diff options
Diffstat (limited to 'mpz')
-rw-r--r-- | mpz/millerrabin.c | 23 |
1 files changed, 9 insertions, 14 deletions
diff --git a/mpz/millerrabin.c b/mpz/millerrabin.c index 1f5d48260..7c33ae4cd 100644 --- a/mpz/millerrabin.c +++ b/mpz/millerrabin.c @@ -8,7 +8,7 @@ With the current implementation, the first 24 MR-tests are substituted by a Baillie-PSW probable prime test. - This implementation the Baillie-PSW test was checked up to 19*2^46, + This implementation the Baillie-PSW test was checked up to 23*10^14, for smaller values no MR-test is performed, regardless of reps, and 2 ("surely prime") is returned if the number was not proved composite. @@ -19,7 +19,7 @@ CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN FUTURE GNU MP RELEASES. -Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018, 2019 Free +Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018-2021 Free Software Foundation, Inc. Contributed by John Amanatides. @@ -65,7 +65,6 @@ mpz_millerrabin (mpz_srcptr n, int reps) { mpz_t nm, x, y, q; unsigned long int k; - gmp_randstate_t rstate; int is_prime; TMP_DECL; TMP_MARK; @@ -101,12 +100,12 @@ mpz_millerrabin (mpz_srcptr n, int reps) || SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS) #endif #else - /* Consider numbers up to 19*2^46 that pass the BPSW test as primes. - This implementation was tested up to 19*2^46 = 2^50+2^47+2^46 */ - /* 2^4 < 19 = 0b10011 < 2^5 */ -#define GMP_BPSW_LIMB_CONST CNST_LIMB(19) -#define GMP_BPSW_BITS_CONST (LOG2C(19) - 1) -#define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST) + /* Consider numbers up to 65*2^45 that pass the BPSW test as primes. + This implementation was tested up to 23*10^14 > 2^51+2^45 */ + /* 2^6 < 65 = 0b1000001 < 2^7 */ +#define GMP_BPSW_LIMB_CONST CNST_LIMB(65) +#define GMP_BPSW_BITS_CONST (LOG2C(65) - 1) +#define GMP_BPSW_BITS_LIMIT (45 + GMP_BPSW_BITS_CONST) #define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS) #define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS) @@ -142,6 +141,7 @@ mpz_millerrabin (mpz_srcptr n, int reps) reps -= 24; if (reps > 0) { + gmp_randstate_t rstate; /* (n-5)/2 */ mpz_sub_ui (nm, nm, 2L); ASSERT (mpz_cmp_ui (nm, 1L) >= 0); @@ -212,11 +212,6 @@ millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y, mpz_powm_ui (y, y, 2L, n); if (mod_eq_m1 (y, n)) return 1; - /* y == 1 means that the previous y was a non-trivial square root - of 1 (mod n). y == 0 means that n is a power of the base. - In either case, n is not prime. */ - if (mpz_cmp_ui (y, 1L) <= 0) - return 0; } return 0; } |