval += int2) ^ int2) < 0 &&
                    ((op[-1].value.intval - int2) ^ int2) >= 0
                    ) {                     /* Overflow, convert to real */
                    make_real(op - 1, (double)(op[-1].value.intval - int2) + int2);
                }
            }
        }
        }
    }
    return 0;
}
int
zadd(i_ctx_t *i_ctx_p)
{
    int code = zop_add(i_ctx_p);

    if (code == 0) {
        pop(1);
    }
    return code;
}

/* <num1> <num2> div <real_quotient> */
int
zdiv(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    os_ptr op1 = op - 1;
    float result;

    /* We can't use the non_int_cases macro, */
    /* because we have to check explicitly for op == 0. */
    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            if (op->value.realval == 0)
                return_error(gs_error_undefinedresult);
            switch (r_type(op1)) {
                default:
                    return_op_typecheck(op1);
                case t_real:
                    result = op1->value.realval / op->value.realval;
#ifdef HAVE_ISINF
                    if (isinf(result))
                        return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
                    if (isnan(result))
                        return_error(gs_error_undefinedresult);
#endif
                    op1->value.realval = result;
                    break;
                case t_integer:
                    result = (double)op1->value.intval / op->value.realval;
#ifdef HAVE_ISINF
                    if (isinf(result))
                        return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
                    if (isnan(result))
                        return_error(gs_error_undefinedresult);
#endif
                    make_real(op1, result);
            }
            break;
        case t_integer:
            if (op->value.intval == 0)
                return_error(gs_error_undefinedresult);
            switch (r_type(op1)) {
                default:
                    return_op_typecheck(op1);
                case t_real:
                    result = op1->value.realval / (double)op->value.intval;
#ifdef HAVE_ISINF
                    if (isinf(result))
                        return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
                    if (isnan(result))
                        return_error(gs_error_undefinedresult);
#endif
                    op1->value.realval = result;
                    break;
                case t_integer:
                    result = (double)op1->value.intval / (double)op->value.intval;
#ifdef HAVE_ISINF
                    if (isinf(result))
                        return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
                    if (isnan(result))
                        return_error(gs_error_undefinedresult);
#endif
                    make_real(op1, result);
            }
    }
    pop(1);
    return 0;
}

/*
To detect 64bit x 64bit multiplication overflowing, consider
breaking the numbers down into 32bit chunks.

  abc = (a<<64) + (b<<32) + c
      (where a is 0 or -1, and b and c are 32bit unsigned.

Similarly:

  def = (d<<64) + (b<<32) + f

Then:

  abc.def = ((a<<64) + (b<<32) + c) * ((d<<64) + (e<<32) + f)
          = (a<<64).def + (d<<64).abc + (b<<32).(e<<32) +
            (b<<32).f + (e<<32).c + cf
          = (a.def + d.abc + b.e)<<64 + (b.f + e.c)<<32 + cf

*/

static int mul_64_64_overflowcheck(int64_t abc, int64_t def, int64_t *res)
{
  uint32_t b = (abc>>32);
  uint32_t c = (uint32_t)abc;
  uint32_t e = (def>>32);
  uint32_t f = (uint32_t)def;
  uint64_t low, mid, high, bf, ec;

  /* Low contribution */
  low = (uint64_t)c * (uint64_t)f;
  /* Mid contributions */
  bf = (uint64_t)b * (uint64_t)f;
  ec = (uint64_t)e * (uint64_t)c;
  /* Top contribution */
  high = (uint64_t)b * (uint64_t)e;
  if (abc < 0)
      high -= def;
  if (def < 0)
      high -= abc;
  /* How do we check for carries from 64bit unsigned adds?
   *  x + y >= (1<<64) == x >= (1<<64) - y
   *                   == x >  (1<<64) - y - 1
   * if we consider just 64bits, this is:
   * x > NOT y
   */
  if (bf > ~ec)
      high += ((uint64_t)1)<<32;
  mid = bf + ec;
  if (low > ~(mid<<32))
      high += 1;
  high += (mid>>32);
  low += (mid<<32);

  *res = low;

  return (int64_t)low < 0 ? high != -1 : high != 0;
}

/* <num1> <num2> mul <product> */
int
zmul(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;
    float result;

    switch (r_type(op)) {
    default:
        return_op_typecheck(op);
    case t_real:
        switch (r_type(op - 1)) {
        default:
            return_op_typecheck(op - 1);
        case t_real:
            result = op[-1].value.realval * op->value.realval;
#ifdef HAVE_ISINF
            if (isinf(result))
                return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
            if (isnan(result))
                return_error(gs_error_undefinedresult);
#endif
            op[-1].value.realval = result;
            break;
        case t_integer:
            result = (double)op[-1].value.intval * op->value.realval;
            make_real(op - 1, result);
        }
        break;
    case t_integer:
        switch (r_type(op - 1)) {
        default:
            return_op_typecheck(op - 1);
        case t_real:
            result = op[-1].value.realval * (double)op->value.intval;
#ifdef HAVE_ISINF
            if (isinf(result))
                return_error(gs_error_undefinedresult);
#endif
#ifdef HAVE_ISNAN
            if (isnan(result))
                return_error(gs_error_undefinedresult);
#endif
            op[-1].value.realval = result;
            break;
        case t_integer: {
            if (sizeof(ps_int) != 4 && gs_currentcpsimode(imemory)) {
                double ab = (double)op[-1].value.intval * op->value.intval;
                if (ab > (double)MAX_PS_INT32)       /* (double)0x7fffffff */
                    make_real(op - 1, ab);
                else if (ab < (double)MIN_PS_INT32) /* (double)(int)0x80000000 */
                    make_real(op - 1, ab);
                else
                    op[-1].value.intval = (ps_int)ab;
            }
            else {
                int64_t result;
                if (mul_64_64_overflowcheck(op[-1].value.intval, op->value.intval, &result)) {
                    double ab = (double)op[-1].value.intval * op->value.intval;
                    make_real(op - 1, ab);
                } else {
                    op[-1].value.intval = result;
                }
            }
        }
        }
    }
    pop(1);
    return 0;
}

/* <num1> <num2> sub <difference> */
/* We make this into a separate procedure because */
/* the interpreter will almost always call it directly. */
int
zop_sub(i_ctx_t *i_ctx_p)
{
    register os_ptr op = osp;

    switch (r_type(op)) {
    default:
        return_op_typecheck(op);
    case t_real:
        switch (r_type(op - 1)) {
        default:
            return_op_typecheck(op - 1);
        case t_real:
            op[-1].value.realval -= op->value.realval;
            break;
        case t_integer:
            make_real(op - 1, (double)op[-1].value.intval - op->value.realval);
        }
        break;
    case t_integer:
        switch (r_type(op - 1)) {
        default:
            return_op_typecheck(op - 1);
        case t_real:
            op[-1].value.realval -= (double)op->value.intval;
            break;
        case t_integer: {
            if (sizeof(ps_int) != 4 && gs_currentcpsimode(imemory)) {
                ps_int32 int1 = (ps_int)op[-1].value.intval;
                ps_int32 int2 = (ps_int)op->value.intval;
                ps_int32 int3;

                if ((int1 ^ (int3 = int1 - int2)) < 0 &&
                    (int1 ^ int2) < 0
                    ) {                     /* Overflow, convert to real */
                    make_real(op - 1, (float)int1 - op->value.intval);
                }
                else {
                    op[-1].value.intval = (ps_int)int3;
                }
            }
            else {
                ps_int int1 = op[-1].value.intval;

                if ((int1 ^ (op[-1].value.intval = int1 - op->value.intval)) < 0 &&
                    (int1 ^ op->value.intval) < 0
                    ) {                     /* Overflow, convert to real */
                    make_real(op - 1, (float)int1 - op->value.intval);
                }
            }
        }
        }
    }
    return 0;
}
int
zsub(i_ctx_t *i_ctx_p)
{
    int code = zop_sub(i_ctx_p);

    if (code == 0) {
        pop(1);
    }
    return code;
}

/* <num1> <num2> idiv <int_quotient> */
int
zidiv(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(*op, t_integer);
    check_type(op[-1], t_integer);
    if (sizeof(ps_int) && gs_currentcpsimode(imemory)) {
        int tmpval;
        if ((op->value.intval == 0) || (op[-1].value.intval == (ps_int)MIN_PS_INT32 && op->value.intval == -1)) {
            /* Anomalous boundary case: -MININT / -1, fail. */
            return_error(gs_error_undefinedresult);
        }
        tmpval = (int)op[-1].value.intval / op->value.intval;
        op[-1].value.intval = (int64_t)tmpval;
    }
    else {
        if ((op->value.intval == 0) || (op[-1].value.intval == MIN_PS_INT && op->value.intval == -1)) {
            /* Anomalous boundary case: -MININT / -1, fail. */
            return_error(gs_error_undefinedresult);
        }
        op[-1].value.intval /= op->value.intval;
    }
    pop(1);
    return 0;
}

/* <int1> <int2> mod <remainder> */
int
zmod(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(*op, t_integer);
    check_type(op[-1], t_integer);
    if (op->value.intval == 0)
        return_error(gs_error_undefinedresult);
    op[-1].value.intval %= op->value.intval;
    pop(1);
    return 0;
}

/* <num1> neg <num2> */
int
zneg(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            op->value.realval = -op->value.realval;
            break;
        case t_integer:
            if (sizeof(ps_int) != 32 && gs_currentcpsimode(imemory)) {
                if (((unsigned int)op->value.intval) == MIN_PS_INT32)
                    make_real(op, -(float)(ps_uint32)MIN_PS_INT32);
                else
                    op->value.intval = -op->value.intval;
            }
            else {
                if (op->value.intval == MIN_PS_INT)
                    make_real(op, -(float)MIN_PS_INT);
                else
                    op->value.intval = -op->value.intval;
            }
    }
    return 0;
}

/* <num1> abs <num2> */
int
zabs(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            if (op->value.realval >= 0)
                return 0;
            break;
        case t_integer:
            if (op->value.intval >= 0)
                return 0;
            break;
    }
    return zneg(i_ctx_p);
}

/* <num1> ceiling <num2> */
int
zceiling(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            op->value.realval = ceil(op->value.realval);
        case t_integer:;
    }
    return 0;
}

/* <num1> floor <num2> */
int
zfloor(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            op->value.realval = floor(op->value.realval);
        case t_integer:;
    }
    return 0;
}

/* <num1> round <num2> */
int
zround(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            op->value.realval = floor(op->value.realval + 0.5);
        case t_integer:;
    }
    return 0;
}

/* <num1> truncate <num2> */
int
ztruncate(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    switch (r_type(op)) {
        default:
            return_op_typecheck(op);
        case t_real:
            op->value.realval =
                (op->value.realval < 0.0 ?
                 ceil(op->value.realval) :
                 floor(op->value.realval));
        case t_integer:;
    }
    return 0;
}

/* Non-standard operators */

/* <int1> <int2> .bitadd <sum> */
static int
zbitadd(i_ctx_t *i_ctx_p)
{
    os_ptr op = osp;

    check_type(*op, t_integer);
    check_type(op[-1], t_integer);
    op[-1].value.intval += op->value.intval;
    pop(1);
    return 0;
}

/* ------ Initialization table ------ */

const op_def zarith_op_defs[] =
{
    {"1abs", zabs},
    {"2add", zadd},
    {"2.bitadd", zbitadd},
    {"1ceiling", zceiling},
    {"2div", zdiv},
    {"2idiv", zidiv},
    {"1floor", zfloor},
    {"2mod", zmod},
    {"2mul", zmul},
    {"1neg", zneg},
    {"1round", zround},
    {"2sub", zsub},
    {"1truncate", ztruncate},
    op_def_end(0)
};