summaryrefslogtreecommitdiff
path: root/xps/xpsgradient.c
blob: dd7c1b4961a650b8fc54fe156db2c55aa894edf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
/* Copyright (C) 2001-2023 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
   CA 94129, USA, for further information.
*/


/* XPS interpreter - gradient support */

#include "ghostxps.h"

#define MAX_STOPS 256

enum { SPREAD_PAD, SPREAD_REPEAT, SPREAD_REFLECT };

/*
 * Parse a list of GradientStop elements.
 * Fill the offset and color arrays, and
 * return the number of stops parsed.
 */

struct stop
{
    float offset;
    float color[4];
    int index;
};

static int cmp_stop(const void *a, const void *b)
{
    const struct stop *astop = a;
    const struct stop *bstop = b;
    float diff = astop->offset - bstop->offset;
    if (diff < 0)
        return -1;
    if (diff > 0)
        return 1;
    return astop->index - bstop->index;
}

static inline float lerp(float a, float b, float x)
{
    return a + (b - a) * x;
}

static int
xps_parse_gradient_stops(xps_context_t *ctx, char *base_uri, xps_item_t *node,
    struct stop *stops, int maxcount)
{
    unsigned short sample_in[8], sample_out[8]; /* XPS allows up to 8 bands */
    gsicc_rendering_param_t rendering_params;
    gsicc_link_t *icclink = 0;
    float sample[8];
    int before, after;
    int count;
    int i, k;

    /* We may have to insert 2 extra stops when postprocessing */
    maxcount -= 2;

    count = 0;
    while (node && count < maxcount)
    {
        if (!strcmp(xps_tag(node), "GradientStop"))
        {
            char *offset = xps_att(node, "Offset");
            char *color = xps_att(node, "Color");
            if (offset && color)
            {
                gs_color_space *colorspace;

                stops[count].offset = atof(offset);
                stops[count].index = count;

                xps_parse_color(ctx, base_uri, color, &colorspace, sample);

                /* Set the rendering parameters */
                rendering_params.black_point_comp = gsBLACKPTCOMP_ON;
                rendering_params.graphics_type_tag = GS_VECTOR_TAG;
                rendering_params.override_icc = false;
                rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
                rendering_params.rendering_intent = gsPERCEPTUAL;
                rendering_params.cmm = gsCMM_DEFAULT;
                /* Get link to map from source to sRGB */
                icclink = gsicc_get_link(ctx->pgs, NULL, colorspace,
                                ctx->srgb, &rendering_params, ctx->memory);

                if (icclink != NULL && !icclink->is_identity)
                {
                    /* Transform the color */
                    int num_colors = gsicc_getsrc_channel_count(colorspace->cmm_icc_profile_data);
                    for (i = 0; i < num_colors; i++)
                    {
                        sample_in[i] = (unsigned short)(sample[i+1]*65535);
                    }
                    gscms_transform_color((gx_device *)(ctx->pgs->device),
                                          icclink, sample_in, sample_out, 2);

                    stops[count].color[0] = sample[0]; /* Alpha */
                    stops[count].color[1] = (float) sample_out[0] / 65535.0; /* sRGB */
                    stops[count].color[2] = (float) sample_out[1] / 65535.0;
                    stops[count].color[3] = (float) sample_out[2] / 65535.0;
                }
                else
                {
                    stops[count].color[0] = sample[0];
                    stops[count].color[1] = sample[1];
                    stops[count].color[2] = sample[2];
                    stops[count].color[3] = sample[3];
                }
                rc_decrement(colorspace, "xps_parse_gradient_stops");

                count ++;
            }
        }

        if (icclink != NULL)
            gsicc_release_link(icclink);
        icclink = NULL;
        node = xps_next(node);

    }

    if (count == 0)
    {
        gs_warn("gradient brush has no gradient stops");
        stops[0].offset = 0;
        stops[0].color[0] = 1;
        stops[0].color[1] = 0;
        stops[0].color[2] = 0;
        stops[0].color[3] = 0;
        stops[1].offset = 1;
        stops[1].color[0] = 1;
        stops[1].color[1] = 1;
        stops[1].color[2] = 1;
        stops[1].color[3] = 1;
        return 2;
    }

    if (count == maxcount)
        gs_warn("gradient brush exceeded maximum number of gradient stops");

    /* Postprocess to make sure the range of offsets is 0.0 to 1.0 */

    qsort(stops, count, sizeof(struct stop), cmp_stop);

    before = -1;
    after = -1;

    for (i = 0; i < count; i++)
    {
        if (stops[i].offset < 0)
            before = i;
        if (stops[i].offset > 1)
        {
            after = i;
            break;
        }
    }

    /* Remove all stops < 0 except the largest one */
    if (before > 0)
    {
        memmove(stops, stops + before, (count - before) * sizeof(struct stop));
        count -= before;
    }

    /* Remove all stops > 1 except the smallest one */
    if (after >= 0)
        count = after + 1;

    /* Expand single stop to 0 .. 1 */
    if (count == 1)
    {
        stops[1] = stops[0];
        stops[0].offset = 0;
        stops[1].offset = 1;
        return 2;
    }

    /* First stop < 0 -- interpolate value to 0 */
    if (stops[0].offset < 0)
    {
        float d = -stops[0].offset / (stops[1].offset - stops[0].offset);
        stops[0].offset = 0;
        for (k = 0; k < 4; k++)
            stops[0].color[k] = lerp(stops[0].color[k], stops[1].color[k], d);
    }

    /* Last stop > 1 -- interpolate value to 1 */
    if (stops[count-1].offset > 1)
    {
        float d = (1 - stops[count-2].offset) / (stops[count-1].offset - stops[count-2].offset);
        stops[count-1].offset = 1;
        for (k = 0; k < 4; k++)
            stops[count-1].color[k] = lerp(stops[count-2].color[k], stops[count-1].color[k], d);
    }

    /* First stop > 0 -- insert a duplicate at 0 */
    if (stops[0].offset > 0)
    {
        memmove(stops + 1, stops, count * sizeof(struct stop));
        stops[0] = stops[1];
        stops[0].offset = 0;
        count++;
    }

    /* Last stop < 1 -- insert a duplicate at 1 */
    if (stops[count-1].offset < 1)
    {
        stops[count] = stops[count-1];
        stops[count].offset = 1;
        count++;
    }

    return count;
}

static int
xps_gradient_has_transparent_colors(struct stop *stops, int count)
{
    int i;
    for (i = 0; i < count; i++)
        if (stops[i].color[0] < 1)
            return 1;
    return 0;
}

/*
 * Create a Function object to map [0..1] to RGB colors
 * based on the gradient stop arrays.
 *
 * We do this by creating a stitching function that joins
 * a series of linear functions (one linear function
 * for each gradient stop-pair).
 */

static gs_function_t *
xps_create_gradient_stop_function(xps_context_t *ctx, struct stop *stops, int count, int opacity_only)
{
    gs_function_1ItSg_params_t sparams;
    gs_function_ElIn_params_t lparams;
    gs_function_t *sfunc;
    gs_function_t *lfunc;

    float *domain, *range, *c0, *c1, *bounds, *encode;
    const gs_function_t **functions;

    int code;
    int k;
    int i;

    k = count - 1; /* number of intervals / functions */

    domain = xps_alloc(ctx, 2 * sizeof(float));
    if (!domain) {
        gs_throw(gs_error_VMerror, "out of memory: domain\n");
        return NULL;
    }
    domain[0] = 0.0;
    domain[1] = 1.0;
    sparams.m = 1;
    sparams.Domain = domain;

    range = xps_alloc(ctx, 6 * sizeof(float));
    if (!range) {
        gs_throw(gs_error_VMerror, "out of memory: range\n");
        return NULL;
    }
    range[0] = 0.0;
    range[1] = 1.0;
    range[2] = 0.0;
    range[3] = 1.0;
    range[4] = 0.0;
    range[5] = 1.0;
    sparams.Range = range;

    functions = xps_alloc(ctx, k * sizeof(void*));
    if (!functions) {
        gs_throw(gs_error_VMerror, "out of memory: functions.\n");
        return NULL;
    }
    bounds = xps_alloc(ctx, (k - 1) * sizeof(float));
    if (!bounds) {
        gs_throw(gs_error_VMerror, "out of memory: bounds.\n");
        return NULL;
    }
    encode = xps_alloc(ctx, (k * 2) * sizeof(float));
    if (!encode) {
        gs_throw(gs_error_VMerror, "out of memory: encode.\n");
        return NULL;
    }

    sparams.k = k;
    sparams.Functions = functions;
    sparams.Bounds = bounds;
    sparams.Encode = encode;

    if (opacity_only)
    {
        sparams.n = 1;
        lparams.n = 1;
    }
    else
    {
        sparams.n = 3;
        lparams.n = 3;
    }

    for (i = 0; i < k; i++)
    {
        domain = xps_alloc(ctx, 2 * sizeof(float));
        if (!domain) {
            gs_throw(gs_error_VMerror, "out of memory: domain.\n");
            return NULL;
    }
        domain[0] = 0.0;
        domain[1] = 1.0;
        lparams.m = 1;
        lparams.Domain = domain;

        range = xps_alloc(ctx, 6 * sizeof(float));
        if (!range) {
            gs_throw(gs_error_VMerror, "out of memory: range.\n");
            return NULL;
        }
        range[0] = 0.0;
        range[1] = 1.0;
        range[2] = 0.0;
        range[3] = 1.0;
        range[4] = 0.0;
        range[5] = 1.0;
        lparams.Range = range;

        c0 = xps_alloc(ctx, 3 * sizeof(float));
        if (!c0) {
            gs_throw(gs_error_VMerror, "out of memory: c0.\n");
            return NULL;
        }
        lparams.C0 = c0;

        c1 = xps_alloc(ctx, 3 * sizeof(float));
        if (!c0) {
            gs_throw(gs_error_VMerror, "out of memory: c1.\n");
            return NULL;
        }
        lparams.C1 = c1;

        if (opacity_only)
        {
            c0[0] = stops[i].color[0];
            c1[0] = stops[i+1].color[0];
        }
        else
        {
            c0[0] = stops[i].color[1];
            c0[1] = stops[i].color[2];
            c0[2] = stops[i].color[3];

            c1[0] = stops[i+1].color[1];
            c1[1] = stops[i+1].color[2];
            c1[2] = stops[i+1].color[3];
        }

        lparams.N = 1;

        code = gs_function_ElIn_init(&lfunc, &lparams, ctx->memory);
        if (code < 0)
        {
            gs_rethrow(code, "gs_function_ElIn_init failed");
            return NULL;
        }

        functions[i] = lfunc;

        if (i > 0)
            bounds[i - 1] = stops[i].offset;

        encode[i * 2 + 0] = 0.0;
        encode[i * 2 + 1] = 1.0;
    }

    code = gs_function_1ItSg_init(&sfunc, &sparams, ctx->memory);
    if (code < 0)
    {
        gs_rethrow(code, "gs_function_1ItSg_init failed");
        return NULL;
    }

    return sfunc;
}

/*
 * Shadings and functions are ghostscript type objects,
 * and as such rely on the garbage collector for cleanup.
 * We can't have none of that here, so we have to
 * write our own destructors.
 */

static void
xps_free_gradient_stop_function(xps_context_t *ctx, gs_function_t *func)
{
    gs_function_t *lfunc;
    gs_function_1ItSg_params_t *sparams;
    gs_function_ElIn_params_t *lparams;
    int i;

    sparams = (gs_function_1ItSg_params_t*) &func->params;
    xps_free(ctx, (void*)sparams->Domain);
    xps_free(ctx, (void*)sparams->Range);

    for (i = 0; i < sparams->k; i++)
    {
        lfunc = (gs_function_t*) sparams->Functions[i]; /* discard const */
        lparams = (gs_function_ElIn_params_t*) &lfunc->params;
        xps_free(ctx, (void*)lparams->Domain);
        xps_free(ctx, (void*)lparams->Range);
        xps_free(ctx, (void*)lparams->C0);
        xps_free(ctx, (void*)lparams->C1);
        xps_free(ctx, lfunc);
    }

    xps_free(ctx, (void*)sparams->Bounds);
    xps_free(ctx, (void*)sparams->Encode);
    xps_free(ctx, (void*)sparams->Functions);
    xps_free(ctx, func);
}

/*
 * For radial gradients that have a cone drawing we have to
 * reverse the direction of the gradient because we draw
 * the shading in the opposite direction with the
 * big circle first.
 */
static gs_function_t *
xps_reverse_function(xps_context_t *ctx, gs_function_t *func, float *fary, void *vary)
{
    gs_function_1ItSg_params_t sparams;
    gs_function_t *sfunc;
    int code;

    /* take from stack allocated arrays that the caller provides */
    float *domain = fary + 0;
    float *range = fary + 2;
    float *encode = fary + 2 + 6;
    const gs_function_t **functions = vary;

    domain[0] = 0.0;
    domain[1] = 1.0;

    range[0] = 0.0;
    range[1] = 1.0;
    range[2] = 0.0;
    range[3] = 1.0;
    range[4] = 0.0;
    range[5] = 1.0;

    functions[0] = func;

    encode[0] = 1.0;
    encode[1] = 0.0;

    sparams.m = 1;
    sparams.Domain = domain;
    sparams.Range = range;
    sparams.k = 1;
    sparams.Functions = functions;
    sparams.Bounds = NULL;
    sparams.Encode = encode;

    if (ctx->opacity_only)
        sparams.n = 1;
    else
        sparams.n = 3;

    code = gs_function_1ItSg_init(&sfunc, &sparams, ctx->memory);
    if (code < 0)
    {
        gs_rethrow(code, "gs_function_1ItSg_init failed");
        return NULL;
    }

    return sfunc;
}

/*
 * Radial gradients map more or less to Radial shadings.
 * The inner circle is always a point.
 * The outer circle is actually an ellipse,
 * mess with the transform to squash the circle into the right aspect.
 */

static int
xps_draw_one_radial_gradient(xps_context_t *ctx,
        gs_function_t *func, int extend,
        float x0, float y0, float r0,
        float x1, float y1, float r1)
{
    gs_memory_t *mem = ctx->memory;
    gs_shading_t *shading;
    gs_shading_R_params_t params;
    int code;

    gs_shading_R_params_init(&params);
    {
        if (ctx->opacity_only)
            params.ColorSpace = ctx->gray_lin;
        else
            params.ColorSpace = ctx->srgb;

        params.Coords[0] = x0;
        params.Coords[1] = y0;
        params.Coords[2] = r0;
        params.Coords[3] = x1;
        params.Coords[4] = y1;
        params.Coords[5] = r1;

        params.Extend[0] = extend;
        params.Extend[1] = extend;

        params.Function = func;
    }

    code = gs_shading_R_init(&shading, &params, mem);
    if (code < 0)
        return gs_rethrow(code, "gs_shading_R_init failed");

    gs_setsmoothness(ctx->pgs, 0.02);

    code = gs_shfill(ctx->pgs, shading);
    if (code < 0)
    {
        gs_free_object(mem, shading, "gs_shading_R");
        return gs_rethrow(code, "gs_shfill failed");
    }

    gs_free_object(mem, shading, "gs_shading_R");

    return 0;
}

/*
 * Linear gradients map to Axial shadings.
 */

static int
xps_draw_one_linear_gradient(xps_context_t *ctx,
        gs_function_t *func, int extend,
        float x0, float y0, float x1, float y1)
{
    gs_memory_t *mem = ctx->memory;
    gs_shading_t *shading;
    gs_shading_A_params_t params;
    int code;

    gs_shading_A_params_init(&params);
    {
        if (ctx->opacity_only)
            params.ColorSpace = ctx->gray_lin;
        else
            params.ColorSpace = ctx->srgb;

        params.Coords[0] = x0;
        params.Coords[1] = y0;
        params.Coords[2] = x1;
        params.Coords[3] = y1;

        params.Extend[0] = extend;
        params.Extend[1] = extend;

        params.Function = func;
    }

    code = gs_shading_A_init(&shading, &params, mem);
    if (code < 0)
        return gs_rethrow(code, "gs_shading_A_init failed");

    gs_setsmoothness(ctx->pgs, 0.02);

    code = gs_shfill(ctx->pgs, shading);
    if (code < 0)
    {
        gs_free_object(mem, shading, "gs_shading_A");
        return gs_rethrow(code, "gs_shfill failed");
    }

    gs_free_object(mem, shading, "gs_shading_A");

    return 0;
}

/*
 * We need to loop and create many shading objects to account
 * for the Repeat and Reflect SpreadMethods.
 * I'm not smart enough to calculate this analytically
 * so we iterate and check each object until we
 * reach a reasonable limit for infinite cases.
 */

static inline int point_inside_circle(float px, float py, float x, float y, float r)
{
    float dx = px - x;
    float dy = py - y;
    return (dx * dx + dy * dy) <= (r * r);
}

static int
xps_draw_radial_gradient(xps_context_t *ctx, xps_item_t *root, int spread, gs_function_t *func)
{
    gs_rect bbox;
    float x0 = 0, y0 = 0, r0;
    float x1 = 0, y1 = 0, r1;
    float xrad = 1;
    float yrad = 1;
    float invscale;
    float dx, dy;
    int code;
    int i;
    int done;

    char *center_att = xps_att(root, "Center");
    char *origin_att = xps_att(root, "GradientOrigin");
    char *radius_x_att = xps_att(root, "RadiusX");
    char *radius_y_att = xps_att(root, "RadiusY");

    if (origin_att)
        xps_get_point(origin_att, &x0, &y0);
    if (center_att)
        xps_get_point(center_att, &x1, &y1);
    if (radius_x_att)
        xrad = atof(radius_x_att);
    if (radius_y_att)
        yrad = atof(radius_y_att);

    gs_gsave(ctx->pgs);

    /* scale the ctm to make ellipses */
    if (xrad != 0)
        gs_scale(ctx->pgs, 1.0, yrad / xrad);

    if (yrad != 0)
    {
        invscale = xrad / yrad;
        y0 = y0 * invscale;
        y1 = y1 * invscale;
    }

    r0 = 0.0;
    r1 = xrad;

    dx = x1 - x0;
    dy = y1 - y0;

    xps_bounds_in_user_space(ctx, &bbox);

    if (spread == SPREAD_PAD)
    {
        if (!point_inside_circle(x0, y0, x1, y1, r1))
        {
            gs_function_t *reverse;
            float in[1];
            float out[4];
            float fary[10];
            void *vary[1];

            /* PDF shadings with extend doesn't work the same way as XPS
             * gradients when the radial shading is a cone. In this case
             * we fill the background ourselves.
             */

            in[0] = 1.0;
            out[0] = 1.0;
            out[1] = 0.0;
            out[2] = 0.0;
            out[3] = 0.0;
            if (ctx->opacity_only)
            {
                gs_function_evaluate(func, in, out);
                xps_set_color(ctx, ctx->gray_lin, out);
            }
            else
            {
                gs_function_evaluate(func, in, out + 1);
                xps_set_color(ctx, ctx->srgb, out);
            }

            gs_moveto(ctx->pgs, bbox.p.x, bbox.p.y);
            gs_lineto(ctx->pgs, bbox.q.x, bbox.p.y);
            gs_lineto(ctx->pgs, bbox.q.x, bbox.q.y);
            gs_lineto(ctx->pgs, bbox.p.x, bbox.q.y);
            gs_closepath(ctx->pgs);
            gs_fill(ctx->pgs);

            /* We also have to reverse the direction so the bigger circle
             * comes first or the graphical results do not match. We also
             * have to reverse the direction of the function to compensate.
             */

            reverse = xps_reverse_function(ctx, func, fary, vary);
            if (!reverse)
            {
                gs_grestore(ctx->pgs);
                return gs_rethrow(-1, "could not create the reversed function");
            }

            code = xps_draw_one_radial_gradient(ctx, reverse, 1, x1, y1, r1, x0, y0, r0);
            if (code < 0)
            {
                xps_free(ctx, reverse);
                gs_grestore(ctx->pgs);
                return gs_rethrow(code, "could not draw radial gradient");
            }

            xps_free(ctx, reverse);
        }
        else
        {
            code = xps_draw_one_radial_gradient(ctx, func, 1, x0, y0, r0, x1, y1, r1);
            if (code < 0)
            {
                gs_grestore(ctx->pgs);
                return gs_rethrow(code, "could not draw radial gradient");
            }
        }
    }
    else
    {
        for (i = 0; i < 100; i++)
        {
            /* Draw current circle */

            if (!point_inside_circle(x0, y0, x1, y1, r1))
                dmputs(ctx->memory, "xps: we should reverse gradient here too\n");

            if (spread == SPREAD_REFLECT && (i & 1))
                code = xps_draw_one_radial_gradient(ctx, func, 0, x1, y1, r1, x0, y0, r0);
            else
                code = xps_draw_one_radial_gradient(ctx, func, 0, x0, y0, r0, x1, y1, r1);
            if (code < 0)
            {
                gs_grestore(ctx->pgs);
                return gs_rethrow(code, "could not draw axial gradient");
            }

            /* Check if circle encompassed the entire bounding box (break loop if we do) */

            done = 1;
            if (!point_inside_circle(bbox.p.x, bbox.p.y, x1, y1, r1)) done = 0;
            if (!point_inside_circle(bbox.p.x, bbox.q.y, x1, y1, r1)) done = 0;
            if (!point_inside_circle(bbox.q.x, bbox.q.y, x1, y1, r1)) done = 0;
            if (!point_inside_circle(bbox.q.x, bbox.p.y, x1, y1, r1)) done = 0;
            if (done)
                break;

            /* Prepare next circle */

            r0 = r1;
            r1 += xrad;

            x0 += dx;
            y0 += dy;
            x1 += dx;
            y1 += dy;
        }
    }

    gs_grestore(ctx->pgs);

    return 0;
}

/*
 * Calculate how many iterations are needed to cover
 * the bounding box.
 */

static int
xps_draw_linear_gradient(xps_context_t *ctx, xps_item_t *root, int spread, gs_function_t *func)
{
    gs_rect bbox;
    float x0, y0, x1, y1;
    float dx, dy;
    int code;
    int i;

    char *start_point_att = xps_att(root, "StartPoint");
    char *end_point_att = xps_att(root, "EndPoint");

    x0 = 0;
    y0 = 0;
    x1 = 0;
    y1 = 1;

    if (start_point_att)
        xps_get_point(start_point_att, &x0, &y0);
    if (end_point_att)
        xps_get_point(end_point_att, &x1, &y1);

    dx = x1 - x0;
    dy = y1 - y0;

    xps_bounds_in_user_space(ctx, &bbox);

    if (spread == SPREAD_PAD)
    {
        code = xps_draw_one_linear_gradient(ctx, func, 1, x0, y0, x1, y1);
        if (code < 0)
            return gs_rethrow(code, "could not draw axial gradient");
    }
    else
    {
        float len;
        float a, b;
        float dist[4];
        float d0, d1;
        int i0, i1;

        len = sqrt(dx * dx + dy * dy);
        a = dx / len;
        b = dy / len;

        dist[0] = a * (bbox.p.x - x0) + b * (bbox.p.y - y0);
        dist[1] = a * (bbox.p.x - x0) + b * (bbox.q.y - y0);
        dist[2] = a * (bbox.q.x - x0) + b * (bbox.q.y - y0);
        dist[3] = a * (bbox.q.x - x0) + b * (bbox.p.y - y0);

        d0 = dist[0];
        d1 = dist[0];
        for (i = 1; i < 4; i++)
        {
            if (dist[i] < d0) d0 = dist[i];
            if (dist[i] > d1) d1 = dist[i];
        }

        i0 = (int)floor(d0 / len);
        i1 = (int)ceil(d1 / len);

        for (i = i0; i < i1; i++)
        {
            if (spread == SPREAD_REFLECT && (i & 1))
            {
                code = xps_draw_one_linear_gradient(ctx, func, 0,
                        x1 + dx * i, y1 + dy * i,
                        x0 + dx * i, y0 + dy * i);
            }
            else
            {
                code = xps_draw_one_linear_gradient(ctx, func, 0,
                        x0 + dx * i, y0 + dy * i,
                        x1 + dx * i, y1 + dy * i);
            }
            if (code < 0)
                return gs_rethrow(code, "could not draw axial gradient");
        }
    }

    return 0;
}

/*
 * Parse XML tag and attributes for a gradient brush, create color/opacity
 * function objects and call gradient drawing primitives.
 */

static int
xps_parse_gradient_brush(xps_context_t *ctx, char *base_uri, xps_resource_t *dict, xps_item_t *root,
        int (*draw)(xps_context_t *, xps_item_t *, int, gs_function_t *))
{
    xps_item_t *node;

    char *opacity_att;
    /*char *interpolation_att;*/
    char *spread_att;
    /*char *mapping_att;*/
    char *transform_att;

    xps_item_t *transform_tag = NULL;
    xps_item_t *stop_tag = NULL;

    struct stop stop_list[MAX_STOPS];
    int stop_count;
    gs_matrix transform;
    int spread_method;
    int code;

    gs_rect bbox;

    gs_function_t *color_func;
    gs_function_t *opacity_func;
    int has_opacity = 0;

    opacity_att = xps_att(root, "Opacity");
    /*interpolation_att = xps_att(root, "ColorInterpolationMode");*/
    spread_att = xps_att(root, "SpreadMethod");
    /*mapping_att = xps_att(root, "MappingMode");*/
    transform_att = xps_att(root, "Transform");

    for (node = xps_down(root); node; node = xps_next(node))
    {
        if (!strcmp(xps_tag(node), "LinearGradientBrush.Transform"))
            transform_tag = xps_down(node);
        if (!strcmp(xps_tag(node), "RadialGradientBrush.Transform"))
            transform_tag = xps_down(node);
        if (!strcmp(xps_tag(node), "LinearGradientBrush.GradientStops"))
            stop_tag = xps_down(node);
        if (!strcmp(xps_tag(node), "RadialGradientBrush.GradientStops"))
            stop_tag = xps_down(node);
    }

    xps_resolve_resource_reference(ctx, dict, &transform_att, &transform_tag, NULL);

    spread_method = SPREAD_PAD;
    if (spread_att)
    {
        if (!strcmp(spread_att, "Pad"))
            spread_method = SPREAD_PAD;
        if (!strcmp(spread_att, "Reflect"))
            spread_method = SPREAD_REFLECT;
        if (!strcmp(spread_att, "Repeat"))
            spread_method = SPREAD_REPEAT;
    }

    gs_make_identity(&transform);
    if (transform_att)
        xps_parse_render_transform(ctx, transform_att, &transform);
    if (transform_tag)
        xps_parse_matrix_transform(ctx, transform_tag, &transform);

    if (!stop_tag)
        return gs_throw(-1, "missing gradient stops tag");

    stop_count = xps_parse_gradient_stops(ctx, base_uri, stop_tag, stop_list, MAX_STOPS);
    if (stop_count == 0)
        return gs_throw(-1, "no gradient stops found");

    color_func = xps_create_gradient_stop_function(ctx, stop_list, stop_count, 0);
    if (!color_func)
        return gs_rethrow(-1, "could not create color gradient function");

    opacity_func = xps_create_gradient_stop_function(ctx, stop_list, stop_count, 1);
    if (!opacity_func)
        return gs_rethrow(-1, "could not create opacity gradient function");

    has_opacity = xps_gradient_has_transparent_colors(stop_list, stop_count);

    xps_clip(ctx);

    gs_gsave(ctx->pgs);
    gs_concat(ctx->pgs, &transform);

    xps_bounds_in_user_space(ctx, &bbox);

    code = xps_begin_opacity(ctx, base_uri, dict, opacity_att, NULL, false, false);
    if (code)
    {
        gs_grestore(ctx->pgs);
        return gs_rethrow(code, "cannot create transparency group");
    }

    if (ctx->opacity_only)
    {
        code = draw(ctx, root, spread_method, opacity_func);
        if (code)
        {
            gs_grestore(ctx->pgs);
            return gs_rethrow(code, "cannot draw gradient opacity");
        }
    }
    else
    {
        if (has_opacity)
        {
            gs_transparency_mask_params_t params;
            gs_transparency_group_params_t tgp;

            gs_setblendmode(ctx->pgs, BLEND_MODE_Normal);
            gs_trans_mask_params_init(&params, TRANSPARENCY_MASK_Luminosity);
            params.ColorSpace = gs_currentcolorspace_inline(ctx->pgs);
            gs_begin_transparency_mask(ctx->pgs, &params, &bbox, 0);
            /* I dont like this, but dont want to change interface of draw */
            /* For the opacity case, we want to make sure the functions
               are set up for gray only */
            ctx->opacity_only = true;
            code = draw(ctx, root, spread_method, opacity_func);
            ctx->opacity_only = false;
            if (code)
            {
                gs_end_transparency_mask(ctx->pgs, TRANSPARENCY_CHANNEL_Opacity);
                gs_grestore(ctx->pgs);
                return gs_rethrow(code, "cannot draw gradient opacity");
            }
            gs_end_transparency_mask(ctx->pgs, TRANSPARENCY_CHANNEL_Opacity);

            gs_trans_group_params_init(&tgp, 1.0);
            gs_begin_transparency_group(ctx->pgs, &tgp, &bbox, PDF14_BEGIN_TRANS_GROUP);
            code = draw(ctx, root, spread_method, color_func);
            if (code)
            {
                gs_end_transparency_group(ctx->pgs);
                gs_grestore(ctx->pgs);
                return gs_rethrow(code, "cannot draw gradient color");
            }
            gs_end_transparency_group(ctx->pgs);
            /* Need to remove the soft mask from the graphic state.  Otherwise
               we may end up using it in subsequent drawings.  Note that there
               is not a push of the state made since there is already a soft
               mask present from gs_end_transparency_mask.  In this case,
               we are removing the mask with this forced pop. */
            gs_pop_transparency_state(ctx->pgs, true);
        }
        else
        {
            code = draw(ctx, root, spread_method, color_func);
            if (code)
            {
                gs_grestore(ctx->pgs);
                return gs_rethrow(code, "cannot draw gradient color");
            }
        }
    }

    xps_end_opacity(ctx, base_uri, dict, opacity_att, NULL);

    gs_grestore(ctx->pgs);

    xps_free_gradient_stop_function(ctx, opacity_func);
    xps_free_gradient_stop_function(ctx, color_func);

    return 0;
}

int
xps_parse_linear_gradient_brush(xps_context_t *ctx, char *base_uri, xps_resource_t *dict, xps_item_t *root)
{
    int code;
    code = xps_parse_gradient_brush(ctx, base_uri, dict, root, xps_draw_linear_gradient);
    if (code < 0)
        return gs_rethrow(code, "cannot parse linear gradient brush");
    return gs_okay;
}

int
xps_parse_radial_gradient_brush(xps_context_t *ctx, char *base_uri, xps_resource_t *dict, xps_item_t *root)
{
    int code;
    code = xps_parse_gradient_brush(ctx, base_uri, dict, root, xps_draw_radial_gradient);
    if (code < 0)
        return gs_rethrow(code, "cannot parse radial gradient brush");
    return gs_okay;
}