1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
/* mpn_invertappr and helper functions. Compute I such that
floor((B^{2n}-1)/U - 1 <= I + B^n <= floor((B^{2n}-1)/U.
Contributed to the GNU project by Marco Bodrato.
The algorithm used here was inspired by ApproximateReciprocal from "Modern
Computer Arithmetic", by Richard P. Brent and Paul Zimmermann. Special
thanks to Paul Zimmermann for his very valuable suggestions on all the
theoretical aspects during the work on this code.
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
Copyright (C) 2007, 2009, 2010, 2012 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or (at
your option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */
/* FIXME: Remove NULL and TMP_*, as soon as all the callers properly
allocate and pass the scratch to the function. */
#include <stdlib.h> /* for NULL */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
/* FIXME: The iterative version splits the operand in two slightly unbalanced
parts, the use of log_2 (or counting the bits) underestimate the maximum
number of iterations. */
#if TUNE_PROGRAM_BUILD
#define NPOWS \
((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t)))
#define MAYBE_dcpi1_divappr 1
#else
#define NPOWS \
((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t)) - LOG2C (INV_NEWTON_THRESHOLD))
#define MAYBE_dcpi1_divappr \
(INV_NEWTON_THRESHOLD < DC_DIVAPPR_Q_THRESHOLD)
#if (INV_NEWTON_THRESHOLD > INV_MULMOD_BNM1_THRESHOLD) && \
(INV_APPR_THRESHOLD > INV_MULMOD_BNM1_THRESHOLD)
#undef INV_MULMOD_BNM1_THRESHOLD
#define INV_MULMOD_BNM1_THRESHOLD 0 /* always when Newton */
#endif
#endif
/* All the three functions mpn{,_bc,_ni}_invertappr (ip, dp, n, scratch), take
the strictly normalised value {dp,n} (i.e., most significant bit must be set)
as an input, and compute {ip,n}: the approximate reciprocal of {dp,n}.
Let e = mpn*_invertappr (ip, dp, n, scratch) be the returned value; the
following conditions are satisfied by the output:
0 <= e <= 1;
{dp,n}*(B^n+{ip,n}) < B^{2n} <= {dp,n}*(B^n+{ip,n}+1+e) .
I.e. e=0 means that the result {ip,n} equals the one given by mpn_invert.
e=1 means that the result _may_ be one less than expected.
The _bc version returns e=1 most of the time.
The _ni version should return e=0 most of the time; only about 1% of
possible random input should give e=1.
When the strict result is needed, i.e., e=0 in the relation above:
{dp,n}*(B^n+{ip,n}) < B^{2n} <= {dp,n}*(B^n+{ip,n}+1) ;
the function mpn_invert (ip, dp, n, scratch) should be used instead. */
/* Maximum scratch needed by this branch (at tp): 3*n + 2 */
static mp_limb_t
mpn_bc_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr tp)
{
mp_ptr xp;
ASSERT (n > 0);
ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT);
ASSERT (! MPN_OVERLAP_P (ip, n, dp, n));
ASSERT (! MPN_OVERLAP_P (ip, n, tp, mpn_invertappr_itch(n)));
ASSERT (! MPN_OVERLAP_P (dp, n, tp, mpn_invertappr_itch(n)));
/* Compute a base value of r limbs. */
if (n == 1)
invert_limb (*ip, *dp);
else {
mp_size_t i;
xp = tp + n + 2; /* 2 * n limbs */
for (i = n - 1; i >= 0; i--)
xp[i] = GMP_NUMB_MAX;
mpn_com (xp + n, dp, n);
/* Now xp contains B^2n - {dp,n}*B^n - 1 */
/* FIXME: if mpn_*pi1_divappr_q handles n==2, use it! */
if (n == 2) {
mpn_divrem_2 (ip, 0, xp, 4, dp);
} else {
gmp_pi1_t inv;
invert_pi1 (inv, dp[n-1], dp[n-2]);
if (! MAYBE_dcpi1_divappr
|| BELOW_THRESHOLD (n, DC_DIVAPPR_Q_THRESHOLD))
mpn_sbpi1_divappr_q (ip, xp, 2 * n, dp, n, inv.inv32);
else
mpn_dcpi1_divappr_q (ip, xp, 2 * n, dp, n, &inv);
MPN_DECR_U(ip, n, 1);
return 1;
}
}
return 0;
}
/* mpn_ni_invertappr: computes the approximate reciprocal using Newton's
iterations (at least one).
Inspired by Algorithm "ApproximateReciprocal", published in "Modern Computer
Arithmetic" by Richard P. Brent and Paul Zimmermann, algorithm 3.5, page 121
in version 0.4 of the book.
Some adaptations were introduced, to allow product mod B^m-1 and return the
value e.
USE_MUL_N = 1 (default) introduces a correction in such a way that "the
value of B^{n+h}-T computed at step 8 cannot exceed B^n-1" (the book reads
"2B^n-1"). This correction should not require to modify the proof.
We use a wrapped product modulo B^m-1. NOTE: is there any normalisation
problem for the [0] class? It shouldn't: we compute 2*|A*X_h - B^{n+h}| <
B^m-1. We may get [0] if and only if we get AX_h = B^{n+h}. This can
happen only if A=B^{n}/2, but this implies X_h = B^{h}*2-1 i.e., AX_h =
B^{n+h} - A, then we get into the "negative" branch, where X_h is not
incremented (because A < B^n).
FIXME: the scratch for mulmod_bnm1 does not currently fit in the scratch, it
is allocated apart. */
#define USE_MUL_N 1
mp_limb_t
mpn_ni_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr scratch)
{
mp_limb_t cy;
mp_ptr xp;
mp_size_t rn, mn;
mp_size_t sizes[NPOWS], *sizp;
mp_ptr tp;
TMP_DECL;
#define rp scratch
ASSERT (n > 2);
ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT);
ASSERT (! MPN_OVERLAP_P (ip, n, dp, n));
ASSERT (! MPN_OVERLAP_P (ip, n, scratch, mpn_invertappr_itch(n)));
ASSERT (! MPN_OVERLAP_P (dp, n, scratch, mpn_invertappr_itch(n)));
/* Compute the computation precisions from highest to lowest, leaving the
base case size in 'rn'. */
sizp = sizes;
rn = n;
do {
*sizp = rn;
rn = ((rn) >> 1) + 1;
sizp ++;
} while (ABOVE_THRESHOLD (rn, INV_NEWTON_THRESHOLD));
/* We search the inverse of 0.{dp,n}, we compute it as 1.{ip,n} */
dp += n;
ip += n;
/* Compute a base value of rn limbs. */
mpn_bc_invertappr (ip - rn, dp - rn, rn, scratch);
TMP_MARK;
if (ABOVE_THRESHOLD (n, INV_MULMOD_BNM1_THRESHOLD))
{
mn = mpn_mulmod_bnm1_next_size (n + 1);
tp = TMP_ALLOC_LIMBS (mpn_mulmod_bnm1_itch (mn, n, (n >> 1) + 1));
}
/* Use Newton's iterations to get the desired precision.*/
/* define rp scratch; 2rn + 1 limbs <= 2(n>>1 + 1) + 1 <= n + 3 limbs */
/* Maximum scratch needed by this branch <= 3*n + 2 */
xp = scratch + n + 3; /* n + rn limbs */
while (1) {
mp_limb_t method;
n = *--sizp;
/*
v n v
+----+--+
^ rn ^
*/
/* Compute i_jd . */
if (BELOW_THRESHOLD (n, INV_MULMOD_BNM1_THRESHOLD)
|| ((mn = mpn_mulmod_bnm1_next_size (n + 1)) > (n + rn))) {
/* FIXME: We do only need {xp,n+1}*/
mpn_mul (xp, dp - n, n, ip - rn, rn);
mpn_add_n (xp + rn, xp + rn, dp - n, n - rn + 1);
method = 1; /* Remember we used (truncated) product */
/* We computed cy.{xp,rn+n} <- 1.{ip,rn} * 0.{dp,n} */
} else { /* Use B^n-1 wraparound */
mpn_mulmod_bnm1 (xp, mn, dp - n, n, ip - rn, rn, tp);
/* We computed {xp,mn} <- {ip,rn} * {dp,n} mod (B^mn-1) */
/* We know that 2*|ip*dp + dp*B^rn - B^{rn+n}| < B^mn-1 */
/* Add dp*B^rn mod (B^mn-1) */
ASSERT (n >= mn - rn);
xp[mn] = 1 + mpn_add_n (xp + rn, xp + rn, dp - n, mn - rn);
cy = mpn_add_n (xp, xp, dp - (n - (mn - rn)), n - (mn - rn));
MPN_INCR_U (xp + n - (mn - rn), mn + 1 - n + (mn - rn), cy);
ASSERT (n + rn >= mn);
/* Subtract B^{rn+n} */
MPN_DECR_U (xp + rn + n - mn, 2*mn + 1 - rn - n, 1);
if (xp[mn])
MPN_INCR_U (xp, mn, xp[mn] - 1);
else
MPN_DECR_U (xp, mn, 1);
method = 0; /* Remember we are working Mod B^m-1 */
}
if (xp[n] < 2) { /* "positive" residue class */
cy = 1;
while (xp[n] || mpn_cmp (xp, dp - n, n)>0) {
xp[n] -= mpn_sub_n (xp, xp, dp - n, n);
cy ++;
}
MPN_DECR_U(ip - rn, rn, cy);
ASSERT (cy <= 4); /* at most 3 cycles for the while above */
ASSERT_NOCARRY (mpn_sub_n (xp, dp - n, xp, n));
ASSERT (xp[n] == 0);
} else { /* "negative" residue class */
mpn_com (xp, xp, n + 1);
MPN_INCR_U(xp, n + 1, method);
ASSERT (xp[n] <= 1);
#if USE_MUL_N
if (xp[n]) {
MPN_INCR_U(ip - rn, rn, 1);
ASSERT_CARRY (mpn_sub_n (xp, xp, dp - n, n));
}
#endif
}
/* Compute x_ju_j. FIXME:We need {rp+rn,rn}, mulhi? */
#if USE_MUL_N
mpn_mul_n (rp, xp + n - rn, ip - rn, rn);
#else
rp[2*rn] = 0;
mpn_mul (rp, xp + n - rn, rn + xp[n], ip - rn, rn);
#endif
/* We need _only_ the carry from the next addition */
/* Anyway 2rn-n <= 2... we don't need to optimise. */
cy = mpn_add_n (rp + rn, rp + rn, xp + n - rn, 2*rn - n);
cy = mpn_add_nc (ip - n, rp + 3*rn - n, xp + rn, n - rn, cy);
MPN_INCR_U (ip - rn, rn, cy + (1-USE_MUL_N)*(rp[2*rn] + xp[n]));
if (sizp == sizes) { /* Get out of the cycle */
/* Check for possible carry propagation from below. */
cy = rp[3*rn - n - 1] > GMP_NUMB_MAX - 7; /* Be conservative. */
/* cy = mpn_add_1 (rp + rn, rp + rn, 2*rn - n, 4); */
break;
}
rn = n;
}
TMP_FREE;
return cy;
#undef rp
}
mp_limb_t
mpn_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr scratch)
{
mp_limb_t res;
TMP_DECL;
TMP_MARK;
if (scratch == NULL)
scratch = TMP_ALLOC_LIMBS (mpn_invertappr_itch (n));
ASSERT (n > 0);
ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT);
ASSERT (! MPN_OVERLAP_P (ip, n, dp, n));
ASSERT (! MPN_OVERLAP_P (ip, n, scratch, mpn_invertappr_itch(n)));
ASSERT (! MPN_OVERLAP_P (dp, n, scratch, mpn_invertappr_itch(n)));
if (BELOW_THRESHOLD (n, INV_NEWTON_THRESHOLD))
res = mpn_bc_invertappr (ip, dp, n, scratch);
else
res = mpn_ni_invertappr (ip, dp, n, scratch);
TMP_FREE;
return res;
}
|